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Abstract 

Spent lithium ion batteries (SLIB) are potential environmental hazards and if not re-

cycled waste natural resources. We demonstrate for the first time a process to directly 

reuse Ni-Co-Mn oxides from SLIBs to prepare air electrodes based on a simple thermal 

treatment method. The effects of heating temperature and duration on the properties of 

Ni-Co-Mn oxides using scanning electron microscopy and X-ray diffraction is 

described. The Ni-Co-Mn oxide materials were found to be mainly LiNi1-x-yCoxMnyO2, 

with the α-NaFeO2-type structure (PDF file: 01-075-9200). After heat treatment at 

600oC, the Ni-Co-Mn oxides exhibited the spinel structure (PDF file: 00-048-0261). 

Electrochemical tests revealed that the Ni-Co-Mn oxides heat-treated at 600oC for 300 

minutes, exhibited remarkable bifunctional catalytic activities towards the oxygen 

evolution and oxygen reduction reactions in aqueous KOH electrolyte. The electron 

transfer number on Ni-Co-Mn oxide electrode for oxygen reduction was about 3.6. 

When these Ni-Co-Mn oxide powders were applied in an air battery, the energy 

efficiency was 75 % at a current density of 10 mA cm-2, at room temperature. 
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1. Introduction 

The amount of spent lithium ion batteries (SLIBs) is growing rapidly and according to 

the data published by Nation Bureau of Statistics of the People’s Republic of China1,  

in the first half of 2016, lithium ion battery production reached 2.98 billion units. In 

addition there is a predicted growth rate of 20.7%, due mainly to the quantity of mobile 

phones produced reaching 0.97 billion, with a growth rate of 23.3%. This amount is set 

to increase dramatically in the near future, due to the large numbers of electric 

automobiles that are likely to adopt lithium ion batteries. In 2016, the quantity of 

electric automobiles already reached 2.85 million in China, with a growth rate of  

88.7%. SLIBs are important environmental pollutants, which often contain some 

reactive materials that can explode at high temperature, such as organic solvents and 

carbon powders, and harmful heavy metal (Ni, Co, Mn, Cu, etc.) compounds that can 

pollute water and soil 2. Nonferrous metal materials are the major components in SLIBs, 

with for example, the positive electrode of a lithium ion battery containing between 5-

20 wt.% cobalt3, a percentage much higher than that of cobalt concentrates from mines4. 

In order to avoid environmental problems and to effectively recover these valuable 

nonferrous metal resources, it is necessary to improve SLIB recycling techniques 2, 5. 

Typical recycling methods for SLIBs involve lengthy and intricate procedures, some of 

which even cause secondary pollution, making the recycling cost high and restricting 

the economic drivers for SLIBs collection and recycling2, 3. Currently in China, only 

about 2% of SLIBs are recycled and most are treated by landfilling4, 6, 7. It is thus highly 

desirable to develop clean, low-cost and efficient recycling methods for SLIBs, by for 

example, attempting to directly reuse the electrode materials from SLIBs to prepare 

new batteries or some other electrochemical energy devices. 

 

Lithium ion batteries mainly consist of the positive electrodes (metal oxides powders 

coated on aluminum foil), the negative electrodes (carbon powders coated on copper 

foil), polymer binders, electrolytes, and separators. The metal oxides in positive 

electrodes could be LiCoO2, LiMn2O4, LiNi1-x-yCoxMnyO2, LiFePO4, etc., depending 

on the styles and applications of lithium ion batteries8-13. Such oxides materials can 

have one of three structure types: an ordered rock salt-type structure, a spinel-type 

structure, or an olivine-type structure10. A laboratory-scale lithium-ion battery 

recycling process was developed by Scrosati14, based on simple and environmentally 

https://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=zh&form=BDVEHC&ClientVer=BDDTV3.5.1.4320&q=%E4%BA%A7%E9%87%8F
https://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=zh&form=BDVEHC&ClientVer=BDDTV3.5.1.4320&q=%E4%BA%A7%E9%87%8F
https://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=zh&form=BDVEHC&ClientVer=BDDTV3.5.1.4320&q=%E4%BA%A7%E9%87%8F
https://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=zh&form=BDVEHC&ClientVer=BDDTV3.5.1.4320&q=%E4%BA%A7%E9%87%8F
https://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=zh&form=BDVEHC&ClientVer=BDDTV3.5.1.4320&q=%E4%BA%A7%E9%87%8F
https://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=zh&form=BDVEHC&ClientVer=BDDTV3.5.1.4320&q=%E4%BA%A7%E9%87%8F
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compatible operations, to prepare lithium cobalt oxide electrodes from recycled 

