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A synchrotron is a circular particle accelerator where beams of electrons are

maintained at high velocity. Each beam contains clusters of electrons called

“bunches,” and we model the vertical displacement of each bunch as simple

harmonic motion with parametric excitation, i.e. the Mathieu equation. Differ-

ent types of coupling are accounted for, including one that only takes effect after

one orbit, which we model using delay terms; the resulting model is a system

of delay-differential equations. Nonlinear and damping terms are also included

to make the model more realistic and the dynamics more rich. Variations of

this core model are examined using perturbation methods and checked against

numerical integration.
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CHAPTER 1

INTRODUCTION: THE MODEL

There are two approaches when it comes to creating a mathematical model of

some physical phenomenom. One approach is to build the model from the bot-

tom up using first principles, such as quantum mechanics or thermodynamics.

The other approach is to build the model from the top down, using mathemat-

ical considerations to capture observed behavior without regard for the under-

lying theory. The former approach tends to result in complicated models that

require lots of computational power to simulate, whereas the latter tends to re-

sult in simpler models that are easier to analyze, but may be an approximation

of reality.

The research presented here falls cleanly into the second category. Given the

observed features of synchrotron dynamics, we designed a general model that

captured these observations. Despite the simplicity of this approach, the general

model was still too complicated to analyze in full. Instead, we used the general

model as a basis for other, simpler models; as we gained deeper understanding

of these simpler models, we were able to incorporate features of the general

model to discover ever richer features.

1.1 The Model

The general model we analyze is a system of n nonlinear Mathieu equations:

ẍ1 + (δ + ε cos t)x1 + εγx3
1 + εµẋ1 = εβ

n∑
j=1

x j(t − T ) (1.1)
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ẍi + (δ + ε cos t)xi + εγx3
i + εµẋi = εβ

n∑
j=1

x j(t − T ) + εαxi−1 , 2 ≤ i ≤ n (1.2)

This system of delay-differential equations is an example of a nonau-

tonomous dynamical system. We are interested in describing changes in its

behavior as parameters are varied, for example bifurcations which are associ-

ated with changes in the stability of the origin [13], [2].

Each chapter will introduce a variation of eqs. (1.1), (1.2) and use analytic

techniques to analyze either the stability of the origin in linearized models or

the amplitude of limit cycles in nonlinear models. The analytic results are then

compared against numerical integration.

Since the Mathieu equation is a core part of this model, we offer a brief re-

view of some of its most salient features.

1.1.1 Mathieu Equation

The Mathieu equation has been well studied [5], [12], [3]. In its most basic form,

it consists of a linear spring with a variable coefficient:

d2x
dt2 + (δ + ε cos t) x = 0 (1.3)

Here we assume that ε is small, and employ a perturbation technique known

as two variable expansion [4], [10]. We set

ξ(t) = t, η(t) = εt

where ξ is the time t and η is the slow time.
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Since x is now a function of ξ and η, the derivative with respect to time t is

expressed through the chain rule:

ẋ = xξ + εxη

Similarly, for the second derivative we obtain:

ẍ = xξξ + 2εxξη + ε2xηη

We will only perturb up to O(ε), and so we will ignore the ε2 terms.

We then expand x in a power series:

x(ξ, η) = x0(ξ, η) + εx1(ξ, η) + · · · (1.4)

Substituting (1.4) into (1.3) and collecting terms in ε, we arrive at the follow-

ing equations:

x0,ξξ + δx0 = 0 (1.5)

x1,ξξ + δx1 = −2x0,ξη − x0 cos ξ (1.6)

The solution to (1.5) is simply:

x0 = A(η) cos
(√
δξ

)
+ B(η) sin

(√
δξ

)
(1.7)

We then substitute (1.7) into (1.6) and apply some trigonometric identities to

obtain:

x1,ξξ + δx1 = 2
√
δ

dA
dη

sin
√
δξ − 2

√
δ

dB
dη

cos
√
δξ

−
A
2

(
cos

(√
δ + 1

)
ξ + cos

(√
δ − 1

)
ξ
)

−
B
2

(
sin

(√
δ + 1

)
ξ + sin

(√
δ − 1

)
ξ
)

(1.8)
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We want to choose A, B to eliminate resonances (also known as secular terms)

in eq. (1.8). This results in a system of equations called the slow flow. For most

values of δ this means we have:

dA
dη

= 0,
dB
dη

= 0

Thus for general δ, the cos t driving term in eq. (1.3) has no effect on the

dynamics.

However, if we choose δ = 1/4, eq. (1.8) becomes:

x1,ξξ + δx1 =
dA
dη

sin
ξ

2
−

dB
dη

cos
ξ

2

−
A
2

(
cos

3ξ
2

+ cos
ξ

2

)
−

B
2

(
sin

3ξ
2
− sin

ξ

2

)
(1.9)

In this case, eliminating the secular terms results in the following slow flow:

dA
dη

= −
B
2
,

dB
dη

= −
A
2
⇒

d2A
dη2 =

A
4

(1.10)

Thus for this case the functions A(η), B(η) involve exponential growth, and

so we say that δ = 1/4 causes instability. In particular, this corresponds to a

2:1 subharmonic resonance in which the driving frequency is twice the natural

frequency.

We can expand δ in a power series, known as “detuning” the resonance, to

generalize these results:

δ =
1
4

+ εδ1 + ε2δ2 + · · · (1.11)

Substituting eq. (1.11) into eq. (1.3) produces an additional term in eq. (1.6):

x1,ξξ + δx1 = −2x0,ξη − x0 cos ξ − δ1x0 (1.12)
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Following the same procedure as before, we end up with the following slow

flow:

dA
dη

=

(
δ1 −

1
2

)
,

dB
dη

= −

(
δ1 +

1
2

)
⇒

d2A
dη2 +

(
δ2

1 −
1
4

)
A = 0 (1.13)

For this case the functions A(η), B(η) involve exponential growth so long as

−1/2 < δ1 < 1/2. For all other values of δ1, A(η), B(η) are sine and cosine func-

tions. In this way the value of δ1 determines the stability of the system, and the

change of stability occurs at the transition curves:

δ =
1
4
±

1
2
ε + O(ε2) (1.14)

We call the region between the two curves a tongue of instability. Inside the

tongue there is exponential growth, and outside the tongue there is sinusoidal

growth. Figure 1.1 shows this tongue of instability.

It turns out that there are countably many tongues of instability for the Math-

ieu equation that emanate from the points δ = n2/4, and each one corresponds

to a different kind of resonance. However, the research presented here focuses

just on the 2:1 subharmonic resonance at δ = 1/4 as that is the largest tongue of

instability and thus the most significant one in practical applications.

Since our interest in eqs. (1.1), (1.2) comes from an application in the de-

sign of particle accelerators, we will briefly discuss this application in the next

section.
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Figure 1.1: The tongue of instability that emanates from δ = 1
4 in the δ − ε

plane. The U represents the unstable region and the S repre-
sents the stable regions.

1.1.2 Application

The model was motivated by a novel application in particle physics, namely the

dynamics of a generic circular particle accelerator [1].

The synchrotron is a particle accelerator in which a “particle” actually con-

sists of a group of electrons called a “bunch,” and the collection of all bunches

is called a “train.” We ignore the interactions of electrons inside each bunch and

treat the entire bunch as a single particle.

Each bunch leaves an electrical disturbance behind it as it traverses around

the synchrotron, and these wake fields are the main source of coupling in the

model. The coupling is mediated by several sources, including ion coupling

and the electron cloud effect.
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Particle paths in the synchrotron are circle-like, but are not exact circles.

Since the synchrotron lacks a central force, the circle-like particle orbits are

achieved through the use of about 100 electromagnets spread around the pe-

riphery (see Figure 1.2).

Figure 1.2: Two bunches moving clockwise along a polygonal path
through the use of a system of electromagnets.

This means that the magnetic external forcing is periodic in rotation angle

θ; assuming that the angular velocity of the bunch is constant with θ = ωt, the

forcing is periodic in time as well. We can express this forcing function as a

Fourier series, and we shall approximate this series by the first couple of terms

in it, namely the constant term and the first cosine term.

We model each bunch as a scalar variable xi(t), i = 1, . . . , n. Here xi is the

vertical displacement above equilibrium of the center of mass of the ith bunch.

Each xi is modeled as a damped parametrically-forced oscillator, and we write:

7



ẍ1 + (δ + ε cos t)x1 + εγx3
1 + εµẋ1 = εβ

n∑
j=1

x j(t − T )

ẍi + (δ + ε cos t)xi + εγx3
i + εµẋi = εβ

n∑
j=1

x j(t − T ) + εαxi−1 , 2 ≤ i ≤ n

The nonlinear terms are included to create a more realistic model, since most

natural phenomenon are nonlinear and linear models are a convenient approx-

imation. The nonlinear parameter, γ, can be chosen to adjust the scale of the

problem.

The damping terms are also included to create a more realistic model. The

damping parameter, α, represents a multitude of physical phenomena and is

chosen according to experimental observations.

The coupling terms on the right hand side may be modeled as consisting of

two types [7]:

i) Plasma interactions

ii) Resistive wall coupling

In the case of plasma interactions, the radiation from a bunch produces an

electron cloud which travels behind the bunch and influences the dynamics of

the next bunch in the train. Since plasma interactions only persist for a very

short time, we model this coupling as only affecting the next bunch in the train:

αxi−1

Physically, this coupling strength is affected by both the spacing between

8



bunches as well as the charge of each bunch, and α encapsulates both of those

effects.

Resistive wall coupling arises from the finite conductivity of the beam pipe.

The skin effect produces a long tail which may be modeled as a delay term, the

duration of the delay being the transit time around the ring. The entire train

can be modeled as a single superparticle with displacement equal to the train

average, each bunch receiving the same force. This results in a coupling term of

the form:

β

n∑
j=1

x j(t − T )

where T =delay.

The simplest case is a single bunch, n = 1, in which we only consider the

effect of delayed self-feedback:

ẍ + (δ + ε cos t)x = βx(t − T ) (1.15)

A system of this type has been investigated by Morrison and Rand [8]. It was

shown that the region of instability associated with 2:1 subharmonic resonance

can be eliminated by choosing the delay T appropriately.
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CHAPTER 2

SCALING THE PERTURBATION PARAMETER

2.1 Introduction

The first variation of eqs. (1.1), (1.2) is incredibly simple, ignoring the effects

of delay, nonlinear terms, and damping terms. We also limit our investigation

to two bunches, as this is the smallest model to encapsulate all of the coupling

effects. This simplicity provides a useful starting point by focusing on the dif-

ference between the two coupling terms.

