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Abstract

Before a first-in-man trial is conducted, preclinical studies are performed in animals to
help characterise the safety profile of the new medicine. We propose a robust Bayesian
hierarchical model to synthesise animal and human toxicity data, using scaling factors
to translate doses administered to different animal species onto an equivalent human
scale. After scaling doses, the parameters of dose-toxicity models intrinsic to different
animal species can be interpreted on a common scale. A prior distribution is specified
for each translation factor to capture uncertainty about differences between toxicity of
the drug in animals and humans. Information from animals can then be leveraged to
learn about the relationship between dose and risk of toxicity in a new phase I trial in
humans. The model allows human dose-toxicity parameters to be exchangeable with
the study-specific parameters of animal species studied so far or non-exchangeable
with any of them. This leads to robust inferences, enabling the model to give greatest
weight to the animal data with parameters most consistent with human parameters, or
discount all animal data in the case of non-exchangeability of parameters. The proposed
model is illustrated using a case study and simulations. Numerical results suggest that
our proposal improves the precision of estimates of the toxicity rates when animal and
human data are consistent, while it discounts animal data in cases of inconsistency.
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1 Introduction

There has been much recent interest in methods leveraging historical information for the
design and interpretation of new clinical trials1–5. Information may be available from
clinical trials, epidemiological studies, medical research or routine clinical practice. For
example, patients randomised to standard of care or placebo in historical trials can be used
to augment6–8 or, in exceptional circumstances, substitute entirely5 for the control arm
of a new trial, thus enabling more ethical or smaller studies, or studies which learn more
about the novel therapy. Methods for leveraging historical information have applications to
trials in small or difficult to study populations, for example, paediatric trials9 or studies of
antibiotics for drug resistant pathogens10. In the context of early phase trials, Takeda and
Morita11 incorporate data from a completed phase I trial into a subsequent dose-escalation
study performed in a different patient population. Cunanan and Koopmeiners12 discussed
possibilities of combining information across patient populations for a more accurate
characterisation of the toxicity profile of a new compound in oncology.

When leveraging historical data, it is always possible that a conflict will emerge between
the historical and the new trial data. In view of this, several approaches have been developed
which downweight the historical data either to a degree that is fixed ahead of time or
determined dynamically based on the extent of the observed prior-data conflict. Power
priors13 with a fixed exponent are examples of ‘static priors’1 while power priors with
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H Zheng et al. 3

random exponents14, commensurate priors15,16, and meta-analytic analyses based on
Bayesian hierarchical random-effects models2,17,18 are examples of dynamic approaches.

This manuscript proposes a meta-analytic approach for leveraging animal data from
preclinical studies in a phase I oncology trial which proceeds according to a Bayesian
model-based design. So far numerous Bayesian procedures, based on one- or two-parameter
models for the dose-toxicity relationship, have been proposed to use all accumulated data for
informed decision making in phase I dose-escalation trials. Examples include the continual
reassessment method19,20, procedures implementing escalation with overdose control21,
and Bayesian decision theoretic approaches which make interim dose recommendations to
maximise a gain function22. These designs have superior operating characteristics to the
algorithmic 3+3 design23, correctly identifying the true maximum tolerated dose (MTD)
with higher probability and allocating a higher proportion of patients to this dose24. Whilst
a one-parameter model may provide an adequate local approximation to the dose-toxicity
relationship, when linking dose-toxicity relationships in animals and humans we will find
it helpful to have a more complete description of how risk varies with dose, and so adopt a
two-parameter Bayesian logistic regression model (BLRM)25,26.

As far as we are aware, little has been written on quantitative methods for augmenting
phase I clinical trials with animal data. Instead, attention has focused on using preclinical
data to inform the choice of a safe starting dose for a phase I first-in-man trial27,28. A
challenge one faces when synthesising data across species is that safe doses associated
with an acceptable risk of toxicity in humans and different animal species may cover very
different dosing intervals. To overcome this challenge, we will draw on techniques such as
allometric scaling, to transform an animal dose onto an equivalent human scale, and robust
meta-analytic combined analyses18, so that we can rapidly discount information derived
from preclinical studies in the event of a conflict between this and the observed human data.

The remainder of the paper is structured as follows. In Section 2, we propose a Bayesian
meta-analytic model to borrow information from one or more animal species to humans. In
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Section 3, we present a case study illustrating how the proposed hierarchical model can be
used to analyse animal and human data at a single analysis. In Section 4, we use examples to
explore how the model can be used to leverage animal data for interim decision making in a
dose-escalation trial and describe the results of a simulation study evaluating trial operating
characteristics in Section 5. Particular attention is given to evaluating the model’s ability to
react to a conflict between the animal data and accruing human data. We conclude in Section
6 with a discussion of possible extensions of the proposed methodology.