Lithium ion batteries. Ra15 recovered and renovated LiCoO2 from spent lithium ion 

batteries and proved its battery performance was quite promising. Garcia et al. showed 

that cobalt recycling from lithium ion batteries was economic and environmentally 

viable for application in supercapacitor devices16 and solid oxide fuel cell17. Liu 18, 19 

reused and treated LiCoO2 from SLIBs, using a thermal method, and showed that these 

materials exhibited excellent electrochemical activity.  

The oxides of transition metals, including Co3O4, NiO, MnOx, Fe2O3, CuO, V2O5, 

MoO3 and Y2O3 have also been extensively studied as catalysts for air electrodes 20-22. 

Notably, it has been reported that Li-doped Co3O4 spinel nanopowders exhibited good 

catalytic activity for both the oxygen reduction reaction (ORR) and the oxygen 

evolution reaction (OER), and thus may find applications in metal air batteries and 

alkaline fuel cells 23-26. Therefore, we propose a new approach to reuse metal oxides 

from SLIBs, in the preparation of bifunctional air electrodes. In this study, some spent 

Ni-Co-Mn ternary lithium ion batteries (cylindrical 18650 style) were provided by 

Tianneng Battery Group Co., Ltd (also known as TN powder, one of the largest 

electrical bike manufacturers in China) as typical samples for the recycling study. This 

paper reports the preliminary results on the electrochemical activity of such air 

electrodes and there use in a metal air battery to examine the feasibility of this approach 

for SLIBs recycling.  

 

Following the feasibility of this idea an over-riding question that will need to be 

considered is that of re-using lithium ion batteries produced by different manufacturers, 

and for different application purposes, that will have various types of metal oxides, in 

terms of crystallite structures, element compositions and different additives in 

electrodes. The lithium ion, binders, carbon materials, and electrolyte in the metal oxide 

materials recycled from SLIBs could also influence the properties of recycled metal 

oxides. 
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2. Experimental 

2.1. Ni-Co-Mn metal oxides recovery from SLIBs 

All reagents in this study were analytical grade and reagent solutions were prepared 

with deionized water (18.3 MΩ cm-2). In the recovery procedure, shown in Figure 1, 

the cylindrical SLIBs were first discharged thoroughly by a battery testing system 

(Neware, China) to prevent the risk of self-ignition and then subsequently dismantled 

manually. Once dismantled, the anodes (coatings on copper foils) and cathodes 

(coatings on aluminum foils) were manually uncurled and separated. The cathodes were 

cut into small pieces and immersed in 10 wt.% NaOH solution at 60 oC for 15 min, to 

dissolve the aluminum foil by reactions with NaOH. The black coatings remaining in 

the NaOH solutions were collected and washed with deionized water several times, 

before being dried at 105 oC, for 12 hours. Samples of the recycled cathode materials 

were heat-treated at different temperatures of 300, 600 and 900 oC for durations between 

60 to 420 minutes in a furnace, and then left to cool naturally to room temperature. 

 

Figure. 1 Illustration of treatment of spent Lithium ion batteries. 

 

2.2. Characterizations 

The cathode materials and Ni-Co-Mn oxides were characterised by X-ray fluorescence 

(XRF, PANalytical Zetium), X-ray diffraction (XRD, Haoyuan DX-27mini), 

Thermogravimetric analysis (TA, Waters SDTQ600), scanning electron microscopy 

(SEM, Hitachi TM3030), and by electrical resistivity (Rooko FT-300I).  

