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ABSTRACT
Consumer IoT devices are becoming increasingly popular, with
most leveraging TLS to provide connection security. In this work,
we study a large number of TLS-enabled consumer IoT devices to
shed light on how effectively they use TLS, in terms of establishing
secure connections and correctly validating certificates, and how
observed behavior changes over time. To this end, we gather more
than two years of TLS network traffic from IoT devices, conduct
active probing to test for vulnerabilities, and develop a novel black-
box technique for exploring the trusted root stores in IoT devices
by exploiting a side-channel through TLS Alert Messages. We find a
wide range of behaviors across devices, with some adopting best
security practices but most being vulnerable in one or more of
the following ways: use of old/insecure protocol versions and/or
ciphersuites, lack of certificate validation, and poor maintenance
of root stores. Specifically, we find that at least 8 IoT devices still
include distrusted certificates in their root stores, 11/32 devices are
vulnerable to TLS interception attacks, and that many devices fail
to adopt modern protocol features over time. Our findings motivate
the need for IoT manufacturers to audit, upgrade, and maintain
their devices’ TLS implementations in a consistent and uniform
way that safeguards all of their network traffic.
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• Security and privacy → Network security; Embedded sys-
tems security; • Networks → Network measurement; Network
security;
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1 INTRODUCTION
Consumer Internet-of-Things (IoT) devices such as voice assistants,
smart TVs and video doorbells are popular, with their prevalence
projected to be 75 billion by 2025 [14]. Most IoT devices rely on TLS,
the de facto secure transport protocol, to provide confidentiality,
integrity and authenticity of their network communications [26].
Numerous prior works have shown that TLS security properties
can be compromised due to development errors (e.g., [31]), insecure
configurations (e.g., [39]), and outdated clients (e.g., [20]). While
TLS usage has been studied extensively in mobile applications and
web browsers (e.g., [47], [49], [37]), there is little insight into its
effectiveness in the IoT ecosystem (e.g., [26]).

More specifically, there exists a research gap in understanding
whether TLS implementations in IoT devices: (i) establish connec-
tions using secure TLS versions and ciphersuites, (ii) correctly per-
form certificate validation while using a generally trusted set of root
certificates, and (iii) adopt new features as the protocol evolves over
time (e.g., modern ciphersuites). There are several challenges that
prevent the use of existing methodologies to study these aspects
of IoT devices. First, understanding TLS support on a significant
number of IoT devices requires blackbox testing techniques; this is
because source code is generally unavailable and firmware analy-
sis is not scalable. Second, most IoT devices provide limited ways
to trigger TLS traffic for measurement—the timing, destination,
and contents of their communication are all dependent on device
functionality and interactions. Third, existing vantage points offer
limited opportunities to track device behavior over time (e.g., re-
cent work considers only manufacturer-level device tracking using
ISP/IXP data [53]).

In this work, we address these challenges to study a large num-
ber of TLS-enabled consumer IoT devices (with over 200 million
units sold collectively). First, we shed light on the security of TLS
implementations and configurations in these devices using existing
and novel active measurement techniques that require only TLS
traffic interception. Second, based on the insight that devices gen-
erate significant network traffic when powered on, we automate
device reboots using smart plugs to trigger TLS activity for our
experiments. And third, we analyze ≈2 years of network traffic
from these devices via uncontrolled experiments to study how their
TLS usage changes over time. Altogether, we conduct active experi-
ments on 32 devices, and collect passive data from 40 devices, each
generating TLS traffic for at least 6 months.

Our main goals are to evaluate the security of TLS connections
established by IoT devices, how this changes over time, and whether
they correctly validate certificates. More specifically, we study how
devices’ TLS implementations are configured with respect to TLS
versions and ciphersuites supported, and provide the first longitu-
dinal analysis of how these properties change over time, as the TLS
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protocol and attacks against it evolve. We further check whether
the devices properly validate certificates to protect against the TLS
interception attacks, extending prior work by including a more com-
prehensive set of invalid certificates in our tests. We develop a novel
active testing strategy to reveal the trusted set of root certificates
on a device. These certificates form the “trusted root” of all security
guarantees provided by the TLS protocol and auditing them is par-
ticularly important given the recent rise in supply-chain attacks by
powerful adversaries [23, 54]. While prior works have studied root
stores in open platforms (e.g., operating systems and browsers), to
the best of our knowledge we are the first to investigate the validity
of root certificates used in IoT devices.

Our main research findings are listed below:
• The vast majority of devices establish connections using TLS
1.2 with secure ciphersuites, but rarely adopt TLS 1.3 or stop ad-
vertising insecure ciphersuites (DES, 3DES, RC4, EXPORT) over
time. Surprisingly, devices that do support the latest TLS versions
and strongest ciphersuites often encounter lack of server support.
In addition, 7 devices downgrade to deprecated protocol versions
or old ciphersuites in the face of an active on-path attacker.

• 11 devices are vulnerable to TLS interception attacks—they either
bypass certificate validation altogether or do not validate host-
names. Moreover, TLS connections from 7 vulnerable devices
contained sensitive data that can be exposed to attackers. We
responsibly disclosed these vulnerabilities to device vendors, and
at the time of writing one vendor confirmed that the issue was
fixed in response to our disclosure.

• At least 8 devices contain unexpired-yet-deprecated root certifi-
cates in their trusted root stores. Moreover, all of these devices
trusted at least one CA that has been explicitly distrusted by
popular browsers due to misbehavior (e.g, WoSign, TurkTrust,
Certinomis, CNNIC). In one device, CAs that were deprecated as
early as 2013 were present.

• TLS fingerprints from these devices reveal that multiple devices
likely use the same (often vulnerable) TLS library, and individ-
ual devices likely include multiple TLS libraries. For the former,
shared libraries mean that attackers can use knowledge of the
fingerprints and associated vulnerabilities to scale their attacks
to large numbers of devices. For the latter, multiple TLS libraries
hint at more opportunities for supply chain attacks (if different
implementations come from different vendors) and make TLS
security more challenging to maintain.
To ensure reproducibility and enable new research, we have

made all of our longitudinal TLS handshake data, controlled ex-
perimentation data and analysis software publicly available at:
https://github.com/NEU-SNS/IoTLS.

2 BACKGROUND
Transport Layer Security (TLS) is the de facto, IETF-standard, In-
ternet security protocol to provide confidentiality, integrity, and
authenticity of network communications. Since Netscape started
work on the TLS predecessor, Secure Sockets Layer (SSL), ≈25 years
ago, the protocol has undergone rigorous development featuring
various standardization efforts and releases—SSL 2.0 (1995), SSL
3.0 (1996), TLS 1.0 (1999), TLS 1.1 (2006), TLS 1.2 (2008) and TLS

1.3 (2018). This section provides relevant background information
about TLS.
Root Stores TLS generally uses digital certificates that bind host
identities with cryptographic material. These certificates are issued
by Certificate Authorities (CAs) and can be “revoked” if they get
compromised. Server authentication is the most common TLS usage
where clients store relevant information about one or more trusted
CAs root certificates and require that servers present valid certifi-
cates from one of them to authenticate themselves. These certifi-
cates form a trusted set of “root” store certificates deployed on end
systems; if the private key for any of these trusted root certificates
is compromised, the attacker can circumvent security guarantees
of all TLS connections by a client.1 Currently, web browsers and
operating systems ship with dozens of root certificates in their root
stores to enable TLS communication with a wide range of servers.
Due to the crucial importance of root certificates, these platforms
actively maintain their root stores to remove any certificates from
CAs that violate CA guidelines or get compromised.
Secure connection establishment A TLS “handshake” is the
set of messages that establishes a secure session between two end
hosts. The process is initiated by a client to advertise its supported
protocol versions, ciphersuites (i.e., cryptographic algorithms), and
extensions (i.e., other advanced features). In response, a TLS server
decides the protocol version and ciphersuite to use based on its
compatibility. During the handshake, the client and server can
authenticate each other and compute cryptographic keys to be used
for confidentiality and integrity of the future communication. The
authentication typically involves validating the received certificate
chain. Any data sent after a successful handshake is encrypted.2
TLS Alert Messages can be sent at any point to notify the other
party of any errors (e.g., incompatible protocol version, signature
verification failure during certificate validation) or to simply close
the connection.