2 Incorporating preclinical animal data into a phase I first-in-man trial

Neuenschwander et al.29 propose a Bayesian hierarchical model to augment a new phase
I clinical trial with data from historical phase I studies, assuming that in each trial the
relationship between dose and risk of toxicity follows a two-parameter logistic model. We
describe below how this model can be extended to accommodate the case that existing data
are observations from preclinical studies performed in one or more animal species.

Suppose that M preclinical studies have been performed in K animal species, with K ≤
M , and let S = {S1, . . . , SK} contain labels for the K species studied so far. Furthermore,
we assume that a single animal speciesAi ∈ S was investigated in study i, for i = 1, . . . ,M .
Let Yi = (Yi1, . . . , Yini

) denote the vector listing the binary dose-limiting toxicity (DLT)
outcomes (DLT or no DLT) of the ni animals treated in study i. Finally, we suppose that
the Ji doses contained in the set Di = {di1, . . . , diJi ; dit1 < dit2 for 1 ≤ t1 < t2 ≤ Ji} were
evaluated in study i. Letting dij denote the jth dose for evaluation in study i and indexing
dose by the subscript j, we suppose that rij out of the nij animals that received dose dij
experienced a DLT, and model study i data as:

rij|pij, nij ∼ Binomial(pij, nij), for j = 1, . . . , Ji

logit(pij) = θ1i + exp(θ2i) log(δAi
dij/dRef)

(1)

where pij denotes the DLT risk on dose dij and dRef is a reference dose invariant across
studies defined below. We expect the dose-toxicity relationships of different species to
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be more similar in terms of their slopes than locations30, as shown in Supplementary
Figure S1. With this in mind, for k = 1, . . . , K, the term δSk

in Model (1) attempts to
translate the doses administered to species Sk onto a common equivalent human dosing
scale. Under this parameterisation, the intercept of the dose-toxicity model in study i is
θ1i + exp(θ2i) log(δAi

), and therefore depends upon the animal species studied, whereas
the slope is exp(θ2i), and does not depend on the animal species. After translation, similar
intervals of values should characterise acceptably safe doses in each animal species and
humans. Therefore, θ1i and θ2i in (1) can be thought of, in an approximate sense, as the
parameters that would have applied in study i had humans been studied rather than animal
species Ai. The translation factor δSk

reflects the relative potency of a compound in species
Sk and humans; that is, if δSk

> 1 (0 < δSk
< 1), the same dose of a drug has a higher

(lower) DLT risk in species Sk than in humans. A special case is δSk
= 1, which implies a

drug has a similar potency in species Sk and humans.

Allometric scaling31,32 is a technique used to transform an animal dose into a human
equivalent dose by adjusting for differences in size33. Specification of the translation
factors in (1) can be informed by allometric scaling, assuming size-related differences in
drug metabolism and pharmacokinetics explain differences in DLT risk between animals
and humans given the same dose. In current practice, the translation factor is usually
treated as a fixed constant. For example, to inform the selection of initial doses in human
healthy volunteers, the FDA27 advocates converting a no observed adverse event level in
animals based on a body surface area correction factor with an allometric exponent of 0.67.
However, there will usually be some uncertainty about the precise nature and extent of
differences between humans and animals. To capture this uncertainty, we propose treating
the translation factors, the δSk

’s, as random variables, which tends to reduce the amount
borrowed from the animal data but also increases the robustness of our borrowing of
information across species. We propose placing a log-normal prior on each δSk

. Table 1
lists log-normal priors specified using information from the FDA draft guideline Estimating
the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult
Healthy Volunteers27; details on the derivation of these priors can be found in Appendix A.
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Table 1. Log-normal priors for species-specific translation factors, δAi ∼ LN(λ, γ2), specified using body surface
area (BSA) and body weight (BW) data documented in the FDA draft guidelines (FDA, 2005).

Species
BW (kg)

BSA (m2)
HED in mg/kg HED in mg/m2

Reference Working range λ γ λ γ

Mouse 0.02 (0.011, 0.034) 0.007 -2.562 0.298 1.050 0.283
Hamster 0.08 (0.047, 0.157) 0.016 -2.002 0.302 1.609 0.287
Rat 0.15 (0.080, 0.270) 0.025 -1.820 0.323 1.792 0.309
Ferret 0.30 (0.160, 0.540) 0.043 -1.669 0.323 1.943 0.309
Guinea pig 0.40 (0.208, 0.700) 0.050 -1.532 0.315 2.079 0.301
Rabbit 1.80 (0.900, 3.000) 0.150 -1.127 0.290 2.485 0.274
Dog 10 (5, 17) 0.500 -0.616 0.301 2.996 0.286
Primates:

Monkeys 3 (1.400, 4.900) 0.250 -1.127 0.273 2.485 0.256
Marmoset 0.35 (0.140, 0.720) 0.060 -1.848 0.401 1.764 0.389
Squirrel monkey 0.60 (0.290, 0.970) 0.090 -1.715 0.269 1.897 0.252
Baboon 12 (7, 23) 0.600 -0.616 0.306 2.996 0.291

Micro-pig 20 (10, 33) 0.740 -0.315 0.284 3.297 0.268
Mini-pig 40 (25, 64) 1.140 -0.054 0.258 3.558 0.240

Model (1) assumes that for each k, translation factor δSk
applies across all studies performed

in species Sk since δSk
is intended to capture intrinsic differences between species Sk and

humans. We may consider refining this assumption if the different studies performed in
species Sk focused on distinct subgroups, e.g., mature versus juvenile animals.