 

2.3 Electrode preparation and electrochemical measurements 

Electrochemical experiments were carried out with an electrochemical workstation 

(CorrTest CS310), using a three-electrode cell with 1 mol dm-3 (M) KOH electrolyte, a 

Pt wire counter electrode, and a Ag/AgCl reference electrode (+0.197 V vs. normal 

hydrogen electrode, NHE at 25 oC). All potentials are presented vs. this Ag/AgCl 

electrode, unless otherwise specified. Suspensions of Ni-Co-Mn oxides powders were 

prepared by adding 75 mg of the sample powder into 3 cm3 of 6.68 wt.% Nafion 

solution in ethanol. The suspension “ink” was prepared by uniformly dispersing the 

oxide powders by ultrasonication and shaking overnight. The working electrode was 

prepared by dropping 2.5 microlitres (μL) of suspensions on the glassy carbon rotating 
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disc electrode (geometric area 0.125 cm2) with a micropipette and drying at 60 oC for 5 

min. 

 

The ORR activities of Ni-Co-Mn oxides were evaluated using the rotating disc 

electrode and linear sweep voltammetry (LSV) in an O2-saturated 1 mol dm-3 KOH 

electrolyte, with a scan rate of 10 mV s-1, at room temperature. The OER activities of 

Ni-Co-Mn oxides were evaluated with a rotating disc electrode linear sweep 

voltammetry (LSV) in a N2 atmosphere 1 mol dm-3 KOH electrolyte at a scan rate of 

0.5 mV s-1 at 30 oC. Electrochemical measurements were performed with an 

electrochemical workstation (IviumStat. h).  

 

The number of electrons transferred during ORR was obtained using the following 

equation: 

n =
4𝐼𝑑

𝐼𝑑 +
𝐼𝑟

𝑁⁄
 

where Id, Ir, and N represent the disk current, ring current, and the current collection 

efficiency of the electrode (0.37), respectively27, 28. 

 

For the zinc-air battery testing, polarization curves were measured using a 

electrochemical workstation (IviumStat. h). The cathode ink was prepared by 

ultrasonically mixing 150 mg Ni-Co-Mn oxides that had been heated at 600oC for 300 

min, with 150 mg carbon powders (XC-72R), 9.75 μL 60wt.% polytetrafluoroethylene 

(PTFE) suspension and 5 mL of 6.67 wt% Nafion ethanol solution. The resultant 

solution was dispersed uniformly by stirring and sprayed onto the gas diffusion layer. 

A two electrode battery configuration was created by pairing Ni-Co-Mn oxides loaded 

on a carbon paper electrode (2 cm2, catalyst loading 4 mg) with a pure Zn foil (area of 

2 cm2, and thickness of 0.3 mm) in 6 mol L-1 KOH + 0.2 mol L-1 zinc acetate at room 

temperature. During batteries measurement, a pure oxygen supply was continuously 

fed to the cathode. 
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3. Results and discussion 

3.1 Properties of the recycled Ni-Co-Mn oxide materials  

XRF analysis of the cathode materials revealed that Ni, Co, and Mn were the main 

components in the cathode materials, as shown in Table. 1. A small amount of Fe and 

Ca is present from the residue of electrolytes. The weight ratio of the metallic elements 

in the cathode materials from SLIBs was Ni : Co : Mn ; 0.862: 0.137: 0.001. Compared 

to other reports, the metal content was different to the metal content in bifunctional 

oxygen electrodes29, 30. From the XRD data, shown in Figure 2(a), it is clear that the 

cathode materials from this kind of SLIBs are mainly LiNi1-x-yCoxMnyO2 (PDF file: 01-

075-9200), with the α-NaFeO2-type structure9, 31. Such materials have shown very good 

electrochemical behavior, low synthetic cost, high gravimetric and volumetric energy 

densities, commonly seen with commercial types of lithium nickel-manganese-cobalt 

oxide materials9, 10, 32.  

 

Table. 1 The metal ingredient content of the cathode materials. 

 

 

 

Figure.2 (a) XRD patterns (b) SEM image of recycled Ni-Co-Mn oxide powders from cathode of spent lithium ion 

batteries. 