However, a core question asked at this point is how to scale the perturbation

parameter, ε, for each of the coupling terms. This is an important question in

many perturbation problems because certain perturbation techniques will fail if

the perturbation parameter is not chosen appropriately. Since the model used

here is so simple, we opted to split it into two cases to investigate this aspect of

perturbation theory.

The first model removes the ε terms from the coupling coefficients:

ẍ1 + (δ + ε cos t) x1 = β(x1 + x2) (2.1)

ẍ2 + (δ + ε cos t) x2 = β(x1 + x2) + αx1 (2.2)

The second model includes the ε terms for the coupling coefficients:

ẍ1 + (δ + ε cos t) x1 = εβ(x1 + x2) (2.3)

ẍ2 + (δ + ε cos t) x2 = εβ(x1 + x2) + εαx1 (2.4)
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2.2 Model 1: Without ε

We start the analysis of eqs. (2.1), (2.2) by introducing a linear transformation to

(u, v) coordinates:

x1 = u + v, x2 =

√
β + α

β
(u − v) (2.5)

By applying this transformation to eqs. (2.1), (2.2) we obtain the following

uncoupled equations:

ü + (Ω2
u + ε cos t) u = 0 (2.6)

v̈ + (Ω2
v + ε cos t) v = 0 (2.7)

where

Ω2
u = δ − β −

√
β(β + α)

Ω2
v = δ − β +

√
β(β + α)

The system has thus been reduced to a pair of uncoupled Mathieu equations,

each of the form:

z̈ + (∆ + ε cos t) z = 0 (2.8)

As is well known, this equation exhibits a 2:1 subharmonic resonance in the

neighborhood of ∆ = 1/4. The boundaries of the associated tongue of instability

are given by:

∆ =
1
4
±
ε

2
+ O(ε2) (2.9)

Comparison of eqs. (2.6), (2.7) with eq. (2.9) gives the instability tongues as

Ω2
i = 1

4 ±
ε
2 , or in terms of the parameter δ, the two tongues become:

11



δ =
1
4

+ β ±
√
β(β + α) ±

ε

2
+ O(ε2) (2.10)

If we write δ in the form δ = δ0 + εδ1 + O(ε2), we see that

δ0 =
1
4

+ β ±
√
β(β + α) (2.11)

δ1 = ±
1
2

(2.12)

It is clear from this result that the introduction of α and β only affects δ0.

Graphically, this means that as the parameters α, β change, the tongue of insta-

bility is translated left or right in the δ-ε plane, and the slopes of the transition

curves remain the same.

Figure 2.1 shows the transition curves for different parameter values of α

and β. The shaded regions are unstable and the unshaded regions are stable.

2.3 Model 2: With ε

For the second model, we will employ the technique of harmonic balance to find

expressions for the transition curves to O(ε) [10]. We assume a solution can be

found of the form:

x1 = A cos
t
2

+ B sin
t
2

(2.13)

x2 = C cos
t
2

+ D sin
t
2

(2.14)

We substitute these equations into eqs. (2.3), (2.4) and use some trigonomet-

ric identities to obtain:
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Figure 2.1: Effect of changing α, β for Model 1. Red regions are unstable
and blue regions are stable.

0 =
εB
2

sin
3t
2

+
εA
2

cos
3t
2

+

(
Bδ − εβD − εβB −

εB
2
−

B
4

)
sin

t
2

+

(
Aδ − εβC − εβA +

εA
2
−

A
4

)
cos

t
2

0 =
εD
2

sin
3t
2

+
εC
2

cos
3t
2

+

(
Dδ − εβD − εβB − εαB −

εD
2
−

D
4

)
sin

t
2

+

(
Cδ − εβC − εβA − εαA +

εC
2
−

C
4

)
cos

t
2

Since we only care about O(ε) we disregard the cos 3t
2 and sin 3t

2 terms. Taking

the coefficients of the remaining trigonometric functions to be zero, we obtain

13



four equations in A, B, C, and D. Writing this as a matrix, we get

−
(4β−2)ε−4δ+1

4 0 −εβ 0

−(α + β)ε 0 −
(4β−2)ε−4δ+1

4 0

0 −
(4β+2)ε−4δ+1

4 0 −εβ

0 −(α + β)ε 0 −
(4β+2)ε−4δ+1

4





A

B

C

D


=



0

0

0

0


(2.15)

For this system to have a nontrivial solution, the determinant must be zero.

This produces the equation:

−
((4β − 2)ε − 4δ + 1)2

(
((4β+2)ε−4δ+1)2

16 − β(α + β)ε2
)

16

+ β(α + β)ε2
(
((4β + 2)ε − 4δ + 1)2

16
− β(α + β)ε2

)
= 0 (2.16)

This equation has the solution:

δ =
1
4

+ ε

(
β ±

√
β(β + α) ±

1
2

)
+ O(ε2) (2.17)

As in Model 1, we write δ in the form δ = δ0 + εδ1 + O(ε2) to obtain

δ0 =
1
4

(2.18)

δ1 = β ±
√
β(β + α) ±

1
2

(2.19)

Unlike in Model 1, here the introduction of α and β only affects δ1. Graph-

ically, this means that as the parameters α, β change, the tongue of instability

narrows or widens while intersecting the same point on the δ-axis.

Figure 2.2 shows the transition curves for different parameter values of α

and β. The shaded regions are unstable and the unshaded regions are stable.
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Figure 2.2: Effect of changing α, β for Model 2. Red regions are unstable
and blue regions are stable.

2.4 Results

There are a few important observations to make about the tongues of instability.

2.4.1 Model 1

The first observation is that a small stable region appears between the tongues

of instability, and it grows in size as both parameters α and β increase. Thus,

while most of the graph becomes more unstable as the coupling increases, there

is a region where the system actually becomes more stable.
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The second observation to note is how these transition curves change with

respect to both parameters. When β is increased, one of the tongues stays rela-

tively still while the other tongue moves to the right. This causes the intersection

of the tongues to move both up and to the right. When α is increased, the tongue

on the left moves further to the left and the tongue on the right moves further

to the right. This movement is balanced so that the intersection of the tongues

moves straight up.

2.4.2 Model 2

Unlike in Model 1, there is no small stable region in Model 2 that grows in

size with the parameters α, β. More explicitly, there is no region that becomes

more stable as α and β are increased; all unstable regions stay unstable as the

parameters increase.

2.5 Conclusion

In this chapter we showed the distinct effects that the two types of coupling, α

and β, have on the system. Furthermore, we showed that both effects are rele-

vant to the problem and are worth considering when mathematically modeling

the synchrotron, and that the nature of the instability depends on the way in

which the coupling is modeled.

Both models give the same result when ε is fixed and α, β vary. As an exam-

ple, suppose ε = 0.1 and we take α = β = 0.01 in Model 1. Then the values of

δ where the stability changes are given by δcrit = (0.1957, 0.2958). For Model 2

16



we’d have to use the parameter values α = 0.1, β = 0.1, since the coupling is εα,

εβ and ε = 0.1. Using these values in Model 2 gives the same δcrit values as the

ones in Model 1. Figure 2.3 shows a graphical representation of this example.

The difference between these models comes when the parameters α, β are

fixed and ε is allowed to vary.

Figure 2.3: Comparison of the δcrit values for both models when α = 0.01,
β = 0.01 in Model 1 (top) and α = 0.1, β = 0.1 in Model 2
(bottom).
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CHAPTER 3

THE EFFECT OF DELAY

3.1 Introduction

The second variation on eqs. (1.1), (1.2) includes delay and the damping term.

However, nonlinear effects are still ignored as we only determine the stability

of the origin, and the focus is still on only two bunches.

The model for this chapter is:

ẍ1 + (δ + ε cos t)x1 + εµẋ1 = εβ (x1(t − T ) + x2(t − T )) (3.1)

ẍ2 + (δ + ε cos t)x2 + εµẋ2 = εβ (x1(t − T ) + x2(t − T )) + εαx1 (3.2)

We start the analysis by applying a perturbation technique called two vari-

able expansion.

3.2 Two Variable Expansion

We begin by transforming the system into a more tractable form. By using the

linear transformation:

u = x1 + x2, v = x1 − x2 (3.3)

the system (3.1), (3.2) becomes

ü + (δ + ε cos t)u + εµu̇ =
1
2
εα(u + v) + 2εβud (3.4)

v̈ + (δ + ε cos t)v + εµv̇ = −
1
2
εα(u + v) (3.5)
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where ud ≡ u(t−T ).

In the special case when α = 0 and µ = 0, this system turns into an uncoupled

system with one standard Mathieu equation and a Mathieu equation with de-

layed self feedback that’s already been studied by Morrison and Rand [8]. Thus,

the effect of α becomes clearer in the transformed system, and we have another

established model for comparing our analytic results.

We use the two variable expansion method [4], [10] to study the dynamics of

eqs. (3.4), (3.5). We set

ξ(t) = t, η(t) = εt

where ξ is the time t and η is the slow time.

Since u and v are functions of ξ and η, the derivative with respect to time t is

expressed through the chain rule:

u̇ = uξ + εuη, v̇ = vξ + εvη

Similarly, for the second derivative we obtain:

ü = uξξ + 2εuξη + ε2uηη, v̈ = vξξ + 2εvξη + ε2vηη

We will only perturb up to O(ε), and so we will ignore the ε2 terms.