A TLS ClientHello can be used to infer the software responsible
for generating that connection. That is because clients and libraries
vary in the protocol versions, ciphersuites, extensions, and other
features they support. A TLS “fingerprint” is a permutation of these
features obtained fromClientHellos of a known application to enable
its detection in passively monitored TLS traffic from unknown
sources [38, 54]. We define a TLS instance as TLS implementation
(e.g., software library) and configuration (e.g., selected ciphersuites
and extensions) that collectively produce a given TLS fingerprint.
Ciphersuites Ciphersuites have also evolved over time. Depre-
cated ones need to be avoided for secure connection establishment.
More specifically, any usage of ciphersuites involving (DES, 3DES,
RC4 and EXPORT) demands for “immediate” remediation [5, 21]
because of their vulnerability to attacks including, but not lim-
ited to, Biased Keystreams (2013) [25], FREAK (2015) [28], Logjam
(2015) [24], and Sweet32 (2016) [29]. Further, ClientHellos using
(NULL or ANON) ciphersuites do not offer authentication or en-
cryption and, as such, can only be used for specific (insecure) use
cases. Finally, modern ciphersuites involving (DHE or ECDHE) offer
perfect forward secrecy (i.e., protection of data communicated in

1Except for applications that use strategies such as key pinning.
2Assuming the NULL ciphersuite is not selected.

https://github.com/NEU-SNS/iotls
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Table 1: List of the 40 TLS-supporting devices in our study. (*) denotes devices used only in passive experiments.

Cameras (n = 7) Smart Hubs (n = 7) Home Automation (n = 7) TV (n = 5) Audio (n = 7) Appliances (n = 7)

Blink Camera*
Amazon Cloudcam*
Zmodo Doorbell
Yi Camera
D-Link Camera
Amcrest Camera
Ring Doorbell*

Blink Hub
Smartthings Hub
Philips Hub
Wink Hub 2
Sengled Hub*
Switchbot Hub
Insteon Hub*

Smartlife Bulb
Smartlife Remote
Meross Dooropener
TP-Link Bulb
Nest Thermostat
TP-Link Plug
Wemo Plug

Fire TV
Samsung TV*
LG TV
Roku TV
Apple TV

Google Home Mini
Amazon Echo Plus
Amazon Echo Dot
Amazon Echo Dot 3
Amazon Echo Spot
Harman Invoke
Apple HomePod

GE Microwave
Samsung Washer*
Samsung Dryer
Samsung Fridge
Smarter iKettle
Behmor Brewer
LG Dishwasher*

the past despite a future compromise of secret keys) and therefore
should be adopted.
Vulnerabilities and attacks By 2020, major browsers had dep-
recated all TLS versions below 1.2 due to serious security flaws [3].
Yet, some TLS clients voluntarily downgrade connection security
upon handshake failure to improve compatibility with older servers.
The POODLE (2014) [46] attack exploited the behavior of major
web browsers and other clients to fallback to SSL 3.0 (known to be
insecure) and highlighted the risks of any fallback behavior. On the
other hand, the TLS interception class of attacks typically refer to
weaknesses in handshake validation that are exploited by on-path
attackers. These attacks are particularly severe as they allow secret
eavesdropping of all TLS communication sent between a client and
server on a compromised connection.

3 GOALS & ASSUMPTIONS
Our goals are to answer three research questions (RQs):

RQ1: Do devices securely establish TLS connections? Se-
curely establishing TLS connections means that devices use secure
TLS versions and ciphersuites. In this paper, we consider whether
devices are resilient to in-network adversaries (e.g., a network
provider) that have the ability to capture and manipulate TLS traffic
between an IoT device and the destinations it contacts. We focus
on device support for the latest, secure protocol versions, modern
ciphersuites, and negotiated TLS configurations between IoT clients
and their destinations. We use ≈2 years of passively collected longi-
tudinal IoT traffic to determine whether devices adopt new features
and abandon deprecated ones.

RQ2: Do devices properly validate TLS certificates? In this
paper, we focus on evaluating whether devices accept connections
with invalid certificates, and understanding whether their root
stores contain deprecated and/or distrusted root certificates. Specif-
ically, we focus on validation of the server certificate chain, host-
name and various X.509 extensions specified in RFC 2818 [18] and
RFC 5280 [19]. In addition, we evaluate the configured set of trusted
root certificates to determine whether devices protect against dis-
trusted and/or stale root certificates.

RQ3: What is the diversity of behaviors within and across
devices? The effectiveness of a single attack vector is limited to the
set of devices that share the same vulnerability. To understand the
breadth of the impact of potential attacks, we investigate howmany
devices exhibit the same TLS behavior and, potentially, the same
security issues. We further investigate whether individual devices
exhibit different TLS behavior for different connections—indicative
of multiple TLS instances on the same device.

To answer these questions, instead of modeling IoT devices as
monolithic implementations, we treat them as complex devices
that can integrate third-party components and even allow users to
install third-party software as in the case of Smart TV platforms.
These cases can lead to additional risk of vulnerabilities due to the
need to maintain the security of these multiple TLS deployments
and development errors, both at the OS level and across third-party
developers.
Assumptions For this study, we assume that when a device
uses TLS, the corresponding traffic must be safeguarded to provide
authenticity, confidentiality and integrity. Note that we cannot in
general knowwhether the content of any specific TLS connection is
sensitive (e.g., contains personal data). When such connections are
used to transmit sensitive content such as users’ personal data or
a manufacturer’s confidential machine-learning models, there is a
clear need to protect it against attackers. While some TLS endpoints
may be public services that exchange non-sensitive data, we cannot
a priori distinguish such entities, and thus treat all endpoints that
use TLS as potentially sensitive.

4 METHODOLOGY
This section provides an overview of our methodology, analyses,
and how they relate to the research questions.

4.1 Testbed

IoT Devices We study 40 TLS-supporting IoT devices across
6 categories; Cameras, Smart Hubs, Home Automation, TV, Audio
and Other Appliances (Table 1). The testbed is configured to rep-
resent a smart home with a wide range of consumer IoT devices
connected to the Internet. All devices are located in an isolated
space designed to resemble a studio apartment. To interact with
devices that support companion apps, we installed and used these
apps on smartphones connected to the same network. Network
traffic collection is performed at a gateway that provides network
access only to our IoT testbed.

We use a software/firmware update discipline that we assume
to be typical of an IoT home scenario. Specifically, devices that
receive automatic updates are updated at whatever cadence the
manufacturer specifies. For devices that require manual interven-
tion for updates, we accepted the updates when explicitly asked by
the companion apps of devices. Note that we accept these updated
in an ad-hoc manner, and as such, these devices are not regularly
updated. We decided to use this approach because (a) we expect
many users to also use these devices in a similar way, and (b) getting
all devices to update at a regular interval could not be automated.
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Experimental Setup and Dataset Our study uses a combina-
tion of passive and active experiments. The key difference between
the two experiment types is that active experiments involve the us-
age ofmitmproxy [10] to intercept traffic while passive experiments
do not. Both experiments need some form of interaction with the
IoT devices for generating network activity.

