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Abstract 

The electrical performance and CO2 permeation of composite membranes based on Gd-doped 

ceria skeletons impregnated with molten alkaline carbonates are benchmarked against their 

predictable performance based on ambipolar conductivity governed kinetics (best scenario), 

using customized diagrams. Experiments performed in the 550-850 °C temperature range 

showed permeation rates reaching almost 0.6 cm3.min-1.cm-2 at 850 °C with 50 mol% CO2 

content in the feed side. Endurance tests performed at 650 °C for over 100 h showed a small 

degradation due to microstructural changes. Impedance spectroscopy measurements 

combined with microstructural analysis involving several composite membranes and skeletons 

after distinct thermal history confirmed the potential of these techniques to monitor the ceramic 

skeleton and membrane condition. The diagrams used to map membrane performance highlight 

in an entirely novel manner several kinetic and experimental constraints. 
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1. Introduction 

Composite electrolytes consisting of a molten alkali carbonate held within a porous oxide 

support (often a ceria-based electrolyte) have been shown to perform as CO2 separation 

membranes with a cooperative transport mechanism involving ions in both molten salt and oxide 

support. The most common description suggests the counter ionic flow of carbonate and oxide-

ions via the two constituent phases [1-10]. In our previous work the performance of these 

membranes was optimized and the potential of a cooperative mechanism in composites was 

generalized [11]. The proof of concept for alternative vehicular mechanisms was recently 

extended to NOx separation membranes [12]. Considering the underlying purely ionic [1-11] or 

mixed ionic and electronic mechanisms [12-13], these membranes might be fully or partly 

selective with respect to a given chemical species. Both situations might be of great practical 

interest. 

These composites rely strongly on the ceramic phase as provider of mechanical stability, 

besides the role of pathway for oxide-ion transport, since the membranes operate above the 

carbonates eutectic temperature. To meet this double functionality, the oxide must be a 

contiguous but porous phase and act as a sponge with respect to the molten carbonates. 

However, grain boundaries in polycrystalline ceramic electrolytes are known for their blocking 

characteristics with respect to oxide-ion transport [14]. Thus, the specific interconnection 

between ceramic grains (e.g., large necks, small necks), an obvious constriction in oxide-ion 

transport, must be optimized. Furthermore, since at typical working temperatures the ceramic 

has low conductivity with respect to the carbonates, poor microstructural features will constrain 

the membrane performance. 

While most published results and models consider that membrane performance is governed by 

coupled ionic transport via oxide and salt, actual results are rarely tested against the predictable 

performance assuming that ionic transport is indeed rate determining. In this work we map for 

the first time the performance of our membranes against prediction to comment on likely 

experimental or kinetic constraints. The outcome of this type of analysis is a deeper 

understanding of critical aspects often neglected in the analysis of membrane performance. 

 

2. Experimental 

The composites studied were based on CGO (Ce0.9Gd0.1O1.95, from Praxair, with an average 

particle size in the order of 120 nm). The CGO powder was firstly coarsened by calcination (1 

h) at 1300 °C. The powders were mildly milled with 0.5 wt% PVA (polyvinyl alcohol) before 

uniaxial pressing (125 MPa) as disks with about 15 mm diameter and 1-2 mm thick. After 

isostatic pressing (200 MPa), the ceramic skeleton was sintered (at 1300 °C, 4 h) and lastly 
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impregnated with a eutectic mixture of sodium and lithium carbonates (Sigma-Aldrich, 48:52 

molar ratio), hereby named NLC. Impregnation was performed at 700 °C for 90 min, under light 

vacuum (simple standard laboratory water vacuum pump). The experimental procedure is in all 

aspects similar to the previously reported [11] except for the (1300 °C) coarsening and sintering 

temperatures of the CGO powder, which explains the acronym CGO13 adopted to describe 

these materials. Two sets of samples were prepared in distinct moments from one same 

powder, named CGO13S1 and CGO13S2. Twin samples from these sets were used to perform 

complementary microstructural and electrical characterization tests. Sample acronyms, 

characteristics and tests are listed in Table 1. 