We then expand u and v in a power series in ε:

u(ξ, η) = u0(ξ, η) + εu1(ξ, η) + O(ε2), v(ξ, η) = v0(ξ, η) + εv1(ξ, η) + O(ε2) (3.6)

In addition, we detune off of the 2:1 subharmonic resonance by setting:

δ =
1
4

+ εδ1 + O(ε2) (3.7)
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Substituting (3.6), (3.7) into (3.4), (3.5) and collecting terms in ε, we arrive at

the following equations:

u0,ξξ +
1
4

u0 = 0 (3.8)

v0,ξξ +
1
4

v0 = 0 (3.9)

u1,ξξ +
1
4

u1 = −2u0,ξη − µu0,ξ − δ1u0 − u0 cos ξ +
α

2
(u0 + v0) + 2βu0d (3.10)

v1,ξξ +
1
4

v1 = −2v0,ξη − µv0,ξ − δ1v0 − v0 cos ξ −
α

2
(u0 + v0) (3.11)

The solutions to (3.8) and (3.9) are simply:

u0 = A(η) cos
(
ξ

2

)
+ B(η) sin

(
ξ

2

)
(3.12)

v0 = C(η) cos
(
ξ

2

)
+ D(η) sin

(
ξ

2

)
(3.13)

We then substitute (3.12), (3.13) into (3.10), (3.11). Note that

u0d = A(η−εT ) cos
(
ξ

2
−

T
2

)
+ B(η−εT ) sin

(
ξ

2
−

T
2

)
(3.14)

Since εT is a small perturbation off η, we can approximate these delay terms

as nondelay terms by expanding A(η−εT ) and B(η−εT ) in a Taylor series around

η:

A(η−εT ) = A(η) − εT A′ + O(ε2) = A(η) + O(ε) (3.15)

Such a technique is common in the literature [8].

Trigonometrically expanding equation (3.14) gives terms in cos ξ

2 and sin ξ

2 .

The method involves setting the coefficients of such terms equal to zero in order

to remove secular terms which cause resonance in equations (3.10), (3.11). This

results in four equations in four unknowns:

A′ = −
αD
2
− 2βCB + δ1B −

αB
2
−

B
2
− 2βSA −

µA
2

(3.16)
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B′ =
αC
2
− 2βSB −

µB
2

+ 2βCA − δ1A +
αA
2
−

A
2

(3.17)

C′ = δ1D +
αD
2
−

D
2
−
µC
2

+
αB
2

(3.18)

D′ = −
µD
2
− δ1C −

αC
2
−

C
2
−
αA
2

(3.19)

Where S = sin
(

T
2

)
,C = cos

(
T
2

)
.

The origin is an equilibrium point of the system, and its stability is deter-

mined by the coefficient matrix:

−
4βS+µ

2 −
4βC−2δ1+α+1

2 0 −α2

4βC−2δ1+α−1
2 −

4βS+µ

2
α
2 0

0 α
2 −

µ

2
2δ1+α−1

2

−α2 0 −
2δ1+α+1

2 −
µ

2


(3.20)

The characteristic polynomial of this matrix is given by:

λ4 + pλ3 + qλ2 + rλ + s = 0 (3.21)

where

p = 4βS + 2µ (3.22)

q = 4β2S2 + 6βµS + 4β2C2 − 4βδ1C + 2αβC +
3µ2

2
+ 2δ2

1 −
1
2

(3.23)

r = 4β2µS2 + 3βµ2S + 4βδ2
1S + 4αβδ1S

− βS + 4β2µC2 − 4βδ1µC + 2αβµC +
µ3

2
+ 2δ2

1µ −
µ

2
(3.24)

s = β2µ2S2 + 4β2δ2
1S

2 + 4αβ2δ1S
2 + α2β2S2 − β2S2 +

βµ3S

2

+ 2βδ2
1µS + 2αβδ1µS −

βµS

2
+ β2µ2C2 + 4β2δ2

1C
2 + 4αβ2δ1C

2

+ α2β2C2 − β2C2 − βδ1µ
2C +

αβµ2C

2
− 4βδ3

1C − 2αβδ2
1C + βδ1C

−
αβC

2
+
µ4

16
+
δ2

1µ
2

2
−
µ2

8
+ δ4

1 −
δ2

1

2
+

1
16

(3.25)
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We will use the Routh-Hurwitz Criterion on the polynomial (3.21) to deter-

mine the stability of the equilibrium point at the origin.

3.3 Routh-Hurwitz Criterion

In this work, by “linearly stable” we mean bounded in time, not to be confused

with asymptotic stability which requires that the motion approaches the equi-

librium point as t → ∞. So for example, if a system has a pair of complex roots

with negative real parts and a second pair of purely imaginary roots, we will

say that this system is linearly stable.

The Routh-Hurwitz stability criterion [11] is a test on the coefficients of a

characteristic polynomial to determine whether the system is linearly stable.

In Routh’s original paper [11], he gives an example of a biquadratic poly-

nomial that has the same form as (3.21). The conditions of stability are given

by:

p > 0, q > 0, r > 0, s > 0, pqr − r2 − p2s ≥ 0

To obtain stability plots, we plot the curves p = 0, q = 0, r = 0, s = 0, and

pqr−r2− p2s = 0, which partitions the T −δ1 plane into disjoint regions. Then we

numerically evaluate the quantities p, q, r, and s at representative points in each

region. Note that the resulting plots are 4π-periodic in T since the quantities p,

q, r and s are 4π-periodic in T .

The first set of parameters we examined was µ = 0, α = 0, β = 0.125 (see

Figure 3.1).

In the case when α = 0 and µ = 0, we see that the transformation (3.3) uncou-
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Figure 3.1: Plot of transition curves given by Routh-Hurwitz criterion for
µ = 0, α = 0, and β = 0.125. The shaded regions are stable and
the unshaded regions are unstable.

ples the system (3.1), (3.2) into a standard Mathieu equation (3.5) and a delayed

Mathieu equation (3.4); the latter has been studied in [8]. For the system (3.1),

(3.2) to be stable, both of eqs. (3.4), (3.5) must be stable. Since eq. (3.5) with

α = 0 does not involve delay, it causes instability in the region |δ− 1
4 | <

ε
2 + O(ε2),

or from eq. (3.7), in the horizontal strip −0.5 < δ1 < 0.5. See Figure 3.1, which

agrees with these considerations and the results found in [8].

The next set of parameters we examined was µ = 0, α = 0.01, β = 0.125 (see

Figure 3.2).
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Figure 3.2: Plot of transition curves given by Routh-Hurwitz criterion for
µ = 0, α = 0.01, and β = 0.125. The shaded regions are stable
and the unshaded regions are unstable.

It turns out that, for any non-zero value of α (and µ = 0), the Routh-Hurwitz

criterion predicts instability almost everywhere! How is it possible that an ar-

bitrarily small value of α can cause a discontinuous change in the stability di-

agram, from Figure 3.1 to Figure 3.2? The reason is that in the stable region of

Fig. 3.1 there are purely imaginary eigenvalues λ, and an arbitrarily small value

of α can move these eigenvalues to the right half plane.

A proof of the structural instability when µ = 0 and α , 0 can be found in

the appendix.
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The next set of parameters we examined was µ = 0.01, α = 0.01, β = 0.125

(see Figure 3.3).

Figure 3.3: Plot of transition curves given by Routh-Hurwitz criterion for
µ = 0.01, α = 0.01, and β = 0.125. The shaded regions are stable
and the unshaded regions are unstable.

Figure 3.3 shows the effect of including nonzero damping to the system of

Figure 3.2. We find that the stable regions from Figure 3.1 return. The introduc-

tion of µ also creates much more intricate potential transition curves, although

as both α and µ are relatively small, the stable regions remain very similar to

those in Fig. 3.1.

Note that the stability boundary at T = 4π has moved slightly to the left.
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The next set of parameters we examined was µ = 0.1, α = 0.01, β = 0.125 (see

Figure 3.4).

Figure 3.4: Plot of transition curves given by Routh-Hurwitz criterion for
µ = 0.1, α = 0.01, and β = 0.125. The shaded regions are stable
and the unshaded regions are unstable.

Here we can see that the effect of increasing µ is to increase the size of the

stable region near T = 2π and T = 4π. In particular, the stability boundary near

T = 4π that appeared in Figure 3.3 has moved further to the left, and the edge

of the stable region around T = 2π has moved to the right. These results reflect

our intuition that adding damping increases the stability of the system.

The next set of parameters we examined was µ = 0.01, α = 0.1, β = 0.125 (see

Figure 3.5).
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Figure 3.5: Plot of transition curves given by Routh-Hurwitz criterion for
µ = 0.01, α = 0.1, and β = 0.125. The shaded regions are stable
and the unshaded regions are unstable.

By comparing Fig. 3.3 with Fig. 3.5 we see that the effect of increasing α is

to decrease the size of the stable region. The remaining stable regions cluster

around T = 0 and T = 2π, suggesting that T = nπ, n = 0, 2, 4, · · · produces stable

regions that resist the destabilizing effect of the coupling term α.

We proceed to compare these results to numerical integration.
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3.4 Numerical Results

The numerical computations use DDE23 in MATLAB [6] to numerically inte-

grate the original DDE’s (3.1), (3.2).

These numerical results will be compared to the analytical results presented

earlier in the paper. We note that the analytical results are approximate due to

a) the perturbation method, which truncates the solution, neglecting terms of

O(ε2), and b) the replacement of delay terms in the slow flow (3.16) - (3.19) by

nondelay terms, a step which is valid for small ε. In this way both the numerical

and the analytic approaches are approximate.

Determining the stability of this system via numerical integration is a chal-

lenge in and of itself. Specifically, in the limit as µ → 0, the system becomes

Hamiltonian and there is no damping; in this case a stable solution is one that

oscillates, rather than one that approaches a fixed point. Even when damping

is present, the general effect of adding delay to the system is to increase the

instability.

One of the ways to examine the growth of the system is by calculating the

amplitude of the system as a function of time. In this work we measured the

amplitude of the motion by computing
√

x1(t)2 + ẋ1(t)2 + x2(t)2 + ẋ2(t)2. In a sta-

ble system, the amplitude will either decrease or oscillate around a finite value.

In an unstable system, the amplitude will increase without bound. Thus, a ba-

sic test for instability is to integrate over a long time period and compare the

amplitude at the final time with the amplitude at an earlier time. In particular

we compared the amplitude at time 6000 with the amplitude at time 5000. In all

computations we used ε = 0.01.
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Figure 3.6: Comparison of analytic results with numerical integration for
µ = 0, α = 0, and β = 0.125. The left graph is the result of the
numerical integration. The right graph is Figure 3.1.

In Figure 3.6 we see that for α = 0 and µ = 0 the numerical results closely

match the perturbation results. The numerical results for α = 0.01, µ = 0.01

and α = 0.01, µ = 0.1 are also quite similar to their corresponding results from

the Routh-Hurwitz criterion (Figure 3.3 and Figure 3.4) and so we do not show

them again here.