In passive experiments we simply record the network traffic
generated by devices. This includes data while devices are not in use,
and also from interactions with ≈40 consenting study participants
enrolled in our IRB-approved study. These participants are members
of our academic institution, and are directed simply to use these
devices as they please. The passive dataset covers ≈2 years of traffic
from January 2018 to March 2020. Among the 40 devices in passive
experiments, every device generated traffic for at least 6 months,
while 32 devices did so for more than 12 months. Passive data allows
us to observe the real-world behavior of the devices (a) when they
are connected to the network without user interactions, and (b)
when users interact with them.

In active experiments, we intercept the traffic from our devices
by impersonating the server-side of TLS connections. To induce
the devices to generate TLS traffic for interception, we leverage
the observation that IoT devices generate significant traffic when
powered on [52]. Thus we programmatically use TP-Link power
plugs to turn devices off and back on again, causing them to boot
and potentially establish TLS connections. All 32 devices in active
experiments generated at least one TLS connection. The bulk of
our experiments were performed in March 2021.

Some devices broke, lost manufacturer support or would lose
WiFi connectivity until reconfigured again. As a result, such devices
did not generate traffic continuously throughout the entirety of
our passive experimentation period, and were omitted from the
active experiments (resulting in the discrepancy between number
of devices in active vs passive experiments).

In total, we gathered ≈17M TLS connections (per device average:
≈422K, median: ≈138K connections). Note that our active experi-
ments comprise controlled, repeatable experiments that are con-
ducted without study participants present and represent a snapshot
in time (at least 3 minutes after a device reboot). Passive experi-
ments are uncontrolled and they may include participant interac-
tions, thus they enable us to study longitudinal insights across a
variety of connections.

4.2 Instrumentation
We use the following instrumentation to gather data for analysis.
TLS handshake analysis (RQ1 and RQ3) To determine
whether devices establish secure TLS connections, we extract infor-
mation about TLS versions and ciphers advertised by clients and
selected by servers. We further parse the ClientHellos to extract
client fingerprints, and use this information to explore the diversity
of observed TLS instances.
TLS interception attacks (RQ2) We investigate whether de-
vices are susceptible to several active on-path attacks that an adver-
sary can use to compromise TLS connections (Table 2). We picked
these attacks because they do not require significant resources (e.g.,
compromising a root CA, or breaking a cipher using cryptanal-
ysis). They are related to proper certificate chain validation and

Table 2: Overview of the TLS interception attacks.

Attack Description

NoValidation Use a self-signed certificate to check whether a device per-
forms any certificate validation.

WrongHostname Use an unexpired legitimate certificate for a domain under
our control to check whether a device performs hostname
validation. We send the full chain linking to a trusted root
authority during handshake.

InvalidBasicConstraints Use certificate from the previous attack as a root CA to check
whether a device validates BasicConstraints extension. We
send the full chain linking to a trusted root authority during
handshake.

Table 3: Sources for obtaining historical data for CA root
certificates trusted by various platforms.

Platform Total
versions

Earliest
version year Comments

Ubuntu 9 2012 We install the ca-certificates pack-
age and fetch the /etc/ssl/certs/ca-
certificates.crt file from official Docker
images.

Android 10 2010 We use version-tagged commits for ei-
ther /platform /system/ca-certificates or
luni/src /main/files/cacerts [15, 16].

Mozilla 47 2013 We extract different file versions
from commit history for NSS’s secu-
rity/nss/lib/ckfw/builtins/certdata.txt
[12].

Microsoft 15 2017 We use the historical information pub-
lished by Microsoft about its trusted
root store certificates [9].

Table 4: Testing our technique for exploring root stores in
various TLS libraries. Only two were found to be amenable
(shown in italics).

Library Response for known CA with
invalid signature

Response for unknown
CA

MbedTLS (v2.21.0) Bad Certificate Unknown CA
OpenSSL (v1.1.1i) Decrypt Error Unknown CA
Oracle Java (v1.8.0) Certificate Unknown Certificate Unknown
WolfSSL (v4.1.0) Bad Certificate Bad Certificate
GNU TLS (v3.6.15) No Alert No Alert
Secure Transport
(macOS v11.3) No Alert No Alert

have previously been found effective against a wide variety of non-
browser TLS clients [39], so we extend these to IoT devices. We use
mitmproxy [10] for performing these attacks.

Note that a potential limitation of our study is that attempts to
test vulnerabilities (e.g., using self-signed certificates) will lead to
connection errors, and those in turn may cause a device (or some of
its functionality) to cease to work, thus suppressing further network
connections. To test the potential impact of this issue, we restart de-
vices and repeat all the above attacks with TrafficPassthroughwhere
we do not intercept any connections that previously failed when
under attack [11]. Encouragingly, we find that TrafficPassthrough
experiments did not lead to finding any new certificate validation
failures, even though they produced ≈20.4% more connections (av-
erage, in terms of new DNS or TLS hostnames) from these devices.
We speculate that these additional connections might be based
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Table 5: IoT devices that downgrade security upon connection failures (✓ indicates downgrade).

Device Failed
Handshake

Incomplete
Handshake Behavior Downgraded

/ Total Destinations

Amazon Echo Dot ✗ ✓ Falls back to using SSL 3.0 7 / 9
Amazon Echo Plus ✗ ✓ Falls back to using SSL 3.0 6 / 7
Amazon Echo Spot ✗ ✓ Falls back to using SSL 3.0 11 / 15
Amazon Fire TV ✗ ✓ Falls back to using SSL 3.0 13 / 21
Apple Homepod ✗ ✓ Falls back to using TLS 1.0 7 / 9

Google Home Mini ✗ ✓ Falls back to supporting a weaker ciphersuite and signature algorithm
(TLS_RSA_WITH_3DES_EDE_CBC_SHA and RSA_PKCS1_SHA1)

5 / 5

Roku TV ✓ ✓ Falls back from offering 73 ciphersuites to just 1 (TLS_RSA_WITH_RC4_128_SHA) 8 / 15

Table 6: IoT devices that support older TLS versions.

Device TLS 1.0 Available? TLS 1.1 Available?

Zmodo Doorbell ✓ ✓

Wink Hub 2 ✓ ✓

Yi Camera ✓ ✓

Philips Hub ✓ ✓

Smarter Brewer ✓ ✓

TP-Link Bulb ✓ ✓

Roku TV ✓ ✓

Meross Dooropener ✓ ✓

LG TV ✓ ✓

Google Home Mini ✓ ✓

Amazon Fire TV ✓ ✓

Amazon Echo Spot ✓ ✓

Amazon Echo Plus ✓ ✓

Amazon Echo Dot ✓ ✓

Amcrest Camera ✓ ✓

Samsung Fridge ✗ ✓

Samsung Dryer ✗ ✓

Wemo Plug ✓ ✗

on success responses from some earlier connections (e.g., a login
request) and, as such, only appear in TrafficPassthrough tests.
Root stores analysis (RQ2) We present a novel technique to
detect if a Certificate Authority (CA) root certificate is in the trusted
root store of an IoT device. Our key insight is that the TLS protocol
specifies different steps for clients when validating a certificate
with an unknown issuer compared to a certificate with known issuer
but invalid signature—opening a side channel to infer the presence
of trusted root certificates in a client’s root store. In this work, we
exploit this side channel using TLS Alert Messages.