 

Table 1- Characteristics and acronyms of cells tested in this work 

Set Acronym 

Processing stage 

Testing Skeleton Composite membrane 

Porositya (%) Vol.% CGO Vol.% NLC Porosity (%) 

1 

CGO13S1-1 25 75 19 6 permeation 

CGO13S1-2 21 79 15 6 endurance 

CGO13S1-3 22 78 16 6 impedance, SEM 

2 
CGO13S2-1 23 77 17 6 permeation, SEM 

CGO13S2-2 23 77 17 6 impedance, SEM 

aArchimedes method 

 

For the high temperature CO2 permeation experiments a dual chamber setup was operated at 

atmospheric pressure (Figure 1). The membranes were mounted on the top of an alumina tube 

using a sealant (Fuel Cell Materials, silver ink AG-1), separating the feed and permeate side 

chambers. The sealant was allowed to dry in air before firing under oxidizing conditions at 

around 550 °C. The active membrane area available for permeation was approximately 0.5 cm2. 

The two base gases used, provided by BOC, were a certified mixture of 50 mol% CO2 + 50 

mol% N2 and pure Ar.  

During the permeation experiments the feed-side inlet was composed of a mixture of these 

gases. N2 was used to indicate inter-chamber leaks, in order to estimate carbon dioxide leak 

rates. Ar was used in the permeate side inlet as sweep gas. The flows on both the feed and 

permeate sides inlets were maintained at 20 cm3 (STP).min-1 for the endurance test and 30 cm3 

(STP).min-1 for every other experiment. The outlet permeate-side gases were analysed using 
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an EES, GeneSys mass spectrometer during the carbon dioxide mole fraction variation test and 

a HIDEN, HALO 100-RC mass spectrometer for the endurance test. Both were calibrated before 

the experiments. For permeation experiments the membrane was heated in a temperature 

programmable furnace up to every operating temperature (from 550 to 850 °C) at 60 °C.h-1. At 

each temperature the inlet mole fraction of carbon dioxide was varied from 10 mol% up to 50 

mol%. The corresponding CO2/N2 concentration ratios in the permeate side reached maximum 

values in the 10-14 range for experiments at 550 °C using 10 mol% CO2 in the feed gas, and 

minimum values of 2-3 at 850 °C using 50 mol% CO2 in the feed gas. Accordingly, the 

concentration of CO2 in the permeate side exceeded considerably the estimated leaks in all 

experiments, although changing with working conditions. One endurance test was performed 

running the experiment with the higher CO2 content (50 mol%) for extended periods of time, up 

to about 100 h, with continuous recording of the permeate-side outlet gas composition. 

 

 

Figure 1 - Scheme of the setup used in the permeation experiments, indicating the relevant 

gas streams and global assembling. 

 

The CO2 content in both gas streams (pCO2,feed and pCO2,permeate, corresponding to the feed and 

permeate sides, respectively) is essential for data analysis. The present reactor was described 

elsewhere [15] and has a good degree of mixing on both the feed and the permeate side. As 
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first approximation the membrane permeate side was considered as exposed to the outlet 

condition. Also, pCO2,feed refers to the condition of the feed-side inlet (10 to 50 mol%) 

considering that the CO2 mole fraction in the feed side is essentially constant. In fact, at the 

observed membrane fluxes the mole fraction in the feed side decreases from inlet to outlet by 

no more than 0.3%. 

Ceramic skeletons and composite membranes were studied by impedance spectroscopy (HP 

4284A LCR Meter) using a test ac signal amplitude of 0.5 V within the 20 Hz to 1 MHz frequency 

range (with 10 readings per decade). The measuring conditions were previously validated [16-

20]. Prior to the electrical measurements, samples were painted with Au paste and the 

electrodes fired in air at 600 °C. Gold wires were used as current collectors, with all 

measurements performed in air within the 200 to 700 °C temperature range.  

Microstructural characterization of freshly prepared twin skeletons and membranes was 

performed by scanning electron microscopy (SEM, Hitachi SU-70) coupled with an energy 

dispersive X-ray detector (EDS, Bruker Quantax 400). Post-operational analysis of samples 

used in several experiments also involved impedance spectroscopy and microstructural 

analysis of the ceramic skeletons after removal of the alkaline carbonates with diluted HCl acid. 

This set of complementary analyses tried to elucidate the changes observed within the 

membranes while being tested in permeation experiments.  