Now let i? index the phase I first-in-man trial which will evaluate doses in the set
Di? = {di?1, . . . , di?Ji?}. For completeness, we refer to humans as species H and define
the label Ai? = H, denoting that humans will be studied in the new trial. Furthermore, let
θi? = (θ1i? , θ2i?) denote the model parameters that will underpin the new trial. We model
data from study i? as:

ri?j|pi?j, ni?j ∼ Binomial(pi?j, ni?j), for j = 1, . . . , Ji?

logit(pi?j) = θ1i? + exp(θ2i?) log(di?j/dRef),
(2)

where we stipulate δAi?
= 1 since human doses are already expressed on the common human

dosing scale, and dRef ∈ Di? is the same reference dose specified in (1).

Recall that if translation factors in (1) are appropriately specified, study-specific
parameters will be on a common human dosing scale and there will be similarities between
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the study-specific parameter vectors. We then stipulate

θi|µAi
,Ψ ∼ BVN(µAi

,Ψ) with Ai ∈ {S1, . . . , SK}, (3)

and for each Sk, k = 1, . . . , K,

µSk
=

(
µ1Sk

µ2Sk

)
and Ψ =

(
τ 21 ρτ1τ2

ρτ1τ2 τ 22

)
.

Variances in Ψ represent between-trial heterogeneity within an animal species. For
increased borrowing of information between different animal species, we further assume
the population means µS1 , . . . ,µSK

are exchangeable. A bivariate normal ‘supra-species’
random-effects distribution is stipulated as follows. For each Sk, k = 1, . . . , K,

µSk
|m,Σ ∼ BVN(m,Σ), (4)

with

m =

(
m1

m2

)
and Σ =

(
σ2
1 κσ1σ2

κσ1σ2 σ2
2

)
.

The random-effects distribution in (4) accounts for between-species differences in average
dose-toxicity model parameters. We note such differences may arise due to misspecification
of one or more translation factors δSk

; for example, if there are size-dependent and
size-independent differences between an animal species and humans, the latter may not be
completely captured by δSk

, but can be addressed by variances in Σ.

The Bayesian hierarchical model for the preclinical data is completed by specifying prior
distributions for the hyperparameters, where we implement the model setting

m1 ∼ N(v1, s
2
1), m2 ∼ N(v2, s

2
2),

τ1 ∼ HN(z1), τ2 ∼ HN(z2), ρ ∼ U(−1, 1),

σ1 ∼ HN(c1), σ2 ∼ HN(c2), κ ∼ U(−1, 1).

(5)
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Here, HN(z) denotes a half-normal distribution formed by truncating a N(0, z2)

distribution to cover the interval (0,∞). Although it will not be considered here, one could
allow the between-study variances in Ψ to vary across species.

We have yet to say how we relate the human study-specific parameter vector θi? to the
animal study-specific parameters θ1, . . . ,θM . We require robust borrowing of information
across species, meaning that we should downweight information from species with dose-
toxicity model parameters dissimilar to those in humans, and discount all preclinical data if
no animal species appears similar to humans. Then, for each k = 1, . . . , K, we stipulate

θi?|µSk
,Ψ ∼ BVN(µSk

,Ψ) with prior probability wSk
,

so that wSk
represents the prior plausibility that θi? is exchangeable with the study-

specific parameters in species Sk. Note that we define exchangeability at the level of the
study-specific model parameters since θi? is a study-specific, rather than population mean,
parameter. For robust inferences about θi? , we stipulate

θi? ∼ BVN(m0, R0) with prior probability wR,

where wR = 1−
∑K

k=1wSk
is a prior non-exchangeability weight and BVN(m0, R0) is a

weakly informative prior distribution. In practice, specification of wS1 , . . . , wSK
will require

the input of subject-matter experts such as translational scientists or pharmacologists.
The robust hierarchical model is fitted using Markov chain Monte Carlo, and thus can be
implemented with software such as OpenBUGS34.

We note that adding a ‘supra-species’ level to the Bayesian hierarchical model in
equation (4) allows for increased, but robust, borrowing of information across species. When
all the θis are similar to both each other and θi? , we can borrow strength across the related
animal species to estimate the animal population mean parameters with greater precision,
and thus gain additional precision for estimating θi? . Such borrowing is robust in the sense
that if we place weakly informative priors on elements of Σ and find that, say, study-specific

Prepared using sagej.cls



H Zheng et al. 9

Table 2. Ocular toxicities and general DLTs due to all cause observed during a phase I first-in-man trial of AUY922.
Estimated risks are naive maximum likelihood estimates based on the pooled human data alone.