We first use a self-signed root certificate with arbitrary Subject
Name to intercept a TLS connection originating from the device.
The device should fail to establish the connection if it is doing
proper certificate validation because our CA certificate is not in
its root store. We then intercept the same TLS connection using
a spoofed CA certificate, i.e., a self-signed root certificate with its
Subject Name, Issuer Name and Serial Number matching that of a
legitimate root certificate being tested. The client should reject this
certificate due to a signature validation error: while the subject
name, issuer name, and serial number all match a trusted root
certificate, we do not have the root CA’s private key to generate a
valid signature for the leaf certificate in chain. Thus our interception
attempt fails in both cases, but the failure could either be due to the
client not recognizing the arbitrary Subject Name in its root store,
or because it does recognize a Subject Name that is in its root store

but the leaf certificate has an invalid signature. If we are able to
observe this difference in device behavior, we can infer whether a
given CA certificate is trusted by the device or not.

We found that the TLS specification provides a mechanism to
observe this difference in behavior: per RFC 5246 (TLS 1.2) or RFC
8446 (TLS 1.3), a TLS client may choose to send a TLS Alert Message
during a connection failure. More specifically, clients can choose to
send unknown_ca alert to indicate that a trusted CA root certificate
could not be found when forming the chain and decrypt_error
alert to indicate for a signature check failure. For this work, we con-
sider a device amenable to our technique of root store exploration
if it sends different alerts based on the type of experiment run.

To realize this experiment, we use the approach from TLS inter-
ception attacks to boot devices, intercept their TLS connections,
and respond with self-signed certificates as described previously.
We then record any TLS Alert Messages that appear. It is crucial that
a connection from the same TLS instance is triggered from a device
every time a root CA is investigated. Otherwise, we cannot know if
our exploration is targeted towards one root store or multiple root
stores on the same device. For our experiments, our expectation
is that devices will follow the same procedure every time they are
rebooted.

To obtain a set of CA certificates to spoof, we gathered historical
data for CA certificates trusted by various platforms through the
sources described in Table 3. We use this data to make two distinct
set of certificates:
(1) Common CA certificates: we use the latest version of the root

store for each platform and extract currently unexpired certifi-
cates common to all of them.

(2) Deprecated CA certificates: we start with the earliest version
of the root store for each platform, and extract all certificates
removed from the successor version(s) of the store, but that
are currently unexpired. We exclude any certificate if it was
once removed but is still present in the latest version of the root
store.
Common CA certificates represent the ones trusted by all major

(non-IoT) platforms, and thus can be considered likely trustworthy.
Deprecated CA certificates represent cases where root certificates
are retired before expiration, or in some cases explicitly distrusted
(e.g., due to noncompliance with CA guidelines), and thus their
trustworthiness is (more) questionable. Note that our approach
cannot in general reveal all certificates in the root store; rather,
it can reveal only those included in our testing set. As such, our
analysis may omit non-public root, such as those in private PKIs.
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Figure 1: TLS version support for IoT devices. Devices often use multiple versions (rows 2-12), can encounter lack of server
support (rows 2-8) and rarely adopt better TLS versions over time (rows 7-10). 28 devices use TLS 1.2 for the vast majority of
their advertised and established connections, and are not shown in this figure.

We validated the efficacy of our approach in popular TLS li-
braries and present results in Table 4. Among the 2/6 libraries that
are amenable to this analysis, MbedTLS is generally known to be
deployed in IoT ecosystems [32]. As we show later in the paper, we
empirically found that OpenSSL is used by multiple devices that are
also amenable to this measurement strategy.

5 RESULTS
We now present the results to answer our research questions.

5.1 TLS Connection Security
In this section, we rely onmore than two years of passively collected
data to study TLS protocol version and ciphersuites, and whether
their support improves over time.
Protocol Version As explained earlier, the TLS version used
in a connection is determined during the handshake and is based
on the highest version supported by both client and server. Since
versions prior to 1.2 are deprecated due to security concerns, we
focus on the prevalence of such connections in our dataset, and
whether their use is due to lack of client and/or server support for
newer versions.

Our first observation is good news. A large majority of the de-
vices (28/40) use TLS 1.2 exclusively and are thus not using depre-
cated versions. However, for other devices, we find a mix of traffic
that includes the use of deprecated TLS versions over time.

To visualize this phenomenon and understand how it impacts
the security of established connections, in Fig. 1 we visualize a
heatmap of the fraction of connections for which each TLS version
is advertised via Client Hellos (left), and established via Server Hellos
(right) over a 2-year period. For each device (y-axis), we use three
rows to represent the TLS connections observed over 1.3 (top), 1.2

(middle) or older versions (bottom). Each cell represents the fraction
of TLS connections over each TLS version during a particular month
of our study (x-axis). Gray cells indicate months where a device
did not generate any TLS traffic. Note that Fig. 1 omits the 28
devices that established connections using only TLS 1.2. We make
the following observations:
The vast majority of connections happen over TLS 1.2. Only the
Wemo Plug advertises an insecure TLS version throughout the entire
measurement period for all its connections.
Devices tend to support newer protocol versions than the servers they
connect to. We find that 32 devices advertised support for TLS 1.2
in more than 95% of their connections every month; however, only
24 established connections consistently with TLS 1.2. For exam-
ple, the LG Dishwasher, Samsung Dryer, Samsung Washer, Samsung
Fridge devices advertise TLS 1.2, and the Apple Home Pod and Apple
TV devices advertise TLS 1.3, but all of them establish connections
using older protocol versions. The finding highlights that the secu-
rity of TLS connections from IoT devices in many cases is limited
by servers rather than the devices themselves.
Devices rarely upgrade to newer protocol versions. The vast major-
ity of devices supported the same TLS versions during the two-year
study. The exceptions are Apple TV and Google Home Mini, which
transitioned to using TLS 1.3 (5/2019), and the Blink Security Hub,
which transitioned to TLS 1.2 (7/2018), for the majority of its adver-
tised connections. (TLS 1.3 was finalized by IETF in 8/2018.)

We do not have ground truth to indicate whether changes in
advertised TLS versions are due to TLS software upgrades on the
device or due to connections established using a different existing
TLS instance on the same device. For the three cases above, we
believe they are likely software upgrades because the new protocol
versions are used exclusively after the transition. In contrast, the
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Figure 2: IoT devices that advertise handshakes with inse-
cure ciphersuites (lower is better).Most devices do not depre-
cate these ciphersuites over time. 6 devices rarely advertise
such ciphersuites, and are not shown in this figure.

Insteon Hub appeared to downgrade its advertised and established
connections to older TLS versions for a brief period of time (7/2018–
8/2019). We manually inspected these cases and found that changes
in fractions of connections using older TLS versions were explained
by a single set of destinations that were contacted more or less
frequently from one month to the next. As such, we do not believe
these were due to any TLS software changes. Note, however, that
the transition to TLS 1.2 (9/2019) is more likely due to an upgrade
in protocol support because older TLS versions are not seen at all
after this date.
Devices that advertise multiple maximum TLS versions. We find
that 20 devices advertise support for more than one TLS version,
with 15 of those advertising multiple maximum versions for the
same destinations. This was surprising, since a device with a more
secure configuration would advertise only the most recent TLS
version as its maximum. There are several potential explanations
for this behavior. One explanation could be that different IoT de-
vice functionality (e.g., third-party software) uses the same TLS
implementation but different configurations. In this case, we hy-
pothesize that connections to different parties would consistently
use different TLS configurations. To test this, we labeled each TLS
connection as first or third-party using an approach inspired by Ren
et al. [52]. We found no patterns that indicate bias toward one TLS
version depending on the destination type contacted, and thus we
found no evidence to support this hypothesis. Another explanation
is that each device contains multiple TLS instances and different
software components of a device use them independently. While we
do not have any ground truth to confirm it, the observed behavior

Figure 3: IoT devices that establish connections with strong
ciphersuites (higher is better). Most devices do not adopt
these ciphersuites over time. 18 devices use such cipher-
suites for the vast majority of their established connections,
and are not shown in this figure.

is consistent with this explanation. We explore this behavior and
its implications further in §5.3.
Connection security under attacks The results above focus
on connection security observed passively, and only shed light on
the maximum advertised protocol version from devices. To better
understand the susceptibility of these devices to even weaker secu-
rity in the face of an active on-path attacker, we conducted active
experiments that attempt to force devices to downgrade connection
security through connection failures, or negotiate connections with
older TLS versions by using them in ServerHellos.