 

3. Results 

3.1. Microstructural characterization 

SEM micrographs of freshly prepared CGO13S1 skeletons and corresponding composite 

membranes are shown in Figures 2a through 2c. The microstructural characteristics of these 

membranes are in all aspects similar to those previously reported [11], except for the much 

smaller average grain size of the CGO grains (light grey), clearly sub micrometric, due to the 

distinct processing conditions. In Figure 2c we present the combined microstructure and atomic 

number map distribution (Ce and Na, the easily detected dominant cations of each phase). The 

presence of interconnected carbonate areas (green/dark grey) between regions where the 

percolated ceramic phase (red/light grey) prevails shows that the adopted processing route 

yields dense composite membranes. 
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(a) 

(b) 

(c) 

Figure 2 - Microstructures of CGO13S1 skeletons before (a) and after impregnation (b) at high 

magnification (10k). For an easier visualization of phase distribution in composite membranes, 

combined SEM and atomic number maps at 2.5k magnification are also provided in (c). Green 

(dark grey) and red (light grey) colors correspond to Na and Ce elements, respectively (blue for 

Gd, in smaller amount). 

 

3.2. Impedance spectroscopy 

Figures 3a and 3b include the impedance spectra of the porous CGO13S1 substrates and 

corresponding composites, in air, at 250 and 600 °C. These two extreme temperatures were 

selected for providing specific insight on the condition of both phases. Distinct impedance arcs 
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(at high, intermediate and low frequency) can be discerned based on a systematic study of the 

roles of ac sign magnitude and dc bias on actual shape of spectra. The low temperature spectra 

consist mostly of two main contributions related to the materials performance, with linear 

response. These can be described by two elementary circuits in series, each consisting of a 

parallel R||CPE arrangement, where R stands for a resistor and CPE for a constant phase 

element. The analysis of similar impedance spectra was extensively treated in recent 

publications, and for this reason further details are here omitted [16-20].  

(a) 

(b) 
Figure 3 - Impedance spectra at 250 (a) and 600 °C (b), in air, of CGO13S1-3 (skeleton and 

composite membrane, microstructures shown in Figure 1a and 1b, respectively). Numbers close 

to filled symbols indicate the logarithm of the measuring frequency (Hz). 

 

The low temperature (Figure 3a) data confirms the close relation between the electrical 

properties of the porous skeleton and those of the composite membrane, with the high 

frequency arc appearing as a fingerprint of a typical ceramic bulk behavior, fully preserved even 

after impregnation with the carbonates. At intermediate frequency the skeleton impedance is 

disturbed by the appearance of a large magnitude low frequency arc. Even so, the resemblance 

between these spectra within the majority of the frequency range clearly confirms that the 

ceramic phase, the most conductive in this temperature range, determines the electrical 
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response. The resistive alkaline carbonates act here as a parallel “dormant” pathway, 

influencing mostly the onset of the lower frequency contribution. 

The high temperature spectra of skeleton and composite are distinct in shape but mostly in 

magnitude (Figure 3b), consisting only of the usually named electrode arc, extending to negative 

-Z” values due to the setup inductance. Since the composition of both cells is distinct we also 

have distinct electrode impedances, ignored in the present discussion due to the absence of 

meaningful data for further analysis.  

At high temperature we can measure directly the total conductivity of porous skeletons (CGO,p) 

and composite impregnated membranes (comp) from the high frequency intercept with the Z’ 

axis. These data provide us an estimate of the actual transport properties of each phase within 

the membrane, assuming that the composite conductivity is the sum of the parallel contributions 

of the two phases [18]: 

comp =  CGO,p + NLC,p         (1) 

In equation (1) i,p (i= CGO or NLC) are the partial conductivities of the two phases within the 

composite membrane, with the subscript “p” used to distinguish this quantity from the 

conductivity of the same phase as a fully dense material. 

3.3. CO2 permeation 

Figure 4a presents the CO2 volumetric flux (Jv, cm3.min-1.cm-2) crossing the CGO13S1-1 

membrane as a function of temperature, for different CO2 partial pressures in the feed-side inlet. 

Permeation increases with the mole fraction of CO2 in the membrane feed side and also with 

temperature, but data obtained at higher temperature seems to level off against expectation, as 

discussed later in this work. The fluxes obtained were also significantly lower than those 

previously reported for membranes prepared following slightly distinct thermal profiles [11]. All 

this justified new experiments with a membrane from set CGO13S2. The results obtained with 

the new set are presented in Figure 4b. The observed trends were closer to expectation, with 

the permeation flux increasing monotonously with the composition of the feed side and 

temperature. 