 

3.2 Influence of heat-treatment 

 

Figure 3 TGA/DSC curves for the cathode materials from spent Lithium ion batteries 

 

The cathode materials from SLIBs were heat-treated from room temperature to 900oC 

using the TGA/DSC analyzer at a heating rate of 10 oC min-1 in air. Three regions of 

heat flow were observed (room temperature to 280 oC, 280 oC to 575 oC, and 575 oC to 

900 oC), as shown in Figure.3. From room temperature to 280 oC, a weight loss of 4.92 

Metal elements Contents / wt % 

Co 9.20 

Ni 57.85 

Mn 0.12 

Fe <0.01 

Ca <0.01 



7 

 

wt% was observed, with a DSC peak at 53 oC, which was due to the loss of bound water 

and organic materials in the cathode materials33. From 280 oC to 575 oC, weight loss of 

1.92 wt% was observed, which resulted from the burning of the acetylene black and the 

decomposition of the binder (PVDF). From 280 oC to 575 oC, a significant DSC peak 

at 550 oC was observed, indicating a significant phase change of Ni-Co-Mn oxides had 

occurred at high temperature. A weight loss of 1.51 wt% was observed from 600 oC to 

900 oC, as a result of he loss of lithium at high temperature and the compaction of 

powders33. 

 

XRD patterns of Ni-Co-Mn oxides prepared with various heat treatments are shown in 

Figure. 4. From the XRD data, it was clear that the pristine samples and Ni-Co-Mn 

oxides heated at 300 oC for 150 min were mainly LiNi1-x-yCoxMnyO2 (PDF file: 01-075-

9200). As shown in Figure. 3(b), there was a small peak of spinel Co3O4 at 32.45o and 

at 33.48o 19. Data indicate that Ni-Co-Mn oxides heated at 600 oC for 60 to 300 min 

(PDF file: 00-048-0261) experienced a significant phase change from an α-NaFeO2-

type structure to spinel structure, which offers excellent safety and high power 

capability owing to the 3D lattice9, 34. However, this peak of spinel Co3O4 disappeared 

when Ni-Co-Mn oxides was heated at 600 oC for longer time, due to bivalent atom 

oxidation. The peaks of Ni-Co-Mn oxides heated at 600 oC for the longer time were  

broader and less sharp than those heated at 600oC for shorter times, which to some 

extent may indicate that a longer calcination time was more effective for nano-

crystallization of the Ni-Co-Mn oxides30. It can be seen that Ni-Co-Mn oxides heated 

at 900oC for 150min was mainly LiNiO2(PDF file: 04-002-0896) with a small amount 

of LiCoO2(PDF file: 04-006-4903), which to some extent may explain why some peaks 

of ternary oxides disappeared. Amongst all samples, carbon residues were present as 

the minor phases. When the temperature reached 900 oC, the absence of carbon in the 

XRD pattern indicated that it had burned off33. 

 

Figure 4 XRD patterns of Ni-Co-Mn oxides prepared with various heated – treatments. (a) pristine samples and Ni-

Co-Mn oxides heated at 300 oC, 600 oC, and 900 oC for 150min; (b) Ni-Co-Mn oxides heated at 600 oC for various 

times. 

 

The morphology of Ni-Co-Mn oxides prepared with various heated treatments are shown in 

Figure. 5. It can be seen that there were many caked acetylene black powders, caused by the 

http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=zh&form=BDVEHC&ClientVer=BDDTV3.5.0.4311&q=%E6%9C%89%E6%84%8F%E4%B9%89%E7%9A%84
http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=zh&form=BDVEHC&ClientVer=BDDTV3.5.0.4311&q=%E6%9C%89%E6%84%8F%E4%B9%89%E7%9A%84
https://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=zh&form=BDVEHC&ClientVer=BDDTV3.5.1.4320&q=%E4%BA%8C%E4%BB%B7%E5%8E%9F%E5%AD%90
https://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=zh&form=BDVEHC&ClientVer=BDDTV3.5.1.4320&q=%E4%BA%8C%E4%BB%B7%E5%8E%9F%E5%AD%90
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residue of binders (PVDF) in pristine samples. There was less residue of caked acetylene black 

powders in Ni-Co-Mn oxides heated at higher temperature. It can be seen in Figure. 5(c) (e-f) 

that there little acetylene black powder remained in Ni-Co-Mn oxides heated at 600oC. The Ni-

Co-Mn oxides powders were caked at 900oC, as shown in Figure. 5(d).  