Figure 3.7: Comparison of analytic results with numerical integration for
µ = 0, α = 0.01, and β = 0.125. The left graph is the result of the
numerical integration. The right graph is Figure 3.2.

In Figure 3.7 we see that in the case when α is nonzero and µ is zero the

numerical results differ quite strongly from the results predicted by the Routh-
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Hurwitz criterion. Recall from Figure 3.2 that the introduction of small α caused

instability almost everywhere due to the occurrence of purely imaginary roots

in the α = 0, µ = 0 case. We believe the failure of the numerical solution to

match the analytic solution in Figure 3.7 is because the numerical solver is inad-

vertently adding a small bit of damping to the system due to numerical error.

To estimate the quantity of inherent damping in the numerical solution, we

inserted negative values for the damping coefficient µ and adjusted the size of

µ so that analytic and numerical results agree. For example, in the case of Fig.

3.7, we set µ = −0.2 in the numerical results, producing agreement between

numerical and analytic results as can be seen in Figure 3.8.

Figure 3.8: Comparison of analytic results with numerical integration for
α = 0.01 and β = 0.125. The left graph is the result of the nu-
merical integration with an adjusted µ value of µ = −0.2. The
right graph is Figure 3.2 with µ = 0.

In Figure 3.9 we see that when α is greater than µ the numerical results and

perturbation results do not match. However, in Figure 3.10 we see that for an

adjusted µ value of µ = −0.0375 the numerical results more closely match the

Routh-Hurwitz results. This outcome is important as it highlights that the in-

herent damping of the numerical integrator depends on α.
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Figure 3.9: Comparison of analytic results with numerical integration for
µ = 0.01, α = 0.1, and β = 0.125. The left graph is the result of
the numerical integration. The right graph is Figure 3.5.

Figure 3.10: Comparison of analytic results with numerical integration for
α = 0.1 and β = 0.125. The left graph is the result of the nu-
merical integration with an adjusted µ value of µ = −0.0375.
The right graph is Figure 3.5 with µ = 0.01.

Note that adjusted numerical results show several scattered stable points in

regions that are predicted to be unstable. This is not an artifact of the µ adjust-

ment but rather is due to the inaccuracy of the numerical method. The results

become more accurate as the numerical integrator runs for longer times. In par-

ticular, for Figures 3.9 and 3.10 we compared the amplitude after 8000 time steps

with the amplitude after 6000 time steps.
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3.5 Conclusion

In this chapter, we investigated the dynamics of two coupled Mathieu equa-

tions with delay. In particular we analyzed the stability of the origin and the

effect of delay and damping on stability. We used the method of two variable

expansion to calculate a characteristic polynomial of the system’s slow flow, and

used the Routh-Hurwitz criterion to determine stability; these results were then

compared with numerical integration.

The numerical results closely matched the Routh-Hurwitz criterion when

both α = 0 and µ = 0, but introducing nonzero values of either of these param-

eters caused the two methods to yield very different results. We believe this is

because the numerical solver implicitly carries its own damping effect. By com-

paring perturbation results with those of numerical integration we were able to

estimate the extent of inherent damping in the numerical integrator DDE23 in

MATLAB.

In the parameter range which we explored, we found that increases in α and

delay T tended to decrease stability, whereas an increase in damping µ tended

to raise stability.
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CHAPTER 4

THE EFFECT OF DELAY 2: A BETTER APPROACH

4.1 Introduction

The third variation on eqs. (1.1), (1.2) extends the results of the previous chapter

by considering an alternative to using the approximation (3.15) that provides

more accurate analytic results. This model is therefore very similar to the last

model, although we do include the nonlinear term this time.

The model for this chapter is:

ẍ1 + (δ + ε cos t)x1 + εγx3
1 + εµẋ1 = εβ (x1(t − T ) + x2(t − T )) (4.1)

ẍ2 + (δ + ε cos t)x2 + εγx3
2 + εµẋ2 = εβ (x1(t − T ) + x2(t − T )) + εαx1 (4.2)

As in the last chapter, we start the analysis by applying a perturbation tech-

nique called two variable expansion.

4.2 Two Variable Expansion

We use the two variable expansion method [4], [10] to study the dynamics of

eqs. (4.1), (4.2). We set

ξ(t) = t, η(t) = εt

where ξ is the time t and η is the slow time.

Since x1 and x2 are functions of ξ and η, the derivative with respect to time t
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is expressed through the chain rule:

ẋ1 = x1ξ + εx1η , ẋ2 = x2ξ + εx2η

Similarly, for the second derivative we obtain:

ẍ1 = x1ξξ + 2εx1ξη + ε2x1ηη , ẍ2 = x2ξξ + 2εx2ξη + ε2x2ηη

We will only perturb up to O(ε), and so we will ignore the ε2 terms.

We then expand x1 and x2 in a power series in ε:

x1(ξ, η) = x10(ξ, η) + εx11(ξ, η) + O(ε2), x2(ξ, η) = x20(ξ, η) + εx21(ξ, η) + O(ε2) (4.3)

In addition, we detune off of the 2:1 subharmonic resonance by setting:

δ =
1
4

+ εδ1 + O(ε2) (4.4)

Substituting (4.3), (4.4) into (4.1), (4.2) and collecting terms in ε, we arrive at

the following equations:

x10,ξξ +
1
4

x10 = 0 (4.5)

x20,ξξ +
1
4

x20 = 0 (4.6)

x11,ξξ +
1
4

x11 = −2x10,ξη − γx3
10
− µx10,ξ − δ1x10 − x10 cos ξ

+ β(x10(t − T ) + x20(t − T )) (4.7)

x21,ξξ +
1
4

x21 = −2x20,ξη − γx3
20
− µx20,ξ − δ1x20 − x20 cos ξ

+ β(x10(t − T ) + x20(t − T )) + αx10 (4.8)

The solutions to (4.5) and (4.6) are simply:

x10 = A1(η) cos
(
ξ

2

)
+ B1(η) sin

(
ξ

2

)
(4.9)

x20 = A2(η) cos
(
ξ

2

)
+ B2(η) sin

(
ξ

2

)
(4.10)
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We then substitute (4.9), (4.10) into (4.7), (4.8). Note that:

x10(t − T ) = A1(η−εT ) cos
(
ξ

2
−

T
2

)
+ B1(η−εT ) sin

(
ξ

2
−

T
2

)
(4.11)

x20(t − T ) = A2(η−εT ) cos
(
ξ

2
−

T
2

)
+ B2(η−εT ) sin

(
ξ

2
−

T
2

)
(4.12)

Using trigonometric identities, these equations can be written in terms of

cos ξ

2 and sin ξ

2 . We set the coefficients of such terms equal to zero in order

to remove the secular terms and avoid resonance. This results in four delay-

differential equations in four unknowns:

A′1 = −β sin
(T

2

) (
A1d + A2d

)
− β cos

(T
2

) (
B1d + B2d

)
−

µ

2
A1 +

(
δ1 −

1
2

)
B1 +

3γB1

4

(
A2

1 + B2
1

)
(4.13)

B′1 = −β sin
(T

2

) (
B1d + B2d

)
+ β cos

(T
2

) (
A1d + A2d

)
−

µ

2
B1 −

(
δ1 +

1
2

)
A1 −

3γA1

4

(
A2

1 + B2
1

)
(4.14)

A′2 = −β sin
(T

2

) (
A1d + A2d

)
− β cos

(T
2

) (
B1d + B2d

)
−

µ

2
A2 +

(
δ1 −

1
2

)
B2 +

3γB2

4

(
A2

2 + B2
2

)
− αB1 (4.15)

B′2 = −β sin
(T

2

) (
B1d + B2d

)
+ β cos

(T
2

) (
A1d + A2d

)
−

µ

2
B2 −

(
δ1 +

1
2

)
A2 −

3γA2

4

(
A2

2 + B2
2

)
+ αA1 (4.16)

Where A1d ≡ A1(t − T ), B1d ≡ B1(t − T ) etc.

In the previous chapter we employed the following approximation here:

Ad = A(η−εT ) = A(η) − εT A′ + O(ε2) = A(η) + O(ε)

We will briefly go over this case in the next section to demonstrate that we

get the same results that we could using the Routh-Hurwitz criterion, although
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the main point of this chapter is to keep the delay terms A1d , B1d , A2d , B2d in the

slow flow and observe the difference in slow flow dynamics.

4.3 Analytic Results

The present authors are interested in analyzing the stability of the origin of the

original system (4.1), (4.2), which also corresponds to the origin of the slow flow

(4.13), (4.14), (4.15), (4.16). To help accomplish this goal, we will linearize the

slow flow around the origin and analyze the stability of that system, since the

stability of the linearized system will be the same as the stability of the nonlinear

system.

Thus, the slow flow becomes:

A′1 = −β sin
(T

2

) (
A1d + A2d

)
− β cos

(T
2

) (
B1d + B2d

)
−

µ

2
A1 +

(
δ1 −

1
2

)
B1 (4.17)

B′1 = −β sin
(T

2

) (
B1d + B2d

)
+ β cos

(T
2

) (
A1d + A2d

)
−

µ

2
B1 −

(
δ1 +

1
2

)
A1 (4.18)

A′2 = −β sin
(T

2

) (
A1d + A2d

)
− β cos

(T
2

) (
B1d + B2d

)
−

µ

2
A2 +

(
δ1 −

1
2

)
B2 − αB1 (4.19)

B′2 = −β sin
(T

2

) (
B1d + B2d

)
+ β cos

(T
2

) (
A1d + A2d

)
−

µ

2
B2 −

(
δ1 +

1
2

)
A2 + αA1 (4.20)

As eqs. (4.17), (4.18), (4.19), (4.20) are linear in A1, B1, A2, and B2, we know

that the general solution will be a linear combination of exponential functions.
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Thus, for instance, A1 = C1eλη and its derivative becomes:

A′1 =
d
dη

(
C1eλη

)
= C1λeλη

In addition, the delay term becomes:

A1d = A1(η−εT ) = C1eλη−ελT = C1eληe−ελT = A1e−ελT

Substituting these expressions into eqs. (4.17), (4.18), (4.19), (4.20) and ex-

pressing the system in matrix form, we obtain:

−βνS − µ

2 − λ −βνC + δ1 −
1
2 −βνS −βνC

βνC − δ1 −
1
2 −βνS − µ

2 − λ βνC −βνS

−βνS −βνC − α −βνS − µ

2 − λ −βνC + δ1 −
1
2

βνC + α −βνS βνC − δ1 −
1
2 −βνS − µ

2 − λ





C1

C2

C3

C4


=



0

0

0

0


(4.21)

Where S = sin
(

T
2

)
,C = cos

(
T
2

)
, ν = e−ελT .