The carbon dioxide flux through the CGO13S1-2 membrane over 103 hours at 650 °C, using 

the higher CO2 content in the feed-side inlet (50 mol%) is shown in Figure 5 as an endurance 

test. For CGO13S1-2, irrespective of a short initial decay with fast recovery (probably due to 

thermal instability during the system start-up), we can notice a slight tendency for declining 

permeation with time. The final readings are almost 20% lower than the initial reading, after over 

4 days of continuous testing. Overall, the magnitude of the observed flux is also in close 

agreement with the results obtained with the CGO13S2 membrane.  
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a) 

b) 
Figure 4 - Carbon dioxide flux (Jv) through the CGO13S1-1 (a) and CGO13S2-1 (b) composite 

membranes as a function of temperature, for different carbon dioxide contents in the feed-side 

inlet, as indicated in the inner caption. 

 
Figure 5 - Carbon dioxide flux through the CGO13S1-2 composite membrane over 103 hours 

at 650 °C. Feed-side inlet: 50 mol% CO2 in N2. Permeate-side inlet: pure Ar. 
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4. Discussion 

4.1. Benchmarking ambipolar conductivity 

In composite CO2 separation membranes a key property is the so-called ambipolar conductivity, 

amb [1-2, 21-22]. Assuming distinct dominant ionic species and transport mechanisms involved 

in the molten carbonates (e.g., CO3
2-, Na+, Li+) and oxide phase (O2-), amb can be tentatively 

described as a function of the partial conductivities of the two phases within the composite [21-

22]: 

 σamb=
σCGO,p.σNLC,p

σCGO,p+σNLC,p
         (2) 

Assuming also that the partial conductivity of each phase in the composite is proportional to the 

corresponding phase content (simple mixture law), amb can be further expressed as a function 

of the pure phase conductivities (i): 

 σamb=
φ.σCGO.(1-φ).σNLC

φ.σCGO+(1-φ).σNLC

         (3) 

where  is the CGO volume fraction in the composite.  

Based on equation (3) and published data on the conductivity of individual phases [23-25] we 

can draft a model dependence of amb on temperature and composition for conditions similar to 

those used in our experiments. The dependencies predicted for two distinct temperatures (600 

and 700 °C) are presented in Figure 6a, where the oxide content changes from 60 to 95 vol%, 

with 5 vol% increments.  

Figure 6a consists of a plot of the ionic transport number of the molten carbonates (tNLC) versus 

amb. By definition an ionic transport number corresponds to the ratio of the conductivity due to 

one single species to the total conductivity. Grouping again dominant charge carriers in each 

phase, this yields: 

 tNLC=
σNLC,p

σCGO,p+σNLC,p
         (4) 

This type of plot was recently introduced [21] to benchmark the electrical performance of these 

membranes as detailed in the following discussion.  

Analysis of equation (3) and Figure 6a shows that amb increases with increasing CGO content, 

the poorly conducting phase, up to peak values around 80-90 vol%, slightly temperature 

dependent. This is also an upper limit for the oxide content since above this limit the molten 

carbonates in real microstructures might become trapped and inactive in pools inside the 

ceramic skeleton. This explains the target porosity values adopted in the present work, close to 

20-25 vol%. 
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a) 

b) 

Figure 6 - Model electrical performance of composite membranes: (a) ionic transport number of 

molten carbonates (tNLC) versus the ambipolar conductivity (amb) at 600 and 700 °C, for variable 

oxide content (60-95 vol% with 5% increments). “Trend lines” correspond to CGO, 

approaching amb for oxide contents lower than 80 vol%; (b) amb as a function of temperature 

for distinct oxide contents. See text for further details. 

 

amb values approach CGO (named “trend lines” in Figure 6a) for practical compositions where 

usually <0.8 and (1-).NLC » CGO. This means that potential microstructural constraints in 

the transport across the ceramic phase should affect strongly amb. A severe tortuosity or loss 

in the percolation of the molten carbonates would be equally influential. 

As guidance on model performance, an alternative plot is also presented in Figure 6b, with the 

temperature dependence of amb for each composition. We should have a continuous increase 

in amb with increasing temperature, as a consequence of the temperature dependence of both 
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partial conductivities. This should be also the tendency for the CO2 permeation flux through the 

membrane and explains why results with membrane CGO13S1 were considered abnormal. 