 

Figure.5 SEM images of Ni-Co-Mn-C compound prepared with various heated - treatments, (a) pristine, (b) heated 

at 300oC for 150min, (c) heated at 600oC for 150min, (d) heated at 900oC for 150min, (e) heated at 600oC for 300min, , 

and (f) heated at 600oC for 420min.  

 

3.3 ORR activity 

The ORR activity of Ni-Co-Mn oxides prepared by various heat-treatments using a catalyst-

coated rotating disk electrode in terms of the LSVs, is shown in Figure. 6. Figure. 6(a) shows 

the ORR activities of Ni-Co-Mn oxides heated at various temperatures for 150 min tested at the 

same conditions. It can be seen that Ni-Co-Mn oxides heated at 600oC exhibited a higher ORR 

performance than others (600oC>300oC>900oC>pristine), where the Ni-Co-Mn oxides heated 

at 600oC gave a more positive half-wave potential of -356mV and a bigger limiting current 

density of 1.2mA cm-2. Figure. 6(b) shows the ORR activities of Ni-Co-Mn oxides heated at 

600oC for various time tested at the same conditions. Amongst the four samples, Ni-Co-Mn 

oxides heated at 600oC for 300 min exhibited the higher ORR performance. The Ni-Co-Mn 

oxides heated at 600oC for 300 min exhibited a bigger limiting current density of 1.23 mA cm-

2 than that of Ni-Co-Mn oxides heated at other temperatures,. Amongst all samples, the limiting 

current density was smaller than that of Pt/C catalysts (approximately 2.2 mA) 30, which was 

mainly owing to low conductivity of the powders, shown in Table.2 and Table.3. Ovewrall, the 

results indicate that temperature and time have significant influences on the ORR activity of 

Ni-Co-Mn oxides produced from spent lithium ion batteries cathode materials.  

a 

There are two pathways for ORR mechanism: the four electron pathway and the two electron 

pathway 35. The preferred electron transfer number (n) is one of the important factors in 

evaluation of ORR catalysts, which ideally should be four28. The ORR pathways is mainly 

affected by crystallographic structure created by heated-treatment22. As shown in Figure.7, the 

electron transfer number on Ni-Co-Mn oxides heated at 600oC for 300min was approximately 

3.6, which was much more than the value of 2.7 for pristine samples produced directly from 

SLIBs. The pathways for ORR mechanism of Ni-Co-Mn oxides heated at 600oC for 300min 

was mainly the direct four electron pathway whilst the pathways for ORR mechanism of 

pristine samples was mainly the successive two electron pathway. This difference is due to the 

Ni-Co-Mn oxides heated at 600oC for 300min experiencing a significant phase change from α-

http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=zh&form=BDVEHC&ClientVer=BDDTV3.5.0.4311&q=%E6%9C%89%E6%84%8F%E4%B9%89%E7%9A%84
http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=zh&form=BDVEHC&ClientVer=BDDTV3.5.0.4311&q=%E6%9C%89%E6%84%8F%E4%B9%89%E7%9A%84
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NFeO2-type structure to a spinel structure. The four electron pathway is desirable due to its high 

energy efficiency22. 

 

Figure.6 (a)LCV curves of ORR measured at 10mV s-1 in 1 mol L -1 KOH for Ni-Co-Mn oxides heated at various 

temperatures for 150min, (b) heated at 600 oC for various time. 

 

Figure. 7 (a)The i-E curves of ring and disk electrodes on RRDE and (b) the electron transfer number of pristine 

samples and Ni-Co-C compounds heated at 600oC for 300min.  

 

3.4 OER activity 

The nickel and cobalt are considered as key catalytically active metal species for the OER36. 