We ran experiments using two types of TLS connection fail-
ures; IncompleteHandshake where we do not reply to a ClientHello
with ServerHello, and FailedHandshake where we use a self-signed
certificate to cause an unsuccessful handshake. Table 5 lists the
7 devices that downgrade security upon connection failures, the
types of handshakes errors that lead to downgrades, how security
was downgraded, and howmany destinations were susceptible. The
most likely reason for such behavior is that clients intentionally
want to maximize compatibility with old servers. Interestingly, the
majority of—but not all—destinations (i.e., unique domains identi-
fied via SNI or DNS) for a device are affected by downgrades. The
exception is the Google Home Mini, which is susceptible to down-
grades on all its connections. The most significant downgrade that
we observed was the fallback to SSL 3.0 (which is vulnerable to the
POODLE attack) in 4 devices, all from the Amazon family.

Next, we investigate which devices support TLS versions older
than 1.2 and will establish connections using those older versions,
if triggered to do so. Table 6 lists the 19 devices that support TLS
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versions older than 1.2. We note that despite the large number of
these devices, TLS 1.2 was the most common protocol seen in estab-
lished connections from passive data. As such, the finding highlights
that completely protecting against active attackers requires devices
to not only advertise TLS 1.2, but also completely disable support
for older TLS versions.
Ciphersuites Similar to the protocol version, the selection of a
connection’s ciphersuite also happens during a connection hand-
shake and depends on client and server compatibility. For a con-
nection to follow best security practices, strong ciphersuites that
offer forward-secrecy (DHE, ECDHE) should be chosen, while those
that are either insecure (RC4, DES, 3DES, EXPORT) or do not offer
encryption or authentication (ANON, NULL) must be avoided. To
study the prevalence and client/server support for these cipher-
suites, we plot heatmaps for the advertised and established cipher-
suites over time. Each row represents a device, where each cell
is the fraction of connections that are insecure (Fig. 2) or strong
(Fig. 3) for a given month of the study. As before, gray cells indicate
months where there was no TLS traffic from the device. We make
the following observations:
Devices never support (ANON, NULL) ciphersuites. We did not
observe any TLS connection advertised or established using these.
Devices support weaker ciphersuites than the servers they talk to.
34 devices advertised insecure ciphersuites (Figure 2) but only 2
ever established connections using those (Wink Hub 2 and LG TV ).
In contrast to support for TLS versions, the devices in our study
generally offered to use weaker security than what servers chose
to establish.
Devices tend to have better support for perfect forward secrecy than the
servers they connect to. 33 devices advertise support for forward
secrecy, but a large majority of devices (22) establish most of their
connections without it (Fig. 3).
Devices rarely improve usage of ciphersuites over time. Only 2
devices (Blink Security Hub – 5/2019, SmartThings Hub – 3/2020)
stopped advertising/using weak ciphers during our two-year study
(Fig. 2), while 5 (Apple HomePod – 1/2020, Ring Doorbell – 4/2018, Ap-
ple TV – 3/2019, Wink Hub & Blink Security Hub – 10/2019) adopted
perfect forward secrecy (Fig. 3). Surprisingly, Apple TV (10/2018)
appeared to increase support for weak ciphers over time.
Devices show varying support for ciphersuites during multiple months.
Many devices support insecure ciphersuites in a fraction of their
connections as opposed to all or none. Similar to the case with
protocol version, the varying support suggests the presence of
multiple TLS instances in a device.
Comparison with prior work We now compare TLS versions
seen from the IoT devices in our testbeds with those observed
in prior work. Note that prior work [41, 43] looked at all traffic
from a network provider, not only IoT devices. Specifically, when
looking at North American vantage points in November, 2019, a
recent study [41] found that ≈60% of client connections support
TLS 1.3, while our study found only ≈17% of IoT device connections
support TLS 1.3. In April, 2018, Kotzias et al. [43] found that ≈10%
connections advertise RC4 ciphersuite support while we find ≈60%
of connections do. Relative to other sources of Internet traffic such

Table 7: IoT devices vulnerable to TLS interception attacks.
(✓ indicates vulnerability).

Device No-
Validation

InvalidBasic-
Constraints

Wrong-
Hostname

Vulnerable/Total
Destinations

Zmodo Doorbell ✓ ✓ ✓ 6 / 6
Amcrest Camera ✓ ✓ ✓ 2 / 2
Smarter Brewer ✓ ✓ ✓ 1 / 1

Yi Camera ✓ ✓ ✓ 1 / 1
Wink Hub 2 ✓ ✓ ✓ 1 / 2

LG TV ✓ ✓ ✓ 1 / 2
Smartthings Hub ✓ ✓ ✓ 1 / 3
Amazon Echo Plus ✗ ✗ ✓ 1 / 8
Amazon Echo Dot ✗ ✗ ✓ 1 / 9
Amazon Echo Spot ✗ ✗ ✓ 1 / 17
Amazon Fire TV ✗ ✗ ✓ 1 / 21

Table 8: Summary of support for different certificate revo-
cation methods among IoT devices.

Method Devices (Count)

Certificate Revocation
Lists (CRLs)

Samsung TV (1)

Online Certificate Status
Protocol (OCSP)

Samsung TV, Apple TV, Apple Home Pod (3)

OCSP Stapling Fire TV, Samsung TV, Echo Spot, Apple Home Pod, Apple TV,
Harman Invoke, Echo Dot, Wink Hub 2, Google Home Mini, LG

TV, Samsung Fridge, Smartthings Hub (12)

as browsers, IoT devices and their online infrastructure are slow to
adopt modern protocol features and to deprecate insecure ones.
Takeaways Our longitudinal study revealed good and bad news
about TLS usage in IoT devices. On the positive side, the IoT devices
in our study often rely on TLS1.2 or above, do not support (NULL,
ANON) ciphersuites and often support better protocol versions
than the servers they connect to. On the negative side, many of
the devices in our study do not use the latest protocol version, still
support some weak ciphersuites, and tend to not upgrade to modern
protocol features over time. Our findings suggest that althoughmost
IoT devices establish reasonably secure TLS connections, device
manufacturers can improve when it comes to maintaining updated
TLS libraries and configurations over time. This will help to reduce
their exposure to attacks over time.

5.2 Certificate validation
In this section, we use active experiments to evaluate how well IoT
devices validate TLS certificates for the connections they establish.
It is important to note that failure to properly validate certificates
makes devices susceptible to interception attacks, where the at-
tacker can recover the plaintext content of encrypted connections.
To understand the correctness of certificate validation, we test three
aspects. First, we identify whether devices are susceptible to inter-
ception attacks via the techniques presented in Table 2. Second, we
determine whether devices conduct certificate revocation checking.
Last, we evaluate our novel probing strategy to reveal the set of
trusted root CAs and determine whether devices continue to trust
unexpired root certificates that have been deprecated, particularly
focusing on distrusted certificates.
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Table 9: Exploring the root stores of 8 IoT devices. Each cell
denotes the number of root certificates present in an IoT de-
vice over the number of certificates whose inclusion could
be successfully checked.