As already mentioned, impedance spectroscopy provides all information needed to build plots 

similar to those presented in Figure 6a. This is shown in Figure 7 using impedance data obtained 

in the 600-700 °C range, with 50 °C increments. The immediate conclusion from data shown in 

Figure 7a is that actual membranes perform below ideal performance even considering strictly 

ionic transport. Actual amb values are around 30-40% of the ideal values, but we should recall 

here that ideal performance neglects all microstructural constraints while actual membranes 

include features like tortuosity and ion blocking grain boundaries. 

a)

b) 

Figure 7 – Plots of tNLC versus amb derived from impedance spectroscopy data obtained with 

composite membranes (also ideal values based on literature data [23-25]): (a) – magnified 

range covering 600, 650 and 700 °C; (b) – full range plot (only for 700 °C data). Details on 

information contained in these diagrams can be found in the main text. 
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The relevance of microstructural features on membrane performance is shown comprehensibly 

in Figure 7b. The slopes of lines starting at (amb, tNLC) points (0, 0) and (0, 1) and ending in 

distinct (amb, tNLC) performance values (real or ideal) are directly related to the partial 

conductivity of each phase in the composite. From the ratios of these slopes for actual 

membranes against those corresponding to ideal performance we obtain an estimate for the 

tortuosity in each phase (idealreal) [2, 9].  

The estimated tortuosity values for tested membranes are shown in Table 2. The most 

impressive result is observed for NLC, with tortuosity estimates in the 6-7 range, increasing 

slightly with temperature. These values are only expected when isolated pools of carbonates 

are formed inside the composite [2, 9]. Experimental constraints, namely poor contact between 

the Au electrodes and the molten phase (during impedance spectroscopy measurements) might 

explain this apparently overestimated set of values. NLC can be a poorly wetting liquid with 

respect to usual electrolytes [6] and this might be the source of defective electrical contact with 

the electrode material, simply bonded to the oxide, the only phase offering a stable high 

temperature mechanical contact.   

 

Table 2 - Estimated tortuosity in each phase for distinct CGO13 membranes, based on 

impedance spectroscopy data. 

 

T (°C) 

Tortuosity (idealreal) 

CGO13S1 CGO13S2 

CGO NLC CGO NLC 

600 2.8 6.2 3.2 6.1 

650 2.5 6.7 2.9 6.5 

700 2.4 6.9 2.9 6.6 

 

 

With respect to CGO, the tortuosity values (2.4-3.2) are closer to expectation for a porous 

skeleton [26]. Also, the slight drift to lower tortuosity values with increasing temperature might 

simply indicate that the role of blocking grain boundaries is vanishing, as expected. We should 

notice that according to the adopted data handling procedure the role of grain boundaries is 

grouped with the actual role of phase tortuosity. Overall, these data suggests that the electrical 

microstructure of these membranes was indeed similar, as expected from data shown in Table 

1. 
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4.2. Benchmarking CO2 permeation 

The current density (J) flowing through a material with conductivity  and length L, under an 

applied voltage V, can be expressed as (Ohm's law): 

 J= 
1

L
.σ .V          (5a) 

The simplest model used to describe the membrane electrochemical permeation, expressed 

either as current density (J) or the corresponding CO2 molar flux per unit area (Jm), obeys a 

similar relation [1-2, 7]: 

 J = 
1

L
. .σ

amb
. [ 

RT

2F
 ln

pCO2, feed

pCO2, permeate

]       (5b) 

or 

 Jm = 
RT

4F
2
L

. .σ
amb

. ln
pCO2, feed

pCO2, permeate

       (5c) 

In equation (5b) the term 
RT

2F
 ln

pCO2, feed

pCO2, permeate

corresponds to the net thermodynamic voltage (V) 

experienced by the membrane [22]. amb is a function of the pure phase conductivities and 

volume fractions (equation (3)), while  accounts for the global microstructural constraints like 

pore tortuosity or ceramic inter-grain electrical contact characteristics, effects previously 

discussed. is a small number when pore tortuosity is high and might be determined from the 

separate tortuosity values for each phase. L here is the membrane thickness, R is the gas 

constant, T the absolute temperature and F the Faraday constant. Equation (5c) corresponds 

solely to the conversion of the ionic current into molar flux (Jm=J/2F). 