Figure.8 shows anodic linear sweep voltammograms for the OER on the Ni-Co-Mn oxides 

prepared with various heat-treatments. In the potential range 300-375 mV, these Ni-Co-Mn 

oxides exhibited anodic peaks typical of spinel cobaltite electrodes, which were followed by 

the onset points of oxygen evolution30. Amongst all samples heated at 600oC, the anodic peaks 

of Ni-Co-Mn oxides were at potentials much positive that other catalysts23, 37. As shown in 

Figure. 8(a), Ni-Co-Mn oxides heated at 600oC for 150min exhibits a much better OER 

performance than other samples heated at various temperatures for 150min; with the Ni-Co-Mn 

oxides heated at 600oC for 150min giving an onset potential of 235 mV and a half-wave 

potential of 290 mV more negative than that of other samples, at 30oC, respectively. It can be 

seen from Figure. 8(b) that Ni-Co-Mn oxides heated at 600oC for 300min showed better OER 

performances than that for other Ni-Co-Mn oxides heated at 600oC for different times, where 

the Ni-Co-Mn oxides heated at 600oC for 300min can give an onset potential of 235 mV and a 

half-wave potential of 250 mV more negative than that of other samples at 30oC.  

The apparent activation energy (Ea) at a constant pressure p, a certain overpotential η and 

certain concentrations of reactants Ci were determined from plots of log(i) vs. T -1 (at, 30oC, 

40oC, 50oC, and 60oC) using the Arrhenius relationship38: 

Ea = −R [
∂lni

∂ (
1
T)

]

p; η; Ci

 

Where, R=8.314. 

 It can be seen from Table.2 and Table.3 that the apparent activation energies at η=250 mV of 

Ni-Co-Mn oxides heated at 600oC for 300min were approximately 4.34 kJ mol-1 and was much 

lower than that for Ni-Co-Mn oxides prepared with other heated–treatments. The apparent 

activation energies Ni-Co-Mn oxides was much lower that reported for other catalysts38. 
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Table. 2 Properties of Ni-Co-Mn oxides heated at various temperatures for 150min. 

 

Table. 3 Properties of Ni-Co-Mn oxides heated at 600 oC for various time. 

 

Figure.8 (a) LCV curves of OER measured at 0.5mV s-1 in 1 mol L -1 KOH for Ni-Co-Mn oxides heated at various 

temperatures for 150min, (b) heated at 600 oC for various time. 

 

3.6 Performances in zinc-air batteries 

 

Figure.9 (a)Discharge and charge polarization curves and the power density against the discharge current density 

plot of zinc-air battery using Ni-Co-Mn oxides heated at various temperatures for 150min, (b) heated at 600oC for 

various time. 

 

Figure.10 Charge-discharge-cycling curves of zinc-battery using Ni-Co-Mn oxides renovated through various heat-

treatment at 10mA cm-2. 

 

Figure.9 shows discharge and charge polarization curves of the zinc-air battery with the air 

electrode prepared with Ni-Co-Mn oxides created through various heat-treatment and zinc foil 

in 6 M KOH + 0.2 M zinc acetate. It can be seen from Figure. 9(a) that the zinc-air battery using 

Ni-Co-Mn oxides heated at 600oC for 150min performed better in both discharge curves and 

charge curves than that using Ni-Co-Mn oxides heated at various temperatures for 150min. As 

shown in Figure9(b), the zinc-air battery using Ni-Co-Mn oxides heated at 600oC for 300min 

Treatment Temperature / oC pristine 300 600 900 

 Electrical conductivity / 

mS mm-1 
0.0105 0.0119 0.1900 0.0066 

Apparent activation energies 

at η=250 mV / kJ mol-1 
49.20 38.73 8.47 42.16 

Time / min 60 120 240 300 360 420 

Electric conductivity 

/ 

mS mm-1 

0.0001 0.0003 0.1200 0.2200 0.2200 0.2300 

Apparent activation 

energies at η=250 

mV / kJ mol-1 

- - 4.86 4.34 5.37 5.58 



11 

 

performed best in both discharge curves and charge curves. The open circuit voltage of this 

zinc-air battery was approximately 1.3V, which lower than the nominal open-circuit voltage for 

a zinc-air battery (1.4V) 100mV10. It can be seen that there is nearly linear decrease of cell 