Dose (mg/m2)

di?1 di?2 di?3 di?4 di?5 di?6 di?7 di?8 di?9

2 4 8 16 22 28 40 54 70

Number of patients 3 3 4 6 11 8 16 18 24
Number of ocular AEs 0 0 0 0 0 0 0 0 2

Ocular AE risk 0.001 0.002 0.004 0.008 0.012 0.015 0.023 0.033 0.045

parameters of only one animal species are similar to θi? , posterior distributions for elements
of Σ will place larger probability mass on large between-species variances. This leads to
less borrowing across animal species to estimate the µSk

s, and we tend to borrow from the
most relevant animal species to learn about θi? .

3 Illustrative example

In this section, we apply the proposed Bayesian hierarchical model to a retrospective
example, synthesising preclinical and clinical ocular toxicity data on AUY922, an
experimental compound intended to treat cancer35,36.

3.1 Animal data

The safety profile of AUY922 was evaluated in several preclinical studies prior to its
evaluation in humans. For this compound, ocular adverse events (AEs) were thought to
potentially occur in humans. Therefore, the risk of this type of event was investigated in
four studies performed in a total of 152 Wistar and Brown Norway rats35, which we will
hereafter refer to as ‘rats’. The ocular AE data are displayed in Figure 1. The first two
datasets are outcomes from Studies 1 and 2 reported in Roman et al.35. Since Study 1
involved male and female rats but Study 2 involved only males, we use only the male rat
data from Study 1. It was not possible to extract the ocular AE data of Studies 3 and 4
from the same preclinical paper35. Therefore, Figure 1 shows simulated, but plausible, data
for these studies instead (slight modifications to the doses for these studies have also been
made so that we will have data on various doses to fit the logistic model for rats). Data
from the phase I study of AUY922 were published in Sessa et al.36 and are listed in Table
2. During the phase I trial, doses from the set Di? = {2, 4, 8, 16, 22, 28, 40, 54, 70} mg/m2
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were available for administration. The dose-escalation study was performed according to
a BLRM-guided procedure monitoring DLTs, defined as the occurrence of any clinically
relevant drug-related AE or abnormal lab value. Ocular AEs were also reported separately
in the phase I clinical trial paper36.

[Insert Figure 1]

In Section 3.2, we describe what would have been the prior predictive distributions for
the risk of an ocular AE in the phase I trial given the rat data. In this example, since animal
data were available from one species, we implement the robust Bayesian hierarchical model
from Section 2 setting K = 1. We note that our model can accommodate the special case
that K = 1 if weakly informative priors are adopted for diagonal elements of Σ. In Section
3.3, we refit the hierarchical model to incorporate both the rat and human data collected
during the AUY922 phase I trial, and derive posterior distributions for the risk of an ocular
AE in the human trial.

3.2 Prior predictive distributions for the risk of ocular toxicity in a phase I trial

We use the four rat datasets to fit the hierarchical model proposed in Section 2, setting
dRef = 28 mg/m2 and using the following priors. We set m1 ∼ N(−1.099, 1.982) which
implies a 95% prior credible interval for the risk of toxicity at 28 mg/m2 is 0.007 to
0.942 and prior median 0.250. Furthermore, we set m2 ∼ N(0, 0.992) to accommodate
flat to very steep dose-toxicity curves. These are weakly informative priors that place
probability mass on plausible values of the model parameters37. A similar approach is
used to specify the parameters of the BVN(m0, R0) non-exchangeability prior. For the
variance parameters, we set τ1 ∼ HN(0.5) assuming substantial variability between the
study-specific θi1s, and τ2 ∼ HN(0.25), assuming a smaller degree of variability between
the slopes of study-specific dose-toxicity curves. Larger values are specified for the
half-normal priors placed on σ1 and σ2 to preclude giving definitive information. More
details are given in Appendix B on the prior specification of hyperparameters. Finally, we
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Table 3. Summaries of marginal predictive priors derived from the rat data setting wR = 0.5. Also reported are the
parameters of the Beta(a, b) approximates used for ESS calculations.

Dose (mg/m2)

di?1 di?2 di?3 di?4 di?5 di?6 di?7 di?8 di?9 di?10

2 4 8 16 22 28 40 54 70 140

Prior means 0.062 0.080 0.107 0.150 0.179 0.209 0.259 0.300 0.335 0.424
Prior std dev. 0.148 0.166 0.189 0.219 0.237 0.254 0.284 0.305 0.317 0.330

ESS 1.5 1.5 1.6 1.6 1.6 1.5 1.3 1.2 1.2 1.2
a 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.4 0.5
b 1.6 1.5 1.5 1.4 1.3 1.2 1.0 0.9 0.8 0.7

stipulate δRat ∼ LN(1.792, 0.3092).