The above model is based on the assumption of net CO2 transport fully determined by the 

membrane ambipolar conductivity. As such, all other steps are neglected. Slow gas/membrane 

exchange  (CO2 uptake and release) or combination of CO2 (dissolved in NLC) with O2- (from 

the CGO matrix), are two examples of possible elementary steps that might hinder the overall 

transport rate. A new pictorial approach was recently introduced to identify possible kinetic 

constraints besides ambipolar transport, recalling a treatment widely adopted in the field of 

corrosion kinetics [22]. Accordingly, the actual CO2 flux in membranes is mapped in Evans-type 

diagrams. Such diagrams consist of plots of net thermodynamic voltages (V) versus the effective 

cell current density (J). Any elementary step can be the source of an overvoltage (ohmic if due 

to ambipolar transport, non-ohmic if related to surface/interface processes). The sum of all 

contributions must match the net thermodynamic voltage. These plots include information on 

ideal and real membrane performance, using a combination of impedance spectroscopy data 

(to estimate the ohmic contribution), pCO2,feed and pCO2,permeate readings (determining V) and 
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CO2 permeation data (converted to current density). A few examples of such plots are shown in 

Figure 8. 

Figure 8a maps the performance of the CGO13S1-1 membrane at two distinct temperatures. 

The maximum thermodynamic voltage at each temperature is Vmax and slopes of lines departing 

from points (0, 0) and (0, Vmax) are again a simple function of the partial conductivity of each 

phase. These lines end up when the membrane current density is reached. The ideal current 

density corresponds to points A (700 °C) and B (600 °C). This result can be obtained using 

equation (5b) and literature data on the conductivity of each phase [23-25], assuming no 

microstructural constraints (=1).  

  

  

Figure 8 – Evans-type diagrams for the performance of CGO13S1 (a and c) and CGO13S2 (b 

and d) membranes. In (a) and (b) Vmax and pCO2,permeate are based on the reactor permeate-side 

outlet condition (including leaks). In (c) and (d) Vmax and pCO2,permeate assume simple dilution of 

the permeation flux in the sweep gas. Points A (a, c), B (a, c), E (b, d) and H (d) correspond to 

ideal performance (CO2 flux governed by ambipolar transport). Points or couples CD (a, c), F 

(d), FG (b), and IJ (d) correspond to real performance. See text for details.  

 

The experimental lines possess distinct slopes due to distinct conductivities. At 700 °C these 

lines terminate when the actual membrane current density is reached (points C and D). The 

vertical length of line CD corresponds to an overvoltage related to kinetic constraints other than 
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ionic transport (e.g., slow surface reaction kinetics). For the CGO13S1-1 membrane the 

observed current density (permeation) is around 20% of the ideal value and the overvoltage is 

significant. Similar data obtained at 600 °C is simply shown, without further analysis. As 

discussed in the following paragraphs, the exact reasons for this low performance might reside 

in experimental limitations with impact on the cell effective permeating area, rather than global 

kinetic constraints. However, this set of results was kept as an illustrative example of  

performance deviating from prediction based exclusively on ambipolar transport. 

Figure 8b includes an analogous set of results for membrane CGO13S2, but the picture is totally 

distinct. The experimental current density apparently exceeds what could be predicted from 

electrical conductivity measurements. This explains why lines departing from points (0, 0) and 

(0, Vmax) cross each other before reaching the experimental current density (points FG, 700 °C). 

This situation may be due to experimental limitations or to underestimated oxide-ion 

conductivity, as discussed in the following paragraphs.  

The smaller thermodynamic voltage window (Vmax) in Figure 8b versus Figure 8a suggests 

experimental constraints since inlet gas mixtures were identical in both experiments. In Figures 

8a and 8b the assumed pCO2,permeate readings correspond to the outlet gas concentration, 

including permeation flux and sealing leaks. The assumption of perfect gas mixing inside the 

reactor chamber may not be valid. For Vmax values assuming that pCO2,permeate is only due to the 

dilution of the CO2 permeation flux in the sweep gas the modified plots are shown in Figures 8c 

and 8d. Now the actual performance of membrane CGO13S2 at 700 °C matches closely 

expectation based on the estimated partial conductivities of both phases (point F in Figure 8d). 

Thus, an underestimated thermodynamic voltage in Figure 8b seems a possibility. At 600 °C 

the performance of membrane CGO13S2 (points IJ versus H, Figure 8d) becomes qualitatively 

similar to the performance of membrane CGO13S1 at 700 °C (points CD versus A in Figures 

8a or 8c). Figures 8a and 8c are analogous due to minor sealing leaks in the tests with 

membrane CGO13S1. 

An underestimated conductivity of molten carbonates might also contribute to these results. As 

previously mentioned, tortuosity values for the molten phase seem unusually high and might be 

influenced by poor contact between the Au electrodes and the molten phase during impedance 

measurements. This effect could easily add to the previous one. 