Our goal is to compare two approaches: 1) Replacing delay terms by non-

delay terms, e.g. Ad by A, versus 2) Analyzing the system with the delay terms.

Replacing delayed terms with nondelay terms is equivalent to setting ν = 1, and

this can be achieved by setting ε = 0 or λ = 0 in the slow flow.

To obtain nontrivial solutions we set the determinant of this matrix equal to

zero, resulting in a characteristic equation of the form:

λ4 + pλ3 + qλ2 + rλ + s = 0 (4.22)

Where

p = 4βνS + 2µ (4.23)
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q = 6βµνS − 4βδ1νC + 2αβνC + 4β2ν2 +
3µ2

2
+ 2δ2

1 −
1
2

(4.24)

r = 4βδ2
1νS + 4αβδ1νS + 3βµ2νS − βνS − 4βδ1µνC

+ 2αβµνC + 4β2µν2 +
µ3

2
+ 2δ2

1µ −
µ

2
(4.25)

s = 2βδ2
1µνS + 2αβδ1µνS +

βµ3νS

2
−
βµνS

2
− 4βδ3

1νC

− 2αβδ2
1νC − βδ1µ

2νC + βδ1νC +
αβµ2νC

2
−
αβνC

2

+ 4β2δ2
1ν

2 + 4αβ2δ1ν
2 + β2µ2ν2 + α2β2ν2 − β2ν2

+
µ4

16
+
δ2

1µ
2

2
−
µ2

8
+ δ4

1 −
δ2

1

2
+

1
16

(4.26)

Note that p, q, r, and s all depend on λ appearing in exponential form, so eq.

(4.22) is not a polynomial equation. In the previous chapter the Routh-Hurwitz

criterion [11] was used to determine the stable regions of the characteristic poly-

nomial, but since eq. (4.22) is a transcendental equation a different technique

will have to be used here.

A necessary condition for stability is for the real part of all the eigenvalues λi

to be nonpositive, and the transition curves between stable and unstable regions

in parameter space occur when the real part of λi is exactly zero. The approach

we’ll take to find the transition curves is to set λ = iω; the case when ω = 0 cor-

responds to a saddle node bifurcation, and all nonzero values of ω correspond

to a possible Hopf bifurcation in the nonlinear system.

Substituting λ = iω in (4.22) turns it into a complex equation, and to solve it

we set the real and imaginary parts equal to zero:

0 = 4β2µω sin (2εωT ) − 4β2ω2 cos (2εωT ) + 4β2δ2
1 cos (2εωT ) + 4αβ2δ1 cos (2εωT )

+ β2µ2 cos (2εωT ) + α2β2 cos (2εωT ) − β2 cos (2εωT ) − 4βω3S sin (εωT )
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+ 4βδ2
1ωS sin (εωT ) + 4αβδ1ωS sin (εωT ) + 3βµ2ωS sin (εωT ) − βωS sin (εωT )

− 4βµδ1ωC sin (εωT ) + 2αβµωC sin (εωT ) − 6βµω2S cos (εωT ) + 2βµδ2
1S cos (εωT )

+ 2αβµδ1S cos (εωT ) +
βµ3S cos (εωT )

2
−
βµS cos (εωT )

2
+ 4βδ1ω

2C cos (εωT )

− 2αβω2C cos (εωT ) − 4βδ3
1C cos (εωT ) − 2αβδ2

1C cos (εωT ) − βµ2δ1C cos (εωT )

+ βδ1C cos (εωT ) +
αβµ2C cos (εωT )

2
−
αβC cos (εωT )

2

+ ω4 − 2δ2
1ω

2 −
3µ2ω2

2
+
ω2

2
+ δ4

1 +
µ2δ2

1

2
−
δ2

1

2
+
µ4

16
−
µ2

8
+

1
16

(4.27)

0 = 4β2ω2 sin (2εωT ) − 4β2δ2
1 sin (2εωT ) − 4αβ2δ1 sin (2εωT ) − β2µ2 sin (2εωT )

− α2β2 sin (2εωT ) + β2 sin (2εωT ) + 4β2µω cos (2εωT ) + 6βµω2S sin (εωT )

− 2βµδ2
1S sin (εωT ) − 2αβµδ1S sin (εωT ) −

βµ3S sin (εωT )
2

+
βµS sin (εωT )

2

− 4βδ1ω
2C sin (εωT ) + 2αβω2C sin (εωT ) + 4βδ3

1C sin (εωT ) + 2αβδ2
1C sin (εωT )

+ βµ2δ1C sin (εωT ) − βδ1C sin (εωT ) −
αβµ2C sin (εωT )

2
+
αβC sin (εωT )

2

− 4βω3S cos (εωT ) + 4βδ2
1ωS cos (εωT ) + 4αβδ1ωS cos (εωT ) + 3βµ2ωS cos (εωT )

− βωS cos (εωT ) − 4βµδ1ωC cos (εωT ) + 2αβµωC cos (εωT )

− 2µω3 + 2µδ2
1ω +

µ3ω

2
−
µω

2
(4.28)

These equations are very messy, and it is not clear if a closed form solution

T (δ1, α, β, µ, ε) can be found by eliminating ω. To simplify matters, we will start

by setting ε = 0 in eqs. (4.27), (4.28), which is equivalent to approximating the

delay terms in the slow flow as nondelay terms.

4.3.1 The Non-Delayed Case

Setting ε = 0 in eqs. (4.27), (4.28) yields:

0 = −4β2ω2 + 4β2δ2
1 + 4αβ2δ1 + β2µ2 + α2β2 − β2 − 6βµω2S + 2βµδ2

1S
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+ 2αβµδ1S +
βµ3S

2
−
βµS

2
+ 4βδ1ω

2C − 2αβω2C − 4βδ3
1C − 2αβδ2

1C

− βµ2δ1C + βδ1C +
αβµ2C

2
−
αβC

2
+ ω4 − 2δ2

1ω
2 −

3µ2ω2

2
+
ω2

2

+ δ4
1 +

µ2δ2
1

2
−
δ2

1

2
+
µ4

16
−
µ2

8
+

1
16

(4.29)

0 = 4β2µω − 4βδ1ω
2C − 4βω3S + 4βδ2

1ωS + 4αβδ1ωS + 3βµ2ωS − βωS

− 4βµδ1ωC + 2αβµωC − 2µω3 + 2µδ2
1ω +

µ3ω

2
−
µω

2
(4.30)

This system is simple enough to have a closed form solution. We start by

solving eq. (4.30) for ω, resulting in the trivial solution:

ω = 0

And the nontrivial solution:

ω2 =

(
8βδ2

1 + 8αβδ1 + 6βµ2 − 2β
)
S + (4αβµ − 8βµδ1)C + 4µδ2

1 + µ3 +
(
8β2 − 1

)
µ

8βS + 4µ
(4.31)

The saddle node transition curves are obtained by substituting ω = 0 in eq.

(4.29):

0 =
(
32βµδ2

1 + 32αβµδ1 + 8βµ3 − 8βµ
)
S

+
(
16βδ1 − 64βδ3

1 − 32αβδ2
1 − 16βµ2δ1 + 8αβµ2 − 8αβ

)
C

+ 16δ4
1 + 8µ2δ2

1 + 64β2δ2
1 − 8δ2

1 + 64αβ2δ1

+ µ4 + 16β2µ2 − 2µ2 + 16α2β2 − 16β2 + 1 (4.32)

The Hopf transition curves are obtained by substituting (4.31) in eq. (4.29):

0 = 128αβ3µδ1S
3 + 64β3µ3S3 − 16α2β3µS3 − 16β3µS3 − 128β3µ2δ1CS

2

+ 32α2β3δ1CS
2 + 64αβ3µ2CS2 + 64β2µ2δ2

1S
2 − 16α2β2δ2

1S
2 + 32αβ2µ2δ1S

2
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+ 48β2µ4S2 + 128β4µ2S2 − 4α2β2µ2S2 − 20β2µ2S2 − 16α2β4S2 + 64αβ2µδ2
1CS

− 64β2µ3δ1CS − 128β4µδ1CS + 32αβ2µ3CS + 64αβ4µCS + 32βµ3δ2
1S

+ 64β3µδ2
1S − 128αβ3µδ1S + 12βµ5S + 64β3µ3S − 8βµ3S + 64β5µS

+ 16αβµ2δ2
1C − 8βµ4δ1C − 32β3µ2δ1C + 4αβµ4C + 16αβ3µ2C + 4µ4δ2

1

+ 16β2µ2δ2
1 − 32αβ2µ2δ1 + µ6 + 8β2µ4 − µ4 + 16β4µ2 (4.33)

Figure 4.1 shows both the saddle node bifurcation curves and the Hopf bifur-

cation curves for the non-delayed system, as well as the stable regions. Stable

regions are determined by selecting a representative point from each disjoint

region and testing that point for stability.

Figure 4.2 compares the transition curves calculated using the Routh-

Hurwitz criterion in Chapter 3 with the technique used in this chapter. The

stable regions for both techniques are identical, although the Routh-Hurwitz

criterion produces additional transition curves which, although necessary for

stability, are not sufficient, which is why they do not arise in both methods.

We now return to eqs. (4.27), (4.28) and employ a perturbation approach to

calculate the Hopf bifurcation.

4.3.2 The Delayed Case

Since we now have a solution when ε = 0, the next reasonable course of action

would be to look for a series solution in ε with our result being the zeroth order

solution. Unfortunately, the result when ε = 0 is still too complicated to be

written explicitly in a closed form solution. In order to determine the effect of

ε on the system, we also need to perturb off of α and µ, resulting in a series
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Figure 4.1: Plots of different transition curves for α = 0.1, β = 0.125, and
µ = 0.01. Saddle node bifurcations are on the left, Hopf bifur-
cations are on the right, and the middle shows both.

expansion in three variables.