[Insert Figure 2]

Figure 2A summarises predictive priors of the risk of an ocular AE in humans in the new
phase I trial. Priors are derived at each human dose under a range of non-exchangeability
weights. Each predictive prior is summarised by its median and 95% credible interval.
Setting wR = 0, prior predictive distributions are derived assuming full exchangeability
between human and animal study-specific parameters. Increasing wR to 0.5 suggests a
large degree of prior skepticism about the plausibility of exchangeability. Setting wR = 1

means we discard the rat data entirely so that the prior for θi? is the weakly informative
operational prior. Figure 2B further summarises priors derived setting wR = 0.5 by three
interval probabilities. We characterise the predictive prior for each dose by the probability:
(i) of underdosing, which is said to occur if the DLT risk is less than 0.16; (ii) that the
DLT risk lies in the target interval [0.16, 0.33); and (iii) of overdosing, which is said to
occur if the DLT risk lies in the interval [0.33, 1]26. Figure 2C presents the predictive prior
probability densities of DLT risks on two low doses, 4 and 8 mg/m2, when wR = 0.5. Such
visualisations may be useful for teams to consider when selecting the starting dose for a
phase I trial.

To calculate the effective sample size (ESS)38 of the predictive prior for the risk of an
ocular AE on each human dose in the phase I trial, we approximate each prior by a Beta(a,
b) distribution with parameters chosen to match the first two moments of the prior. The
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ESS is then found as (a+ b). This follows because a Beta(a, b) prior can be thought of as
representing opinion on the risk of an ocular AE after a out of (a+ b) patients allocated
to a dose experience a toxicity, assuming nothing was known about the risk a priori39.
After approximation, ESSs of predictive priors derived under wR = 0.5 are listed in Table
3. The information represented by each prior is equivalent to that would be obtained from
approximately 1.2 – 1.6 human patients, and so it is clear that there is heavy discounting of
the preclinical data from 152 rats.

3.3 Synthesis of rat and human data on the termination of the phase I trial

We now apply the proposed methodology to synthesise ocular AE data from both rats and
the data from humans available on termination of the phase I trial. Posterior distributions
for the risk of an ocular AE on each human dose derived under models with different
non-exchangeability weights are summarised in Figure 2D. Figures 2E-F summarise the
posteriors derived setting wR = 0.5.

With 1− wR = 0.5, the posterior probability of exchangeability between rat and human
study-specific parameters increases from the prior value of 0.5 to 0.82, suggesting that rat
and human ocular AE data are more consistent than expected. Posterior median probabilities
of an ocular AE in the human phase I study at doses 70 and 140 mg/m2 are 0.048 (95%
CI: [0.014, 0.118]) and 0.096 (95% CI: [0.025, 0.329]), respectively. These are slightly
more cautious and narrower than the posterior medians and 95% CIs that would have been
obtained had we discarded the rat data entirely from our inferences. Setting wR = 1, the
posterior median probabilities of an ocular AE (95% CIs) at 70 mg/m2 and 140 mg/m2

are 0.045 [0.010, 0.137] and 0.087 [0.015, 0.558], respectively. The marginal posterior
distributions of the risk of an ocular AE in the human trial at the two highest doses when
wR = 0.5 are shown in Figure 2F.

4 Leveraging animal data in a phase I dose-escalation trial

In this section, we illustrate how our Bayesian hierarchical model can be used to leverage
animal data for decision making in a hypothetical phase I dose-escalation trial.
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4.1 Trial design and determination of a safe starting dose

Suppose that a phase I dose-escalation study, labelled i?, is to be performed to
estimate the MTD in humans, defined here as the dose associated with a risk of a
DLT (of any type) of 25%. During the phase I trial, doses (in mg/m2) from the set
Di? = {2, 4, 8, 16, 22, 28, 40, 54, 70} will be available for administration. We suppose that
at the time of designing the dose-escalation study, three studies have been conducted
in dogs. Simulated data from these hypothetical studies are presented in Figure S2 in
the Web-based Supplementary Materials. In our notation, these data are represented by
Y1,Y2,Y3. We analyse these data by fitting the Bayesian hierarchical model with priors
setting τ1 ∼ HN(0.25) and τ2 ∼ HN(0.125), to assume moderate to small between-study
variabilities for θ1i and θ2i, respectively, and δDog ∼ LN(2.996, 0.2862). Priors for other
parameters remain unchanged from Section 3.2.

[Insert Figure 3]

Figure 3A summarises the prior predictive distributions for the DLT risk in the new human
study i? on each dose in Di? . Setting wR = 0.3, the median of the predictive prior for the
DLT risk on dose 22 mg/m2 is 0.252, with 95% CI [0.011, 0.800]. Figure 3B summarises
these prior predictive distributions by presenting probabilities that the DLT risk lies in each
of the three intervals (underdosing; target; and overdosing) defined in Section 3.2. We see
that doses up to and including 16 mg/m2 are associated with a prior predictive probability
of overdosing of less than 25%. All hypothetical phase I dose-escalation studies start by
allocating the first cohort 4 mg/m2, with the possibility to de-escalate to 2 mg/m2. On the
basis of the dog data and our prior beliefs about their relevance with human data, 4 mg/m2

appears very safe with P(pi?2 < 0.1 | Y1,Y2,Y3) = 0.790.