Lastly, an enhanced membrane performance with respect to prediction may also reside in 

limitations in assumed conductivity data, namely a possible contribution of oxide-ions in the 

molten carbonates. The presence of oxide-ions in molten carbonates due to partial salt 

decomposition with release of CO2 is unanimously accepted for many years [27-30]. Even so, 

there is considerable speculation in the literature on the value of oxide-ion conductivity in molten 
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carbonates but there seems to be no evidence for a significant magnitude [31-32]. A low oxide-

ion conductivity within the molten carbonates would struggle to explain the situation under 

analysis. 

Since membranes CGO13S1 and CGO13S2 were almost twins, the abnormal tendency and 

low permeation flux at high temperature of membrane CGO13S1-1 suggests a significant 

degradation mechanism. In order to obtain a deeper insight on likely causes, in Figure 9 we 

present the measured N2 content (partial pressure) in the permeate-side outlet. The presence 

of nitrogen is due to gas diffusion through the molten carbonates and minor sealing problems. 

These values were used to correct the net CO2 flux due to electrochemical permeation since 

both gases were in the feed side in the exact 1:1 proportion. As we can notice comparing Figure 

4a and 9, the corrected electrochemical permeation flux tendency is independent of minor 

fluctuating leaks, changing with the setup temperature. However, the concentration of N2 is only 

weakly dependent upon temperature at high temperature, even decreasing between the two 

highest temperatures. So, in this temperature range both transport of CO2 and N2 were inhibited. 

Migration of the sealing material along the molten phase could explain this blocking effect. 

 

Figure 9 - Partial pressure of nitrogen in the permeate-side outlet. In the inset, values for the N2 

concentration in the feed gas inlet. 

 

Another line of reasoning is also possible, speculating on the membrane stability under specific 

circumstances. At temperatures above 600-700 °C molten carbonates tend to decompose into 

CO2 and alkaline oxides, with the decomposition rate influenced by the exact carbonate mixture 

and partial pressure of CO2 [33-34]. This also explains to a large extent that this temperature 

domain is the upper limit for the operation of Molten Carbonate Fuel Cells where CO2 is always 

present in large concentration. In our experiments we should have a faster decomposition of 

the molten carbonates in the permeate side, since here the CO2 partial pressure is much lower 

than in the feed side. Since the conversion to oxide is partial, permeation is not eliminated but 
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only reduced. An obvious consequence of this type of analysis is that the best permeating 

membranes should be more stable in the permeate side since with high permeation rates the 

local concentration of CO2 at the membrane/sweep gas interface is expected to increase due to 

mass transfer limitations. Minor CO2 leaks across the seal would add to this effect. While 

involving considerable speculation, this aspect should be considered in order to optimize the 

membrane lifetime and performance. 

As already noticed, for the membrane used in endurance tests the initial reading was higher 

than observed for CGO13S1-1 and closer to CGO13S2-1, but decreased slightly with time. A 

few post mortem tests were performed to try to understand possible reasons for degradation. 

The membrane was studied by SEM and impedance spectroscopy after removal of the 

remaining alkaline carbonates to obtain better access to the characteristics of the ceramic 

backbone. This treatment was also applied to the CGO13S1-1 membrane. Analysis of these 

membranes by EDS, after attack with HCl and water rinsing, showed no vestige of alkaline 

carbonates (Na, since Li is not detected) within the detection limits of this technique. The 

efficacy of chemical etching can be easily understood considering the fast reaction kinetics with 

visible CO2 release/bubbling within the acid solution. 

Comparison of microstructures of a freshly prepared twin skeleton (Figure 2a), and the 

backbones of CGO13S1-1 (after permeation tests, Figure 10a) and CGO13-2 (after endurance 

tests, Figure 10b) after acid attack shows that densification and necks between grains increased 

for samples exposed to thermal treatment, with the sample used in endurance tests showing 

the most visible microstructural changes. The result is not surprising considering the previously 

reported role of alkaline carbonates as sintering aids [35] but also means that working 

temperatures and/or microstructures must be adjusted to this reality. Interestingly, long term 

endurance (up to 1000 h) of related composite membranes (same constituents but distinct 

phase composition and microstructure) at lower operating temperatures (550 °C) provided no 

sign of degradation if operating in air or carbon dioxide [36]. This suggests an upper limit for the 

operating temperature for these membranes. 

The impact of microstructural changes on the impedance of the ceramic backbone can also be 

noticed in the impedance spectra shown in Figure 11. Here we compare the skeletons of 

membranes CGO13S1-1, CGO13S1-2 and CGO13S1-3 after washing with diluted HCl acid. 