Device Common certs
(total = 122)

Deprecated certs
(total = 87)

Google Home Mini 100% (119/119) 6% (4/71)
Amazon Echo Plus 98% (103/105) 18% (13/72)
Amazon Echo Dot 98% (117/119) 19% (14/72)
Amazon Echo Dot 3 90% (86/96) 27% (17/72)

Wink Hub 2 92% (109/119) 38% (27/72)
Roku TV 91% (96/106) 41% (33/81)
LG TV 93% (96/103) 59% (48/82)

Harman Invoke 82% (67/82) 59% (41/70)

Invalid certificates We begin by understanding whether de-
vices perform validation correctly when presented with invalid
certificates (Table 7). In summary, seven devices do not perform any
certificate validation and are thus vulnerable to traffic interception.
Four other devices (all from the Amazon family) do not check for
correct Common Name in certificates and we were thus able to de-
crypt their TLS traffic using a free certificate obtained from ZeroSSL
for a domain under our control. Interestingly, the Yi Camera dis-
ables certification validation completely upon 3 consecutive failed
connections.

Through manual inspection of successfully intercepted TLS con-
nections, we found that 7/11 devices transmitted potentially sensi-
tive data to first-party destinations (e.g., “encrypt_key” for Zmodo
Doorbell, “command server” for Amcrest Camera, “deviceSecret” for
LG TV and “bearer” authentication tokens for Amazon devices).
This provides strong evidence that lack of certificate validation can
have implications for user and device security/privacy.

Interestingly, we also found that 7/11 vulnerable devices (Table
7, column 5) initiated TLS connections to other first or third-party
destinations that were not vulnerable (likely due to the presence of
multiple TLS instances—we explore this behavior and its implica-
tions further in §5.3).
Revocation Checking An important aspect of establishing se-
cure connections is for clients to determine whether the server cer-
tificate for a connection has been revoked. To test whether devices
perform such checks, we use passive data to look for communi-
cation with standard revocation endpoints (CRLs, OSCP servers),
requests for OCSP staples in ClientHellos and presence of Must
Staple extension in certificates. We find that a large majority of
devices (28) do not ever conduct certificate revocation checks, and
thus only 12 devices ever attempt to check for revocation for any of
the certificates received throughout the measurement period (Table
8). Of those devices, 11 support OCSP Stapling but never encounter
a certificate with a Must Staple extension. We conclude that the IoT
ecosystem provides only limited support for revocation checking,
similar to what has been observed by prior work in desktop and
mobile browsers [44].
Root Stores When devices continue to trust deprecated or dis-
trusted (and unexpired) CA certificates, they can become susceptible
to interception attacks against all destinations if an attacker obtains

Figure 4: For deprecated CA root certificates still present in
IoT devices, we track their year of removal frommajor plat-
forms.

the corresponding secret key. We now investigate the extent to
which IoT devices are vulnerable to this issue.

We use the methodology introduced in §4.1 to detect the inclu-
sion of deprecated-yet-unexpired root store CAs in IoT devices. We
excluded appliances not suitable for repeated reboots (i.e., Washer,
Dryer, Thermostat, Fridge) and the devices that did not validate cer-
tificates in any of their TLS connections. For 8/24 remaining devices
in the testbed, our methodology successfully triggered different
Alert Messages to enable root stores exploration.

A summary of the results is provided in Table 9. In some cases,
our experiments were inconclusive in determining the inclusion
of a particular certificate (e.g., if the device did not generate any
traffic). We exclude such cases and present the total number of
certificate inclusions divided by the total number of successful
experiments for each device in the table. We find the majority of
unexpired certificates common to all platforms to be present in all
devices probed (second column in the table). This is good news, as
it suggests that IoT devices, web browsers, and OSes trust a similar
set of (presumably trustworthy) CA certificates.

Interestingly, however, all devices also contain at least one
deprecated-yet-unexpired root certificate, i.e., that has already been
removed from one or more major platforms. With the exception of
the Google HomeMini, the IoT devices we tested contain significant
fractions (if not a majority) of root certificates that were deprecated
from other platforms.

To understand how long such deprecated-yet-unexpired root
certificates remain in device root stores, we plot the staleness of
each root certificate in terms of the year it was removed from one
of the four reference platforms in Figure 4. (If a certificate was
removed from multiple stores, we use the latest year of removal.)
Devices with large numbers of certificates that were removed years
ago are either not updating their root stores or not interested in
deprecating certificates.

We find that the majority of observed stale root certificates were
deprecated in the years 2018 and 2019, likely biased by the fact that
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the devices were manufactured at or shortly before those years.
Surprisingly, we find that one device (LG TV ) contains unexpired
root CAs that were deprecated as early as 2013. We note that the
devices in our testbed were able to receive regular updates during
our study. More specifically, LG TV was last updated in July 2019
and Roku TV in September 2020, while the bulk of our experiments
were performed in 2021. Other devices such as voice assistants
from Google and Amazon receive updates automatically as long
as they are connected to the Internet. This suggests that some
manufacturers are not updating root stores at the same cadence (if
at all) as other software updates.

A root certificate that is deprecated is not necessarily untrusted,
as some may be removed for “administrative” reasons such as reg-
ular key rotations (e.g., [1]). However, the TurkTrust (2013) and
Certinomis (2019) CAs were explicitly distrusted by Mozilla while
CNNIC (2015) and WoSign (2016) are in the Google blocklist due
to a failure to comply with CA guidelines (e.g., TurkTrust was re-
sponsible for an unauthorized certificate for google.com) [2, 13, 17].
Arguably these root certificates should not be trusted by any devices.
Surprisingly, we found that one or more of these CAs explicitly
distrusted by various platforms were still trusted by all devices. The
fact that these root certificates remain trusted by devices can open
them to arbitrary interception attacks if the private key for those
certificates were shared with adversaries (WoSign incident [7]).

We note that these IoT devices tend to contact a small set of
destinations, but nonetheless contain root stores used by web
browsers/OSes that are expected to contact arbitrary destinations.
An important question is whether these devices all need to use such
large root stores, or instead some of the devices can reduce their
trusted set of certificates to cover only the destinations that are
required for the device.
Takeaways 28 IoT devices show some form of certificate valida-
tion limitations. Some devices skip certificate validation altogether
and most do not bother to check for revoked certificates. All of the
affected TLS connections were contacting first-party destinations.
We conclude that even popular IoT devices from major manufactur-
ers exhibit poor TLS validation for at least some of their connections.
Further, all of the devices that we could successfully probe for root
certificates contained at least one that was deprecated and dis-
trusted, despite the fact that the devices themselves install regular
updates. These deprecated CAs root certificates—particularly ones
that are distrusted—can be perceived as the weakest link in TLS
security for IoT devices.

5.3 Diversity of TLS Behavior
In this section, we explore the diversity of TLS behaviors observed
for individual devices and across devices. The goal of this analysis
is to shed light on how IoT devices use shared or different TLS
implementations and configurations, and the potential ramifications
on security.