4.2 Hypothetical dose-escalation studies

Suppose that patients enter the phase I trial in cohorts of size three and that all patients within
a cohort receive the same dose. After each cohort has been treated and observed, an interim
analysis is performed, at which point all dog and human data are analysed to recommend a
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dose for the next cohort. Cohort h = 1 receives 4 mg/m2. Letting Y (h−1)
i? denote the vector of

outcomes from the first (h− 1) human cohorts, the escalation rule recommends that cohort
h = 2, . . . receives dose

d
(h)
sel = max{di?j ∈ Di? : P(pi?j ≥ 0.33|Y1,Y2,Y3,Y

(h−1)
i? ) ≤ 0.25}. (6)

Dose recommendations are also subject to the additional constraint that escalation is
restricted to a maximum two-fold increase in the current dose. For the dosing set considered
here, this constraint implies that if the previous cohort received a dose di?j ≤ 16 mg/m2, the
next cohort can escalate by at most one dose level so long as the overdose control criterion
is satisfied.

[Insert Figure 4]

Figure 4 summarises the progress of eight hypothetical phase I trials run with simulated
data, which are analysed using the proposed hierarchical model setting wR = 0.3.
Figure 4A traces dose-escalation recommendations while Figure 4B records how the
posterior probability of exchangeability between the new human and dog study-specific
parameters evolves as the study progresses. For reasons of parsimony, we monitor each
simulated trial until any dose is recommended for a third time.

In examples 1 to 5, data were simulated so as to be largely consistent with the prior
opinion illustrated in Figure 4A (when wR = 0.3) that the DLT risk in humans given 22
mg/m2 in the new trial will be close to 25%, while we are confident that the risks of toxicity
on 2, 4 and 8 mg/m2 will all be well below 33%. This consistency leads to higher posterior
exchangeability probabilities, as shown in Figure 4B. In contrast, examples 6 to 8 represent
cases where there is a conflict between the human data and what was anticipated based on
the analysis of the dog data.
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In examples 6 and 7, the simulated human data appear consistent with a higher DLT risk
at lower doses than what was predicted a priori. In example 6, one out of three patients in
the second cohort treated with 8 mg/m2 experienced a DLT; we escalated to administer 16
mg/m2 to the third cohort and all three patients experienced a DLT. Preclinical data from
dog studies were then discounted, with a drop in the posterior probability of exchangeability
from 0.810 to 0.358. A similar response to early observations of DLTs on low doses was
seen in example 7.

In example 8, the first DLT was observed only after dosing reached 54 mg/m2, so that the
DLT risk at high doses appeared to be lower than what was predicted on the basis of the dog
data. This prior-data conflict resulted in the posterior probability of exchangeability shifting
from its prior value of 0.7 to 0.266 once data were available from the first six cohorts.
Since the predictive prior derived from the dog data suggested that the human MTD in the
new study would likely lie in the neighbourhood of 22 mg/m2, it is not surprising that dose
escalation slowed down as we approached this dosing range. After completion of the forth
cohort, posterior probabilities of overdose at doses 28 and 40 mg/m2 were 0.085 and 0.293,
respectively. Thus, despite the fact that no human DLTs had been observed, the procedure
repeated administration of 28 mg/m2 to the fifth cohort.

5 Simulation study

We performed a simulation study to evaluate the operating characteristics of a phase I dose-
escalation procedure. We simulate trials which proceed sequentially, recruiting patients in
cohorts of size three. Trials proceed using the Bayesian hierarchical model of Section 2
to leverage the dog data illustrated in Figure S1. The preclinical data are held fixed in the
analysis of all simulated trials. At each analysis, we fit the Bayesian hierarchical model with
four choices for wR:

• Model A: Full exchangeability between the θis and θi? (wR = 0);
• Model B: High level of prior confidence in the exchangeability assumption (wR = 0.3);
• Model C: Prior ambivalence about the exchangeability assumption (wR = 0.5);
• Model D: No borrowing of information from the dog data (wR = 1).
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Table 4. Simulation scenarios for the true probability of DLT in humans and MAP priors with median and 95%
credible intervals derived from the dog data setting wR = 0. The figure in bold indicates the target dose closest to
the true MTD.