Fortunately, the saddle node bifurcations are the same for both the delayed

and non-delayed systems, since setting λ = iω = 0 is equivalent to replacing

the delay terms with nondelay terms, so we do not need to investigate the case

when ω = 0 as this solution is already known exactly.
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Figure 4.2: Comparison of the transition curves and stable regions calcu-
lated from setting λ = iω (left) with the Routh-Hurwitz cri-
terion (right) for the parameter values of α = 0.1, β = 0.125,
µ = 0.01.

We begin by expanding T and ω in the following series:

T = T000 + T100α + T010ε + T001µ + T200α
2 + T110αε

+ T101αµ + T020ε
2 + T011εµ + T002µ

2 + · · · (4.34)

ω = ω000 + ω100α + ω010ε + ω001µ + ω200α
2 + ω110αε

+ ω101αµ + ω020ε
2 + ω011εµ + ω002µ

2 + · · · (4.35)

We first calculate the zeroth order terms T000 and ω000 and use those results

to calculate higher order terms.

Substituting (4.34), (4.35) into eqs. (4.27), (4.28) and setting α = 0, ε = 0, and

µ = 0, eqs. (4.27), (4.28) become:

0 =

(
4ω2

000 − 4δ2
1 + 1

) (
16βδ1 cos

(
T000

2

)
+ 4ω2

000 − 4δ2
1 − 16β2 + 1

)
16

(4.36)

0 = −βω000

(
4ω2

000 − 4δ2
1 + 1

)
sin

(T000

2

)
(4.37)

Looking at eq. (4.37), we see there are three distinct cases to examine: ω000 =
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0; 4ω2
000 − 4δ2

1 + 1 = 0; and sin
(

T000
2

)
= 0. As we are not interested in the case when

ω = 0, we will only focus on the second and third cases.

In the second case when 4ω2
000 − 4δ2

1 + 1 = 0, eq. (4.36) is also identically zero.

Thus, this single condition satisfies both eq. (4.36) and eq. (4.37). In this case,

we get ω000 =

√
δ2

1 −
1
4 , which undergoes a Hopf bifurcation when |δ1| > 1/2.

In the third case when sin
(

T000
2

)
= 0, the condition is satisfied when T000 = 2nπ

for integer values of n. In this paper we will examine the smallest nonzero delay

at which a Hopf bifurcation occurs, which is when T000 = 2π.

Substituting T000 = 2π into (4.36) yields the expression:

−16βδ1 + 4ω2
000 − 4δ2

1 − 16β2 + 1 = 0

Solving for ω000 gives us the solution:

ω000 =

√
4δ2

1 + 16βδ1 + 16β2 − 1

2

Since ω > 0 for a Hopf bifurcation, the radicand must be positive. The rad-

icand is positive for δ1 < −2β − 1/2 and δ1 > −2β + 1/2, which fully determines

the Hopf bifurcation for the case of T000 = 2π.

This means that the Hopf curve represents a necessary condition for a Hopf

bifurcation, but not a sufficient one. The points where the Hopf curve intersect

the saddle node curves divide the Hopf curve into disjoint regions; the addi-

tional conditions δ1 < −2β − 1/2 and δ1 > −2β + 1/2 are used to determine which

of those disjoint regions represent actual Hopf bifurcations.

The third case is the solution we will focus on for the series solution; we will
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pick T000 = 2π andω000 =

√
4δ2

1 + 16βδ1 + 16β2 − 1/2 as our zeroth order solutions

in the perturbation method.

By substituting the zeroth order solutions back into eqs. (4.27), (4.28), we are

then able to solve for higher order terms. At each step in this process, ωi jk and

Ti jk are solved simultaneously, just as ω000 and T000 were in the zeroth order case.

The final result for (4.34), (4.35) is:

T = 2π +
µ

2β
− 4π (δ1 + 2β) ε + 2παε −

δ1 + 2β
β

εµ + 8π (δ1 + 2β)2 ε2 + · · · (4.38)

ω = ω000 −
1

2ω000
(δ1 + 2β)α −

1
32βω3

000

(
4δ3

1 + 24βδ2
1 + 48β2δ1 − δ1 + 32β3 − β

)
α2

−
1
ω000

(
π2βδ1

)
ε2 +

π

4ω000
εµ −

1
16βω000

(δ1 + 2β) µ2 + · · · (4.39)

Figure 4.4 shows eq. (4.38) and eq. (4.32).

Since we are mostly concerned with the area around T = 2π, the graphs

shown here will zoom in on that region. A blowup of Figure 4.1 is shown in

Figure 4.3 for reference.

Figure 4.3: A close-up of Figure 4.1 (left) is provided on the right.

Figure 4.5 shows family curves of eq. (4.38) in the δ1 − T plane for various

values of α, β, ε and µ.
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Figure 4.4: Comparison of Figure 4.3 (left) with the series solutions for the
Hopf curves, both delayed and non-delayed, and the saddle
node bifurcation curves (right).

4.4 Numerical Results

The numerical computations use DDE23 in MATLAB [6] to numerically inte-

grate the linearized slow flow (4.17), (4.18), (4.19), (4.20).

These numerical results will be compared to the analytic results presented

in the previous section. We note that the analytic results are approximate due to

the perturbation method, which truncates the solution, neglecting higher order

terms; in this way both the numerical and the analytic approaches are approx-

imate. Additionally, the slow flow only captures the behavior of the system

on the slow time scale, and thus ignores some of the structure of the original

system.

We find much better agreement when comparing the analytic results to the

numerical integration of the slow flow instead of the numerical integration of

the original system, and this stems from the fact that the slow flow is itself only

an approximation. Figure 4.6 compares numerical integration of the original

system with numerical integration of the slow flow.
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Figure 4.5: Family of Hopf transition curves around T = 2π. The left col-
umn has ε = 0.01 and the right column has ε = 0.1. The top row
varies µ, the middle row varies β, and the bottom row varies α.

The code we used determines stability of the origin by taking the initial con-

dition as a point close to the origin and checking if the amplitude grows without

bound. Since nonlinear terms will trap unstable trajectories in a limit cycle of

finite amplitude, the techniques outlined here only work with the linearized
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Figure 4.6: Comparison of the results of numerical integration of the slow
flow (left) versus the results of numerical integration of the
original system (right). The asterisks are stable points and the
curves are the saddle node and Hopf transition curves.

system.

We utilized a combination of two techniques to accomplish this goal: first,

we select an upper bound on amplitude size and quit out of integration if that

amplitude is reached; second, for all other cases we check if the maximum am-

plitude over the entire time interval is equivalent to the maximum amplitude

over a subsection of the time interval. This latter method helps capture edge

cases that the former doesn’t catch.

In all computations we used α = 0.1, β = 0.125 and µ = 0.01.

In Figure 4.7 we see the effect of including delay purely from the standpoint

of numerical integration. The right graph in the figure also compares the ana-

lytic results to the results of numerical integration.
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Figure 4.7: Comparison of numerical integration of the slow flow with de-
lay terms (asterisks) and without delay terms (circles). The
transition curves are included for the graph on the right.

4.5 Conclusion

In this chapter, we investigated the dynamics of two coupled Mathieu equations

with delay. In particular we analyzed the stability of the origin and the effect of

delay and damping on stability. We used the method of two variable expansion

to calculate a characteristic equation of the system’s slow flow, and used power

series to analyze the Hopf bifurcations around T = 2π; these results were then

compared with numerical integration.

The numerical results of the slow flow closely matched the analytical results

for small values of ε, α and µ. Furthermore, within the range of parameter val-

ues for which agreement held, we found significant variation in the Hopf bifur-

cation transition curve. These results demonstrate that including delay terms in

the slow flow can be very important when approximating numerical results.

To measure the significance of replacing delay terms by nondelay terms, we

calculate the error between the numerical integration of T and the series solu-

tion, for both the entire series and just the zeroth order terms. The percent error
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is calculated as follows:

error =
|Tnum − Tseries|

Tnum
× 100%

For fixed values of δ1 between -1 and 1, different values of Tnum and Tseries are

obtained. The table below shows the average and maximum values of the error

in this range.

Zeroth (ε = 0) Full (ε = 0.1)

Average 15.04% 0.60%

Maximum 19.34% 1.88%

Even looking at the maximum possible error, including delay terms results

in a more accurate solution by a factor of 10. When looking at the average, the

accuracy is even better. This demonstrates what is lost by omitting the delay

terms in the slow flow.

50



CHAPTER 5

NONLINEARITY AND ONE WAY COUPLING

5.1 Introduction

The fourth and last variation on eqs. (1.1), (1.2) generalizes the previous models

to include any arbitrary number of bunches. To help make things simpler, we

completely omit the delay terms from the model by assuming that the strength

of resistive wall coupling is negligible compared to the strength of electron

cloud coupling.

The model for this chapter is:

ẍ1 + (δ + ε cos t)x1 + εγx3
1 + εµẋ1 = 0 (5.1)

ẍi + (δ + ε cos t)xi + εγx3
i + εµẋi = εαxi−1 , 2 ≤ i ≤ n (5.2)

Because the α term only couples a bunch with the bunch in front of it, this

model emphasizes the effect of one-way coupling. We will also focus more on

the effect of the nonlinear term in this model by examining the size of possible

limit cycles for each bunch.

As in the previous two chapters, we start the analysis by applying a pertur-

bation technique called two variable expansion.
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5.2 Two Variable Expansion

We use the two variable expansion method [4], [10] to study the dynamics of

eqs. (5.1), (5.2). We set

ξ(t) = t, η(t) = εt

where ξ is the time t and η is the slow time.

Since the xi terms are functions of ξ and η, the derivative with respect to time

t is expressed through the chain rule:

ẋi = xiξ + εxiη , 1 ≤ i ≤ n

Similarly, for the second derivative we obtain:

ẍi = xiξξ + 2εxiξη + ε2xiηη , 1 ≤ i ≤ n

We will only perturb up to O(ε), and so we will ignore the ε2 terms.