Our primary investigative tool is TLS fingerprinting; namely, we
generate TLS fingerprints for 32 devices and compare them to a
publicly available database of 1,684 fingerprints that covers a wide
variety of sources such as different browsers, multiple versions of
TLS libraries, and malware samples [43]. Each fingerprint is labeled

Figure 5: IoT devices that likely share TLS libraries with
other devices and applications.

with the application that generated it (e.g., OpenSSL, curl, android-
sdk). We generate fingerprints for the TLS connections from our
devices in the same way as done during the database compilation.
Since devices can update their libraries and that may affect the
corresponding fingerprints, here we only study TLS traffic from
active experiments that represent a snapshot in time.
Devices with more than one TLS fingerprint. For 18/32 IoT
devices in our experiments, we found only a single TLS fingerprint
per device, likely due to the use of a single TLS instance. This can
simplify TLS security management by having only one instance to
maintain. However, we found that 14/32 devices had connections
with more than one fingerprint, indicating the presence of multiple
instances. This can help explain the mixed support for TLS connec-
tion security and the presence of TLS interception vulnerabilities
in some (but not all) connections from a device.

While we do not knowwhy there are multiple TLS instances on a
single device (because we lack access to firmware for these devices),
one conjecture is that these devices may contain different first-
and third-party components, each using different TLS instances.
These components can come from a variety of sources such as
user-installed software (e.g., app stores) or the usage of multiple
frameworks during software development (e.g., Golang, Java, and
Python come pre-bundled with different TLS instances). If true,
such behavior can make it harder to maintain TLS security over
time, as both device manufacturers and other developers need to
secure and maintain all of these instances.
TLS fingerprints shared across devices. We find that 19 de-
vices share at least one TLS fingerprint with other devices and/or
applications (e.g., OpenSSL). This is likely because multiple devices
share the same (and in many cases, open source) TLS library.
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To better understand the nature of shared TLS instances, we
produced a graph of devices and applications with the same finger-
prints. There are three types of nodes in the graph: devices (from
our study) and applications (from Kotzias et al.[43]) that generate
TLS fingerprints, and the set of unique fingerprints that are shared
among them. Edges between a device/application and fingerprint
indicate that we observed a device or application using that finger-
print. Figure 5 visualizes this graph. In the figure, the thicker edges
correspond to the most-used fingerprint (and likely, the most-used
TLS instance) for each device. Note that the graph includes an edge
only if the TLS fingerprint it connects to is shared with at least one
other node, i.e., all non-shared fingerprints and edges are removed
from the figure to improve readability. Dashed edges represent a
fingerprint shared with a labeled application from Kotzias et al.[43],
and thus they do not represent observed traffic in our study.

Our first observation is that devices and applications from the
same manufacturer share fingerprints—this can be observed with
labeled clusters (e.g., Amazon, Microsoft, and Apple). It is not sur-
prising that these devices are likely using the same TLS instances,
but it nonetheless could be good news for maintaining security
because it indicates that the manufacturer likely needs to maintain
one set of TLS instances across devices. These shared instances also
suggest that many of our findings apply to other devices belonging
to the same manufacturers that are not in our testbed.

Our next observation is about devices that share fingerprints
with applications in the fingerprint database. For example, the dom-
inant fingerprint from Amazon Fire TV is the same as one from
android-sdk, and we verified that the device runs a fork of Android
OS [6]. Similarly, six devices exhibit the same TLS fingerprints as
the OpenSSL library, likely indicating that OpenSSL is used on those
devices. This helps to explain why our technique for root stores ex-
ploration worked for Invoke, LG TV, and Wink Hub 2: despite being
produced by different manufacturers, they all share fingerprints
with OpenSSL—one of the two libraries we found amenable to the
root stores exploration technique.

While we pointed out above that shared TLS instances can be
good in the sense that they are easier to maintain, sharing can also
be a double-edged sword. Specifically, a security vulnerability in one
TLS instances can immediately impact large numbers of devices. For
example, in the TLS certificate validation analysis, we found that
Amazon devices fall back to TLS 1.0 during a downgrade attack. The
TLS fingerprinting analysis shows that this is likely because they
share the same vulnerable implementation. (Interestingly, the Echo
Dot 3 is the only Amazon device in our testbed not susceptible to the
downgrade attack, and its fingerprints have smaller overlap with
those from other Amazon devices.) Importantly, our observations
hint at a way for an attacker to scale attacks by identifying and
exploiting vulnerable TLS implementations that are shared among
multiple devices.
Takeaways IoT devices show similarity of TLS fingerprints with
(i) other devices from the same manufacturer (e.g., all Amazon de-
vices), and (ii) various TLS clients (e.g., LG TV and Wink Hub 2
with OpenSSL)—suggesting that our findings apply to many more
devices not tested in our experiments, and that security vulnerabil-
ities found in one instance can affect large numbers of devices. We
also found that multiple TLS instances are deployed in the same

device in many cases, potentially making it difficult to maintain
TLS security over time.

6 DISCUSSION

Recommendations Client support for TLS security has been an
underexplored area in recent research. Our findings, however, paint
a complex picture of connection security and certificate validation
in connections from IoT devices. For instance, some devices support
the latest secure TLS features but still negotiate weak connections
due to lack of server support. Similarly, some devices fail to validate
certificates, but only for some connections. Device root stores are
infrequently updated (if at all), and several devices likely include
multiple TLS instances.

The user risks due to insecure/incorrect TLS implementations in
their IoT devices are similar to the risks for any other systems using
TLS, such as web browsers and other apps. For example, MITM
attacks may be carried out not only by any on-path attackers (e.g.,
a malicious router), but by other devices on the same user network
as well, such as a malicious IoT device using ARP spoofing. If the
attack is successful, it can expose potentially sensitive user data,
such as microphone data from a smart speaker or login credentials.

To mitigate this, our key recommendation to consumer IoT de-
vice manufacturers is to audit, upgrade and maintain their devices’
TLS instances in a consistent and uniform way that safeguards all
of their network traffic. One way to do this is to provide TLS as
an operating system service (i.e., POSIX socket call) as proposed
by O’Neill et al. [48]. Multiple components within a device, and
multiple devices in the IoT ecosystem can then use the service to
enable TLS in a consistent way. In a similar vein, we encourage
industry groups like the IoxT alliance [8] to incorporate TLS secu-
rity standards into their guidelines for manufacturers to follow, as
well as verification tests. In fact, the IoxT alliance can also join the
CA/Browser Forum consortium [4] to adopt the same standards as
web browsers when it comes to trust in root certificates.

IoT devices can also rely on certificate pinning, a technique to
mandate the use of particular certificates in the chain sent by a
server, to mitigate some of the vulnerabilities found in our study.
More specifically, the interception attacks we presented (Table
7) could have been prevented with the proper use of certificate
pinning. But it is important to highlight that certificate pinning
is not a panacea—pinning can help only in cases of compromised
root stores if the leaf certificate is pinned (rather than the root).
Further, certificate validation checks are necessary even if pinning
is implemented. Otherwise, devices might appear secure but will
remain susceptible to sophisticated MITM attacks (e.g., [40]).

An internal or third-party auditing service can also help IoT ven-
dors keep their TLS instances up-to-date with the evolving security
recommendations. IoT devices can be configured to create TLS con-
nections to the auditing service at regular intervals (e.g., once every
reboot). The service can then audit the security of the connections
(e.g., ciphersuites offered by the device during handshake). As new
attacks are discovered, the service can contact manufacturers to
alert them about new vulnerabilities and mitigations.