Dose (mg/m2)

di?1 di?2 di?3 di?4 di?5 di?6 di?7 di?8 di?9

2 4 8 16 22 28 40 54 70

Probability of DLT in humans
Scenario 1 0.08 0.16 0.25 0.35 0.41 0.45 0.52 0.58 0.63
Scenario 2 0.01 0.04 0.11 0.25 0.35 0.44 0.55 0.65 0.73
Scenario 3 0.03 0.05 0.10 0.16 0.25 0.32 0.40 0.48 0.55
Scenario 4 0.001 0.005 0.03 0.10 0.16 0.25 0.38 0.50 0.60
Scenario 5 0.01 0.02 0.05 0.08 0.11 0.14 0.25 0.37 0.47
Scenario 6 0.003 0.006 0.01 0.02 0.05 0.08 0.15 0.25 0.37
Scenario 7 0.25 0.42 0.60 0.75 0.82 0.88 0.91 0.94 0.97
Scenario 8 0.001 0.005 0.01 0.02 0.04 0.05 0.10 0.16 0.25

Prior medians and 95% credible intervals
0.02 0.04 0.10 0.19 0.26 0.32 0.42 0.51 0.59

(0.00, 0.14) (0.00, 0.20) (0.02, 0.29) (0.05, 0.43) (0.09, 0.51) (0.12, 0.57) (0.19, 0.68) (0.26, 0.77) (0.33, 0.83)

Interim dose recommendations are made according to rule (6), with the same caveats as
described in Section 4.2. Trials end: i) once 45 patients have been treated and observed; or
ii) at any interim analysis if the lowest dose is found to be excessively toxic, that is, the trial
stops at interim analysis (h− 1) if P(pi?1 ≥ 0.33 | Y1,Y2,Y3,Y

(h−1)
i? ) > 0.25. These two

subsets of simulated trials will later be referred to as completed and stopped early trials,
respectively.

We consider eight different simulation scenarios, shown in Table 4, for the true dose-
toxicity relationship in the new phase I trial. These include scenarios which are consistent
with the predictive prior derived from the dog data, as well as scenarios in which the drug
is more (or less) toxic than would be expected from the dog data. For each scenario and
model, results are based on 2000 simulated trials.

Define p̃i?j as the point estimate (posterior median) of the DLT risk on dose di?j ∈ Di? .
Then at the end of a completed trial, we estimate the MTD as:

d̂M = arg min
di?j∈D′

i?

|p̃i?j − 0.25|,
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where D′i? ⊆ Di? comprises all the doses that have been administered to humans during
the trial and satisfy the probabilistic overdose criterion. In each simulation scenario, we
record the percentage of studies which identify each dose as the MTD. We also record the
percentage of trials which stop early without a MTD declaration. Furthermore, averaging
across the 2000 simulated trials, we report the average number of patients allocated to each
dose.

[Insert Figure 5]

Figure 5 compares dose-escalation procedures implemented using Models A – D in
terms of the percentage of trials which correctly select the MTD (PCS), the percentage
of trials which stop early for safety; and the average number of patients allocated to the
true MTD. Procedures underpinned by Models B and C perform reasonably well across all
eight simulation scenarios. In cases where there is a strong prior-data conflict, for example
in Scenarios 7 and 8, procedures based on Model C tend to slightly outperform those
based on Model B. When there is prior-data consistency, such as in Scenario 3, the relative
performances are reversed, although differences between the models remain small across
all scenarios.

Comparing Models B and C with Model D, we see that by leveraging the dog data
we can make gains for the PCS and average number of patients assigned to the true
human MTD when the dog data are predictive of DLT risks in the new phase I trial. For
example, we see an increase in PCS of at least 12.9% in Scenario 3. However, Model
D clearly outperforms Models B – C in Scenario 8, in terms of the average number of
patients allocated to the true MTD, although smaller differences emerge in terms of the PCS.

Comparing Models B and C with Model A, we see the advantages of robustification in
Scenarios 6 and 8, where the assumption of full exchangeability leads to underestimation of
the MTD, and allocation of a higher average number of patients to lower doses. The impact
of robustification when an assumption of exhangeability is appropriate is seen in Scenario
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3, when PCS decreases from 55.6% (wR = 0) to 45.8% (wR = 0.5).

[Insert Figure 6]

For analysis Models A-C, we estimate δDog by the median of its posterior distribution
at the end of each completed trial. Figure 6 compares in each simulation scenario the
distribution of posterior median estimates of δDog with the prior median represented by the
solid horizontal line. The deviation of the posterior median estimate from the prior median
reflects the prior-data conflict. For example, in Scenarios 1 and 2 when preclinical data
under-predict the potency of the drug in the phase I study, the posterior estimates of δDog

tend to decrease from the prior estimate to adjust for this emerging conflict. Treating δDog

as a random variable provides a mechanism to respond to prior-data conflicts and therefore
leads to more robust borrowing of information across species. The posterior estimates of
δDog in Scenario 7 appear to be less dispersed, because few trials were completed in this
highly toxic scenario. Within a scenario, the size of the shift in posterior estimates decreases
across Models A – C. As wR increases, the need to respond to the prior-data conflict by
updating δDog becomes less as the prior weight on the exchangeability scenario decreases.