We then expand the xi terms in a power series in ε:

xi(ξ, η) = xi0(ξ, η) + εxi1(ξ, η) + O(ε2), 1 ≤ i ≤ n (5.3)

In addition, we detune off of the 2:1 subharmonic resonance by setting:

δ =
1
4

+ εδ1 + O(ε2) (5.4)

Substituting (5.3), (5.4) into (5.1), (5.2) and collecting terms in ε, we arrive at

the following equations:

xi0,ξξ +
1
4

xi0 = 0, 1 ≤ i ≤ n (5.5)

x11,ξξ +
1
4

x11 = −2xi0,ξη − γx3
i0 − µxi0,ξ − δ1xi0 − xi0 cos ξ (5.6)

xi1,ξξ +
1
4

xi1 = −2xi0,ξη − γx3
i0 − µxi0,ξ − δ1xi0 − xi0 cos ξ − αxi−10 , 2 ≤ i ≤ n (5.7)
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The solution to (5.5) is simply:

xi0 = Ai(η) cos
(
ξ

2

)
+ Bi(η) sin

(
ξ

2

)
, 1 ≤ i ≤ n (5.8)

We then substitute (5.8) into (5.6), (5.7). Using trigonometric identities, these

equations can be written in terms of cos ξ

2 and sin ξ

2 . We set the coefficients of

such terms equal to zero in order to remove the secular terms which cause res-

onance. This results in 2n equations in 2n unknowns:

A′1 = −
B1

2
+ δ1B1 −

µA1

2
+

3γ
4

B1(A2
1 + B2

1) (5.9)

B′1 = −
A1

2
− δ1A1 −

µB1

2
−

3γ
4

A1(A2
1 + B2

1) (5.10)

...

A′i = −
Bi

2
+ δ1Bi −

µAi

2
+

3γ
4

Bi(A2
i + B2

i ) − αBi−1 , 2 ≤ i ≤ n (5.11)

B′i = −
Ai

2
− δ1Ai −

µBi

2
−

3γ
4

Ai(A2
i + B2

i ) + αAi−1 , 2 ≤ i ≤ n (5.12)

These equations are known as the slow flow of the system and represent the

envelope of the oscillatory motion of equations (5.1), (5.2). Finding the equilib-

rium points of the slow flow is analogous to finding simple harmonic motion

with constant amplitude in the original system. In doing so we will not only

obtain information on the amplitude of these limit cycles, but also information

on where Hopf bifurcations occur in parameter space.
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5.3 Analytic Results

5.3.1 The First Bunch

The dynamics of the first bunch are given by eqs. (5.9), (5.10).

A′1 = −
B1

2
+ δ1B1 −

µA1

2
+

3γ
4

B1(A2
1 + B2

1)

B′1 = −
A1

2
− δ1A1 −

µB1

2
−

3γ
4

A1(A2
1 + B2

1)

As this system is 2-dimensional, the complete dynamics can be expressed in

the phase plane A1 − B1. The Numerical Results section contains various graphs

demonstrating the full dynamics of the first bunch, but the rest of this section

will focus purely on calculating the equilibrium points of the system.

Setting these equations equal to zero gives us the following equilibrium

points:

(A∗1, B
∗
1) = (0, 0),

=

0, ±
√
±

√
1 − µ2(2δ1 − 1) − µ2 + 1 − 2δ1

3γ

 ,
=

±
√
±

√
1 − µ2(2δ1 + 1) + µ2 − 1 − 2δ1

3γ
, 0


Here we use the standard notation A∗i , B∗i to denote equilibrium points of the

variables Ai, Bi.

To simplify matters, we will focus on the special case when δ1 = 0 and µ = 0.

The fixed points in this case are:

(A∗1, B
∗
1) = (0, 0),

0, ±
√

2
3γ

 ,
±i

√
2

3γ
, 0

 (5.13)
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Here we note our first major observation: Nontrivial real equilibrium points

for A1 only exist for γ < 0, and nontrivial real equilibrium points for B1 only

exist for γ > 0. However, the magnitude of the amplitude is the same in both

cases, and the analysis of both cases is identical. Without loss of generality, we

will take γ > 0 and A∗1 = 0.

5.3.2 The Second Bunch

The dynamics of the second bunch are given when i = 2 in eqs. (5.11), (5.12).

A′2 = −
B2

2
+ δ1B2 −

µA2

2
+

3γ
4

B2(A2
2 + B2

2) − αB1 (5.14)

B′2 = −
A2

2
− δ1A2 −

µB2

2
−

3γ
4

A2(A2
2 + B2

2) + αA1 (5.15)

Note that these equations share a similar structure to eqs. (5.9), (5.10) but

with additional terms resulting from the one-way coupling. These additional

terms mean the dynamics of the second bunch is 4-dimensional instead of 2-

dimensional like the first bunch, and we cannot view the dynamics in a phase

plane. Our analysis of the second bunch will focus only on the steady state

solutions and not on the general dynamics.

Since we are taking γ > 0, all equilibrium points for the first bunch require

A∗1 = 0; substituting A∗1 = 0 into eqs. (5.14), (5.15) yields:

B∗2[3γ(A∗
2

2 + B∗
2

2 ) − 2] − 4αB∗1
4

= 0 (5.16)

A∗2[3γ(A∗
2

2 + B∗
2

2 ) + 2]
4

= 0 (5.17)

Note that A∗
2

2 + B∗
2

2 is a nonnegative value, and is only identically zero in the
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trivial solution (A∗2, B
∗
2) = (0, 0). Since we are interested in nontrivial solutions,

we require that A∗
2

2 + B∗
2

2 be positive.

However, since γ > 0, the expression 3γ(A∗
2

2 + B∗
2

2 ) + 2 must be positive. Thus,

the only way for (5.17) to equal zero is for A∗2 = 0.

Substituting A∗2 = 0 into (5.16) yields:

3γ
4

B∗
3

2 −
1
2

B∗2 − αB∗1 = 0 (5.18)

Since B∗1 is already known to us from eq. (5.13), solving this cubic equation

will give us the solution for B∗2.

Note that this solution is for the steady-state of B2. The full dynamics of the

system is 4-dimensional, involving A1, B1, A2 and B2, and cannot be expressed

in a phase plane.

A graph of the relationship between B∗2 and α can be seen in Figure 5.1.

5.3.3 The Third Bunch

The dynamics of the third bunch are given when i = 3 in eqs. (5.11), (5.12).

A′3 = −
B3

2
+ δ1B3 −

µA3

2
+

3γ
4

B3(A2
3 + B2

3) − αB2 (5.19)

B′3 = −
A3

2
− δ1A3 −

µB3

2
−

3γ
4

A3(A2
3 + B2

3) + αA2 (5.20)

Note that these equations share the exact same structure as eqs. (5.14), (5.15).

Just like with the second bunch, the presence of additional terms means the

dynamics of the third bunch is 4-dimensional. This means that we can’t view
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Figure 5.1: Plot of B∗2 as a function of α, for γ = 1.

the dynamics in a phase plane, and so our analysis of the third bunch will focus

only on the steady state solutions and not on the general dynamics.

We know from the analysis of the second bunch that A∗2 = 0 is necessary

for all steady state solutions of the second bunch; substituting A∗2 = 0 into eqs.

(5.19), (5.20) yields:

B∗3[3γ(A∗
2

3 + B∗
2

3 ) − 2] − 4αB∗2
4

= 0 (5.21)

A∗3[3γ(A∗
2

3 + B∗
2

3 ) + 2]
4

= 0 (5.22)

Note that A∗
2

3 + B∗
2

3 is a nonnegative value, and is only identically zero in the

trivial solution (A∗3, B
∗
3) = (0, 0). Since we are interested in nontrivial solutions,
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we require that A∗
2

3 + B∗
2

3 be positive.

However, since γ > 0, the expression 3γ(A∗
2

2 + B∗
2

2 ) + 2 must be positive. Thus,

the only way for (5.22) to equal zero is for A∗3 = 0.

Substituting A∗3 = 0 into (5.21) yields:

3γ
4

B∗
3

3 −
1
2

B∗3 − αB∗2 = 0 (5.23)

Since B∗2 is already known to us from eq. (5.18), solving this cubic equation

will give us the solution for B∗3.

Given the similarity between eq. (5.23) and eq. (5.18), it is natural to ask if

this pattern continues for all later bunches. Indeed, this is the case, and so we

will generalize the results found in these past two sections to the nth bunch in

the system, where n can be any integer.

5.3.4 The nth Bunch

Due to the nature of one-way coupling, the dynamics of all the bunches except

the first one are identical, as can be seen in the results found for the second and

third bunches. Thus, we can easily derive a formula for calculating the steady

state solution for the nth bunch for any n > 1:

3γ
4

B∗
3

n −
1
2

B∗n − αB∗n−1 = 0 (5.24)

Unfortunately, calculating B∗n in practice requires calculating the amplitudes

of all bunches in front of it, since the recursive relationship cannot be simplified

into a formula dependent only on the first bunch. Part of the problem is that
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each step requires solving a cubic equation which, although solvable in princi-

ple, is a tangled mess. In practice it is much easier to use numerical root solving

methods to find the amplitudes for all the bunches.

The other, bigger problem is that cubic equations have three roots; if all three

roots are real and distinct, then we have a multi-valued function. Fortunately,

this only occurs for a range of α values, and we can easily determine this region

through analytic means.

5.3.5 Multi-Valued Regions

Note that in Figure 5.1 there are two points with infinite slope: these are the

points that divide the function into multi-valued regions and single valued re-

gions. If we flipped the two axes, then these two points change from having

infinite slope to zero slope (see Figure 5.2). Thus, we want to derive dα

dB∗n
and

find the values of α for which the derivative is equal to zero.

We start by moving the α term in eq. (5.24) to the right hand side and differ-

entiating both sides. (
9γ
4

B∗
2

n −
1
2

)
dB∗n = B∗n−1dα

Here B∗n−1 is a constant since we’re assuming all B∗i up to i = n−1 have already

been found.

Solving for dα

dB∗n
, we obtain:

dα
dB∗n

=
1

B∗n−1

(
9γ
4

B∗
2

n −
1
2

)
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Figure 5.2: Plot of α as a function of B∗2, for γ = 1.

We set this equal to zero to find the local extrema:

9γ
4

B∗
2

n −
1
2

= 0 ⇒ B∗n = ±

√
2

9γ

Finally, we substitute this result into eq. (5.24) to find the corresponding α

value:

B∗n−1α =

(
3γ
4

(
2

9γ

)
−

1
2

) ±
√

2
9γ

 ⇒ α = ±
1

B∗n−1

√
2

81γ
(5.25)

One important feature of this result is that the range of α values for the

nth bunch depends on the bunch before it. As an example, for B∗2 the α range

depends on B∗1 =
√

2
3γ ; multiple limit cycles are possible for B∗2 when α ∈

[−3−3/2, 3−3/2] ≈ (−0.2, 0.2).
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The significance of this result is that fixing α does not guarantee that all

bunches B∗i will be either multi-valued or single valued; it is possible to choose

α such that B∗2 only has one limit cycle, but B∗3 has three.