voltage with current density in the discharge curve at current densities higher than 10mA cm-2, 

indicating a transition from the activation polarization situation to the Ohmic and diffusion 

polarization state27. Figure.10 displays ten charge-discharge cycles of the zinc-air battery with 

air electrode prepared with Ni-Co-Mn oxides created through various heat-treatment onto 

carbon paper measured at 10 mA cm-2 in 6 M KOH + 0.2 M zinc acetate under a pure oxygen 

supply. Such batteries exhibited cycling stability when charged and discharged at low current 

density (10 mA cm-2) in short cycles time (120s). The zinc-air battery using Ni-Co-Mn oxides 

heated at 600oC for 300min performed best of materials tested. The charge voltage 

(approximately 1.5V) and discharge voltage (approximately 1.1V) of this zinc-air battery 

exhibited excellent cycling stability. The calculated energy efficiency of this zinc-air battery 

(approximately 75%) was better than commercial zinc-air batteries, which discharges at a 

voltage of around 1.1 V, while the charging voltage is around 1.6 V or higher10. There were no 

ionomers in the three phase boundary in the air electrode of this study, which may result in 

limited ORR activities 30. The charge voltage was about 0.1V lower than some commercial 

zinc-air batteries 10, which agrees with the results on the OER activities of the Ni-Co-Mn oxides. 
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4. Conclusions 

For the first time a method to directly reuse Ni-Co-Mn oxides from spent lithium ion batteries 

(SLIBs) to prepare air electrodes is reported. Heat-treatment at 600oC could change the Ni-Co-

Mn oxides from an α-NaFeO2-type structure to a spinel structure. The recycled Ni-Co-Mn 

oxides heated at 600oC for 300min exhibited the best electrochemical activity than samples 

with different heat-treatment parameters. The Ni-Co-Mn oxides showed a direct four electron 

pathway for ORR. The calculated energy efficiency of this zinc-air battery was approximately 

75%, and better than commercial zinc-air batteries, indicating their promising applications. 

Compared with traditional SLIBs recycling procedures, the recycling process in this study is 

simple with prospective environmental and economic benefits. This study might also initiate 

topics on inexpensive air electrodes prepared with recycled materials from spent batteries. 

However in this study, we achieved relatively low current densities, due to lack of ionomers in 

the electrode three phase boundary. Key performance indicaters (KPI) of air electrodes such as 

stability and power density performance will be investigated with Ni-Co oxides recycled from 

SLIBs in future works. Meanwhile, the influences of Ni:Co:Mn ratios will be studied regarding 

their electrochemical properties. In this study, only Ni-Co-Mn oxide material form SLIBs, as 

an example, was investigated for direct reuse in new electrochemical devices. It is also 

important to investigate all types of metal oxides from SLIBs, for example directly reusing 

LiCoO2, LiMn2O4, and LiFePO4 materials from SLIBs to prepare various suitable 

electrochemical devices, such as air batteries, fuel cells, and electrolysers. 
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Figure. 1 Illustration of different treatments of spent Lithium ion batteries. 

Figure.2 (a) XRD patterns (b) SEM image of recycled Ni-Co-Mn oxide powders from cathode of 

spent lithium ion batteries. 

Figure 3 TGA/DSC curves for the cathode materials from spent Lithium ion batteries 

Figure 4 XRD patterns of Ni-Co-Mn oxides prepared with various heated – treatments. (a) pristine 

samples and Ni-Co-Mn oxides heated at 300 oC, 600 oC, and 900 oC for 150min; (b) Ni-Co-Mn 

oxides heated at 600 oC for various times. 

Figure.5 SEM images of Ni-Co-Mn-C compound prepared with various heated - treatments, (a) 

pristine, (b) heated at 300oC for 150min, (c) heated at 600oC for 150min, (d) heated at 900oC for 

150min, (e) heated at 600oC for 300min, , and (f) heated at 600oC for 420min. 

Figure.6 (a)LCV curves of ORR measured at 10mV s-1 in 1 mol L-1 KOH for Ni-Co-Mn oxides 

heated at various temperatures for 150min, (b) heated at 600 oC for various time. 