Another possible mitigation strategy that IoT users can use is to
interpose a trusted network component between their IoT devices
and the Internet, similar to the one proposed by Hesselman et al.
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[40], to verify that TLS connections are being securely established.
If such verification fails, the component pauses the connection and
reports the issue to the user, which is left with the choice whether
to allow the insecure TLS connection or not, as it happens for web
browsers.
Limitations Our study had several limitations. First, we chose
a limited number of devices to make the scope of our experiments
practical. As such, our results are biased by the selection of (a) pop-
ular consumer devices, and (b) multiple devices from the same man-
ufacturer. Second, our choice of TLS interception attacks reflected
the ones that are easily exploitable by an in-network adversary.
Other sophisticated attacks that use cryptanalysis on a sufficiently
large amount of network traffic (e.g., POODLE, SWEET32) are diffi-
cult to mount (e.g., need JavaScript injection to repeatedly trigger
requests) but could nonetheless compromise TLS security in some
IoT devices. Third, the coverage of our analyses could be improved
by (i) relying on techniques from other works to automate device
interactions (e.g., using smartphones [45], reverse-engineering ex-
posed APIs [55]), and (ii) inspecting source-code when possible
(e.g., firmware extraction from memory, rooting Android-based
devices, crawling third-party marketplaces).

Unfortunately, all these techniques require device-specific efforts
and do not generally scale well to other devices. Finally, our tech-
nique to explore root stores does not generalize for all devices. One
reason is that some implementations choose to not send any TLS
alerts over connection failures. Moreover, unlike TLS 1.2, which
mandated the usage of “appropriate” alerts on encountering fatal
errors, TLS 1.3 made it optional. This motivates the need to search
for better techniques to exploit the side-channel and explore root
stores in more IoT devices.
Responsible disclosure We contacted manufacturers of the
11 IoT devices to responsibly disclose our successful interception
attacks (Table 7). Unlike other devices that showed weaknesses due
to stale root stores or compatibility with older protocol versions
and weaker ciphersuites, these devices had vulnerabilities severe
enough that we were able to actively exploit them and extract
decrypted TLS communications from their first-party connections.

Unfortunately, one vendor categorized the issue as “SSL/TLS best
practices” and as such out-of-scope for their vulnerability disclosure
program; two other vendors believed the issue to not be serious as
the information disclosed in compromised TLS connections was not
sensitive; one vendor mistakenly believed that the issue was due to
their choice of using a custom root certificate; and only one vendor
confirmed that the issues were fixed by releasing a firmware update.
We believe these manufacturer responses reveal a wide range of
beliefs about TLS security and how they should be improved. We
conclude that despite some initiative by manufacturers to secure
the devices such as the aforementioned IoxT alliance, there is still
plenty of room for improvement of TLS usage in the IoT ecosystem.
Ethical considerations This study involved human subjects
that participated after completing informed consent materials that
are part of our IRB-approved study. No personal or sensitive data
about individuals is collected as part of this study. The active exper-
iments exploited vulnerabilities only for the devices in our lab, and
we did not use any information gleaned from these experiments to
attack other devices or cloud services.

We anonymized only the manufacturer responses to our disclo-
sures. When making this decision, we balanced risks and benefits
to relevant parties. Namely, we saw no additional risks to con-
sumers with these devices, as our measurement strategy is now
public and anyone can reproduce it for any device. However, we
see potential benefits to naming vendors. First, any vendors that
have not updated devices after the responsible disclosure period
might find new incentives to do so given public knowledge of the
flaws. Second, consumers with devices that are not updated can use
this information to discontinue their use. Further, we believe the
research community can benefit from this information to reproduce
and extend our work, potentially finding other opportunities to
improve IoT security. In this vein, we follow the precedent set by
prior work on IoT device security [26] that also revealed names in
a similar way, and helped us with reproducibility during our exper-
iments. To summarize, the vulnerabilities have been responsibly
disclosed, following community norms, and we believe the bene-
fits of transparency outweigh any additional risks from publicly
naming manufacturers after the responsible disclosure period.

7 RELATEDWORK

IoT/TLS vulnerability detection Alrawi et al.’s SoK [26] is the
closest work to ours regarding the security evaluation of IoT de-
vices. Their work covered 45 devices from four different dimensions;
devices themselves along with their cloud endpoints, communica-
tion channels and mobile apps. Their analysis was not focused on
TLS usage, and despite some overlap, it is different from our work
in the following key ways. First, they explored the server-side se-
curity of TLS connections by establishing connections to devices
or their cloud endpoints; in contrast, we explore the client-side
security by analyzing the TLS connections initiated by devices. Sec-
ond, they used self-signed certificates to assess device validation
of certificates, while our analyses rely on more techniques with
invalid certificates and also explore the CA root certificates trusted
by devices. And third, their analysis represented a snapshot in time
while we use passive data to explore 2-year longitudinal trends of
TLS usage.
Longitudinal TLS measurements There is a significant body
of research on analyzing TLS usage from different vantage points
i.e., passive monitoring of university networks [41–43], server-side
connection logs [35], active Internet scans [27, 33, 34], browser
telemetry data [37], and Android usage statistics [51]. In this work,
we study longitudinal TLS usage from a vantage point missing in
prior work: traffic from IoT devices in a simulated smart home.
Root store analysis To the best of our knowledge, Fadai et al.
[36] is the only work to have investigated the historical data for
Mozilla’s trusted certificates. They evaluated the trust implications
of root certificates from several platforms in terms of the owner
status (i.e., private entity or governmental organization) and coun-
try of origin. Other works proposed techniques to restrict the set
of root CAs trusted by users based on the insights that (i) CAs
commonly sign a handful of top-level domains [42], (ii) some CAs
have not signed any certificates used by the HTTPS servers [50],
and (iii) unique browsing history enables individualization of the
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trusted CAs set [30]. Some works have also focused on the user-
trusted certificates present in the wild and that do not belong to
audited root stores—Vallina-Rodriguez et al. [54] explored vendor
and app-specific additions to the official Android root store, and
Durumeric et al. [35] explored the additions due to middleboxes
such as an antivirus software or a corporate proxy. In this work, we
explore the root stores of IoT devices where inspection is difficult
due to their blackbox nature.
TLS Fingerprinting TLS fingerprinting has been used fre-
quently in the past to infer client behaviors – from detecting mal-
ware [22] to the usage of censorship circumvention tools [38] and
client identification [35, 41, 43, 51]. In this work, we explore how
TLS fingerprinting sheds light on some of our findings in a setting
where a wide variety of IoT devices are available, and network
traffic may originate from multiple clients and networking libraries
within the same device.

8 CONCLUSION
This paper filled an important knowledge gap in our understand-
ing of TLS behavior from consumer IoT devices using more than
two years passive measurements along with active experiments to
reveal TLS vulnerabilities. We find a wide range of security-related
TLS behaviors ranging from good (a large majority of tested de-
vices use TLS 1.2 or higher), to bad (more than half of the devices
advertise deprecated TLS versions or insecure ciphersuites in a
significant fraction of their connections), and critically flawed (11
devices are vulnerable to TLS interception attacks because they
do not properly validate server certificates). Further, we find that
devices are slow to adopt new TLS versions and to secure the set of
supported ciphersuites, and they also rarely remove deprecated and
distrusted CA certificates from their root stores. Finally, we used
TLS fingerprinting to identify cases where individual devices use
multiple distinct TLS instances, and those where different devices
use the same TLS instances—eachwith implications for security, e.g.,
shared vulnerabilities that can facilitate attack scaling. We conclude
that TLS clients in IoT devices have much room for improvement,
and we recommend that manufacturers adopt uniformly secure TLS
instances and industry standards [8], and conduct regular auditing
and updating to ensure their devices’ connections remain secure.

To ensure reproducibility and enable new research, we have
made all of our longitudinal TLS handshake data, controlled ex-
perimentation data and analysis software publicly available at:
https://github.com/NEU-SNS/IoTLS.
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