A natural question to ask at this point is whether there exist values of α

that do guarantee single valuedness for all B∗i . Due to the relationship of eq.

(5.25), a uniform bound on α requires a uniform bound on B∗i , so this question

is equivalent to asking if there is a bound on how large B∗i can become.

5.3.6 Limit as n→ ∞

It turns out that the B∗i are indeed bound by an upper bound, and this can be

shown by examining the limit as n→ ∞.

In particular, we care about the limit of the amplitude |B∗n|. One way for this

limit to exist is if B∗ = B∗n = B∗n−1 as n→ ∞. In this case, each bunch has the same

amplitude as the bunch before it, and each bunch is oscillating in phase with the

bunch before it.

By setting B∗ = B∗n−1 = B∗n in eq. (5.24), we obtain:

B∗
(
3γ
4

B∗
2
−

1
2
− α

)
= 0 (5.26)

Thus, we find that the possible in-phase limits are:

B∗ = 0, ±

√
2(1 + 2α)

3γ
(5.27)

As long as α ≥ −1/2, these three limits are distinct; otherwise no in-phase

limit cycles are possible.

61



Another possibility is to examine the case when B∗ = B∗n = −B∗n−1 as n → ∞.

In this case, each bunch has the same amplitude as the bunch before it, and each

bunch is oscillating 180 degrees out of phase with the bunch before it.

By setting B∗ = B∗n−1 = −B∗n in eq. (5.24), we obtain:

B∗
(
3γ
4

B∗
2
−

1
2

+ α

)
= 0 (5.28)

Thus, we find that the possible limits are:

B∗ = 0, ±

√
2(1 − 2α)

3γ
(5.29)

As long as α ≤ 1/2, these three limits are distinct; otherwise no out-of-phase

limit cycles are possible.

Therefore, in the limit as n→ ∞ there are three possible cases:

• For α < −1/2, only out-of-phase limit cycles can exist.

• For −1/2 < α < 1/2, both out-of-phase and in-phase limit cycles can exist.

• For 1/2 < α, only in-phase limit cycles can exist.

Figure 5.3 shows the upper bound for both types of limit cycles.
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Figure 5.3: Plot of the upper bound on amplitudes for the in-phase limit
cycle (solid) and out-of-phase limit cycle (dashed-dot).

5.4 Numerical Results

5.4.1 Phase Plane

To help visualize the dynamics of the first bunch, graphs showing the phase

plane for eqs. (5.9), (5.10) are provided below. All phase plane graphs were

made using PPLANE [9].

Figure 5.4 compares the cases when γ > 0 and γ < 0. Qualitatively the graphs

are the same; the only difference is that one has the equilibrium points on the A
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axis and the other has the equilibrium points on the B axis.

Figure 5.5 shows the effect of including small values of δ1 and µ. The inclu-

sion of damping has broken the homoclinic orbit and all orbits are eventually

attracted to one of the two stable equilibrium points. Since the two basins of

attraction are intertwined, it can be hard in practice to determine which equilib-

rium point will be reached from a given initial condition.

Figure 5.6 shows the effect of including larger values of δ1 and µ. The equi-

librium points have gone through a pitchfork bifurcation and there is now only

one equilibrium point: the origin.

5.4.2 Cobweb Diagram

Since all bunches other than the first bunch are coupled to another bunch, we

cannot express their dynamics in a phase plane. Instead, we will show the am-

plitudes B∗1 through B∗n in a cobweb diagram for a fixed number n.

Each diagram contains the graphs of eq. (5.24), with B∗n on the x-axis and

B∗n−1 on the y-axis, and the line y = x. The sequence starts with B∗1 on the x-axis,

and proceeds as follows:

• Move vertically to the line y = x.

• Move horizontally to the curve given by eq. (5.24) [may be multi-valued].

This process is repeated n times, with each horizontal change determining

the next value of B∗i .
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Figure 5.4: Phase plots of the A1-B1 dynamics. The left plot shows the dy-
namics for γ = 1 and the right plot shows the dynamics for
γ = −1. Both plots have α = 0 and µ = 0.

Figure 5.5: Phase plot of the A1-B1 dynamics for α = 0.1, µ = 0.1 and γ = 1.

Figure 5.6: Phase plot of the A1-B1 dynamics for α = 1, µ = 1 and γ = 1.

For example, Figure 5.7 shows the case when α > 1/2. The diagram begins

at the point (0.8, 0), representing the value B∗1 =
√

2/3. After moving up to the

line y = x at (0.8, 0.8), the process then moves to the right to (1.1, 0.8), where 1.1

represents the next value, B∗2. After several iterations, the values of B∗i approach
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the point (1.2, 1.2), where 1.2 is the size of the stable limit cycle in this region.

Figure 5.8 shows the case when α < −1/2. The diagram begins at the point

(0.8, 0), as before. This time, after moving up to the point (0.8, 0.8), the process

then moves to the left to (−1.2, 0.8), where -1.2 represents the next value, B∗2.

After several iterations, the values of B∗i alternate between two values, 1.3 and

-1.3, reflecting the out-of-phase nature of the stable limit cycle in this region.

For −1/2 < α < 1/2, there are three possible limit cycles. Since the output

of eq. (5.24) is multi-valued in this region, there are many different cobweb

diagrams for a given starting point B∗1, with the realized outcome determined by

the initial condition in the original system (5.1), (5.2). The code used to generate

the diagrams picks one of the three limit cycles at random, as this best represents

the unpredictability of knowing the precise initial condition.

Figure 5.9 shows the chaotic nature of this iteration map in the region −1/2 <

α < 1/2. Since the behavior here is randomized, there is no clear pattern to be

discerned here. However, we note that the attractor seems to be a fractal of some

kind since there are gaps that are never reached.

5.4.3 Convergence to the Limit

The most important question in this model is determining how long a train of

bunches can be before the tail becomes unstable. We have shown that there is a

theoretical upper bound to the limit cycle amplitude, but it remains to be seen

how quickly the numerical sequence given by eq. (5.24) approaches this limit.

Figure 5.10 shows a sequence of graphs of B∗n vs α for 2 ≤ n ≤ 5 and α >
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Figure 5.7: Cobweb diagram for α = 0.6 and γ = 1.

Figure 5.8: Cobweb diagram for α = −0.6 and γ = 1.

Figure 5.9: Cobweb diagram for α = 0.1 and γ = 1.

0.5, which demonstrates the speed at which this sequence approaches the limit.

However, we note that the sequence does not seem to have a constant rate of

convergence, and for larger α values it takes longer to converge to the limit.

Figure 5.11 shows the graph of B∗5 vs α for a larger range of α values, in-

cluding the multi-valued region. While the multi-valued region does not show
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Figure 5.10: Plots of B∗n vs α for α > 0.5 and γ = 1. The top left graph shows
n = 2, the top right graph shows n = 3, the bottom left graph
shows n = 4, and the bottom right graph shows n = 5.

convergence to either of the limit curves, the values do stay bounded between

the maximum values of the two limit curves. Thus, even in this region we can

place an upper bound on how large the B∗i can grow.

Figure 5.12 shows the graph of B∗6 vs α. For α > 0.5, this figure is almost

identical to Figure 5.11, but for α < −0.5 the sign of the curve is now negative

instead of positive. This reflects how the limit cycle in this region is out-of-

phase, as B∗6 is out of phase with B∗5. Since the magnitude of the limit curve

is the same for both positive and negative branches, the sign of B∗n is of little

concern.
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Figure 5.11: Plots of B∗5 vs α for −2 ≤ α ≤ 2 and γ = 1.

Figure 5.12: Plots of B∗6 vs α for −2 ≤ α ≤ 2 and γ = 1.

5.5 Conclusion

Our model predicts an upper bound for the amplitudes of bunches in a train.

While the dynamics of the system varies depending on the value of α, the upper

bound holds for all values of α.

In theory this means that all trajectories are bounded, but in practice there

is a physical bound on how large amplitudes can grow before they become un-

stable. For example, if the theoretical bound on the motion is 100 centimeters,

but the radius of the cross-section of the accelerator is only 2 centimeters, then
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instability occurs once B∗n grows larger than 2 centimeters. On the other hand, if

the theoretical bound on the motion is 1 centimeter, then instability will never

occur, as B∗n will never grow larger than 2 centimeters.

If it is known that the physical upper bound is smaller than the theoretical

upper bound, then it is a simple matter to numerically calculate B∗n from eq.

(5.24) and determine at what point B∗n exceeds the physical bound. Even in the

multi-valued region, taking the worst-case scenario when the amplitude grows

the largest at each step will determine the critical n at which instability occurs.

Thus, it is possible to know how many bunches to include in a train before

instability occurs.

If this model proves accurate, then α can be used to determine the maximum

number of bunches in a train. As α contains information for both the per-bunch

charge and the per-bunch spacing, adjusting either of these specifications can

adjust the value of α, and thus affect the size of the train.
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APPENDIX A

A.1 Proof of Structural Instability When µ = 0 and α , 0

The proof of this phenomenon can be seen by examining the pqr − r2 − p2s ≥ 0

stability condition when µ = 0 (see eqs. (3.22)-(3.25)):

For instability pqr − r2 − p2s = −16α2β2S2
(
β2 − 2βδ1C + δ2

1

)
< 0

Note that α2, β2, and S2 are all positive, and so β2−2βδ1C+δ2
1 needs to be positive

for the system to be unstable.

If C = 0 (i.e. if cos T
2 = 0, i.e. if T = nπ, n = 1, 3, 5, · · ·) then β2 − 2βδ1C + δ2

1 is

positive. Therefore, by continuity, in order for β2−2βδ1C+δ2
1 to become negative

it must first pass through zero. But the equation

β2 − 2βδ1C + δ2
1 = 0

which is a quadratic on δ1, cannot have real roots δ1 since the discriminant is

4β2(C2 − 1) < 0 if C2 , 1

Thus for a nonzero value of α (and µ = 0) the system is unstable almost every-

where.

The special case T = nπ, n = 2, 4, 6, · · ·, gives C = cos T
2 = ±1, and is excluded

from this argument; this case may (and indeed does) correspond to a stable

region of measure zero in the T − δ1 plane.
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