Figure. 7 (a)The i-E curves of ring and disk electrodes on RRDE and (b) the electron transfer 

number of pristine samples and Ni-Co-C compounds heated at 600oC for 300min.  

Figure.8 (a) LCV curves of OER measured at 0.5mV s-1 in 1 mol L-1 KOH for Ni-Co-Mn oxides 

heated at various temperatures for 150min, (b) heated at 600 oC for various time. 

Figure.9 (a)Discharge and charge polarization curves and the power density against the discharge 

current density plot of zinc-air battery using Ni-Co-Mn oxides heated at various temperatures for 

150min, (b) heated at 600oC for various time. 

Figure.10 Charge-discharge-cycling curves of zinc-battery using Ni-Co-Mn oxides renovated 

through various heat-treatment at 10mA cm-2. 

 

Table. 1 The metal ingredient content of the cathode materials. 

Table. 2 Properties of Ni-Co-Mn oxides heated at various temperatures for 150min. 

Table. 3 Properties of Ni-Co-Mn oxides heated at 600 oC for various time. 
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Figure. 1 Illustration of different treatments of spent Lithium ion batteries. 

 

 

Figure.2 (a) XRD patterns (b) SEM image of recycled Ni-Co-Mn oxide powders from cathode of 

spent lithium ion batteries. 
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Figure 3 TGA/DSC curves for the cathode materials from spent Lithium ion batteries 
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Figure 4 XRD patterns of Ni-Co-Mn oxides prepared with various heated – treatments. (a) pristine 

samples and Ni-Co-Mn oxides heated at 300 oC, 600 oC, and 900 oC for 150min; (b) Ni-Co-Mn 

oxides heated at 600 oC for various times. 
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                (a)                                        (b) 

      

                (c)                                        (d) 

      

                (e)                                        (f) 

Figure.5 SEM images of Ni-Co-Mn-C compound prepared with various heated - treatments, (a) 

pristine, (b) heated at 300oC for 150min, (c) heated at 600oC for 150min, (d) heated at 900oC for 

150min, (e) heated at 600oC for 300min, , and (f) heated at 600oC for 420min. 
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Figure.6 (a)LCV curves of ORR measured at 10mV s-1 in 1 mol L-1 KOH for Ni-Co-Mn oxides 

heated at various temperatures for 150min, (b) heated at 600 oC for various time. 
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Figure. 7 (a)The i-E curves of ring and disk electrodes on RRDE and (b) the electron transfer 

number of pristine samples and Ni-Co-C compounds heated at 600oC for 300min.  
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Figure.8 (a) LCV curves of OER measured at 0.5mV s-1 in 1 mol L-1 KOH for Ni-Co-Mn oxides 

heated at various temperatures for 150min, (b) heated at 600 oC for various time. 
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Figure.9 (a) Discharge and charge polarization curves and the power density against the discharge 

current density plot of zinc-air battery using Ni-Co-Mn oxides heated at various temperatures for 

150min, (b) heated at 600oC for various time. 
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Figure.10 Charge-discharge-cycling curves at 10mA cm-2 of zinc-battery using Ni-Co-Mn oxides 

renovated through various heat-treatment. 

 

 

Table. 1 The metal ingredient content of the cathode materials. 

 

 

Table. 2 Properties of Ni-Co-Mn oxides heated at various temperatures for 150min. 

Metal elements Contents / wt % 

Co 9.20 

Ni 57.85 

Mn 0.12 

Fe <0.01 

Ca <0.01 

Treatment Temperature / oC pristine 300 600 900 

 Electrical conductivity / 

mS mm-1 
0.0105 0.0119 0.1900 0.0066 

Apparent activation energies 

at η=250 mV / kJ mol-1 
49.20 38.73 8.47 42.16 
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Table. 3 Properties of Ni-Co-Mn oxides heated at 600 oC for various time. 

 

 

 

 

 

Time / min 60 120 240 300 360 420 

Electric conductivity / 

mS mm-1 
0.0001 0.0003 0.1200 0.2200 0.2200 0.2300 

Apparent activation 

energies at η=250 mV 

/ kJ mol-1 

- - 4.86 4.34 5.37 5.58 