Consistently with previous comments on the analysis of impedance spectra, the high frequency 

contribution is hardly disturbed by the samples thermal history, emphasizing again the close 

relation between this arc and bulk CGO performance. The skeleton after endurance (CGO13S1-

2) shows the larger interfacial impedance, with the skeleton after impedance (CGO13S1-3) 

showing the smallest interfacial impedance. This confirms that impedance spectroscopy can be 
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used to check the condition of these membranes but some limitations should be considered. 

We are looking at the performance at low temperature (250 °C) and extrapolation to high 

temperature is only possible assuming that the activation energy for oxide-ion conduction is 

preserved up to working temperatures (≈ 600 °C), not necessarily true. 

(a) (b) 

Figure 10 - Microstructures of ceramic porous skeletons: (a) after permeation tests (CGO13S1-

1) at variable temperature; (b) after endurance tests (CGO13S1-2). The alkaline carbonates 

were removed by chemical attack with diluted HCl. Although using distinct markers, pictures 

have the same 10k magnification as in Figures 2a and 2b. 

 

Figure 11 - Impedance spectra at 250 °C in air of similar CGO porous skeletons after impedance 

(CGO13S1-3), permeation (CGO13S1-1) and endurance (CGO13S1-2).  In all cases the 

alkaline carbonates were removed by chemical attack with diluted HCl. Arrows highlight the high 

and intermediate frequency ranges. 
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We also need a physical reason for enhanced interfacial impedance when the material is 

apparently in a more advanced sintering stage as after prolonged thermal treatments. This 

seems to be against the common observation of smaller interfacial impedance with the progress 

of sintering when monitored by impedance spectroscopy [37-38]. The obvious difference is that 

the low temperature sintering mechanism in this work is assisted by liquid phase diffusion. This 

means that CGO must dissolve in the molten carbonates to precipitate elsewhere (grain and 

neck coarsening). But CGO has two distinct cations and the corresponding oxides show a 

distinct chemical behavior when in contact with molten carbonates. CeO2 is mostly stable while 

Gd2O3 tends to react [39-41]. This means that the enlarged necks and grains might differ from 

the base composition, forming a core-shell type microstructure.  

Similar situations were observed in the case of yttria stabilized zirconia specimens when 

exposed to glass melts due to selective loss of yttrium to the melt. The condition was so severe 

that large cubic zirconia grains even decomposed progressively to smaller monoclinic grains 

due to the loss of the stabilizing cation [42-43]. So, in the present case we might have a slightly 

enhanced densification but a shift in the outer grain composition and thus grain to grain 

interfacial performance. Considering the sub micrometric grain size of CGO, only combined high 

resolution microscopy and chemical analysis might confirm this hypothesis. While not proven, 

there seems to be enough ground for speculation on this. 

While the present endurance results show some degradation, in recently published data on 

membrane endurance the reported tendency was the opposite, with a slight enhancement in 

permeation flux with time for a similar time scale [44]. This was ascribed to a loss in carbonates 

due to volatilization. A decreasing active membrane thickness increases the overall flux (J1/L). 

Reported permeation fluxes were in the order of 0.12 to 0.18 cm3.min-1.cm-2 at 650 °C, not far 

distinct from those now obtained. However, the feed gas mixture had a lower CO2 content (15 

mol%) and significant amounts of oxygen (10 mol%) [44], preventing a direct comparison with 

our present results. Published microstructural details also prevent a clear comparison between 

the ceramic skeleton condition before and after tests (although clearly with sub micrometric 

grain size), but the vol% of the ceramic phase (50%) was lower than in the present work and 

the relative fraction of molten carbonates was much higher (about twice the hereby adopted). 

With distinct results obtained with membranes with distinct phase compositions and 

microstructures there seems to be room for optimization of microstructural features also with 

respect to long term behavior. 

 

5. Conclusions 
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The performance of actual composite membranes was benchmarked against prediction based 

on a standard model where the kinetics is governed by ambipolar conductivity. Experimental 

results are below expectation although within the usual order of magnitude found in similar 

experiments. Distinct experimental and performance limitations were duly highlighted using 

dedicated performance diagrams. Endurance tests performed at 650 °C for about 100 h 

revealed some degradation in performance. Both SEM and impedance spectroscopy showed 

effective microstructural changes. Altogether, moderate operating temperatures and tuned 

microstructures are desirable for enhanced membrane lifetime and performance. 
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