Another interesting evaluation is to compare two variants on Models A – C treating δDog

as either a random variable or a fixed constant adopted in current practice. The optimal non-
parametric benchmark design40 is also considered for comparison to assess potential gains
of leveraging preclinical data in different simulation scenarios. Given different analysis
models, we also investigated the bias, mean squared error and coverage probability of
the central 95% credible interval of the posterior estimate of the DLT risk at the true
MTD. Results of these assessments are available in Figures S3 and S4 in the Web-
based Supplementary Materials. Furthermore, we have re-run selected simulations setting
τ2 ∼ HN(0.25) instead of τ2 ∼ HN(0.125). As expected, a larger value of the scale
parameter leads to reduced borrowing of information from the preclinical data while general
conclusions for the comparison of different models are unchanged. Finally, we notice in
practice there are situations where a phase I trial may be implemented with early stopping
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rules to declare the MTD. We thus consider dose-escalation procedures based on Models
A – D with rules permitting early stopping when specified conditions are met. Operating
characteristics are summarised in Figure S5 in the Supplementary Materials.

6 Discussion

Bayesian meta-analytic approaches provide a framework to augment a clinical trial with
historical data. In this paper, we have proposed a robust Bayesian hierarchical model to
augment a first-in-man trial with data from preclinical toxicology studies in animals. The
novelty of this approach is two-fold: First, we translate the dose-toxicity curves from
different animal species onto the human scale, which allows us to adequately combine the
information from animals and humans. Second, the translation factor used for scaling is a
parameter with uncertainty in the model, and we estimate this parameter more and more
precisely as data in humans (or from different species) accumulate. In our opinion, both
of these points are important to leverage the dose-toxicity information from preclinical to
clinical studies in a transparent and statistically efficient way. The simulations presented in
Section 5 show that the proposed methodology enables robust borrowing of information
from animals to humans, and is responsive to prior-data conflicts. We note, however, that
when there is a substantial prior-data conflict, using our approach may lead to a decrease in
precision of the estimate, regardless of how small the prior weight assigned to the animal
data is.

In practice, often only few animal safety studies are conducted prior to the phase I
clinical trial. Our data examples and simulation study presented in Sections 3 – 5 have
preclinical data collected from only one animal species, presenting applications of our
methodology in quite restrictive cases with only limited preclinical information. Additional
simulations have been performed (results not reported here) to verify the performance of the
meta-analytic model for cases that K = 2 and K = 3. These supported similar conclusions
to those shown in this paper, namely that borrowing of information from animals to humans
is robust and is led by data from the most relevant animal species. Having a larger number
of preclinical studies involving multiple animal species is potentially advantageous for
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estimating the variance parameters that are associated with between-study and between-
species heterogeneity. We would also like to add a note on the exchangeability of the
population mean parameters µSk

when K > 1: learning about the variance parameters in
the ‘supra-species’ level would be important to facilitate sharing of information between
different species to an appropriate extent. Another critical concern may be the number
of doses tested in the animals studies. While making inferences is always possible in a
Bayesian model regardless of the amount of data, for a meaningful use of our approach
we recommend that toxicity data need to be generated on at least two different doses in
minimally one animal (or human) study before the new phase I clinical trial is conducted.

High quality preclinical data are essential to design an ethical phase I clinical trial41,42.
Current approaches to using animal data culminate in a safe starting dose for a phase I
clinical trial. This underutilises the toxicity data accumulated from the animal studies.
To our knowledge, this paper represents a first proposal for incorporating dose-toxicity
data learnt from animals into human trials. We have presented our proposal adopting a
two-parameter logistic regression model to describe dose-toxicity relationship. However,
more sophisticated models such as physiologically based pharmacokinetic model43

may be considered. For the species-appropriate translation parameter introduced in our
model, we assume that allometric scaling principles adjusting for body surface area44,45

adequately describe physiological differences between animals and humans. Additional
work would be needed to verify the appropriateness of this approach or refine it, since
it may be inappropriate in some circumstances, for example, when the compound is a
monoclonal antibody46 or a biological agent47. The approach we proposed here has also
some limitations. First and foremost, it relies on the assumption that we can adequately
extrapolate from animals to humans. If this assumption is questionable, then the model
may fail to correctly translate the animal dose-toxicity information onto the human scale.
Furthermore, we use a statistical model (logistic regression) to describe the dose-toxicity
relationship, which means that no mechanistic insights into the cause of the toxicities will
be gained. Finally, we did not address more subtle differences that often exist between
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animal and human studies, for example, mode of administration and handling of drop-outs.

In this paper we specifically focus on the transition step from preclinical to clinical studies
in early drug development, but the methodology proposed in Section 2 can be applied
more broadly: it can be used to augment a clinical trial with historical data that have been
recorded on a different measurement scale. Further research will extend the proposed model
to accommodate heterogeneity amongst humans. Potential applications include the case that
phase I dose-escalation bridging studies to be carried out in different geographic regions.
Alternatively, there may be differences between age groups, for example, between children
and adults, or adults and geriatrics.

Supplemental material

Supplementary materials may be found in the online version of this article at the publishers website. The authors have also

provided additional supporting information of this article. Specifically, (a) OpenBUGS code to implement the proposed

model, together with R functions needed to reproduce the results reported in Sections 3 and 4; (b) R functions used to

derive a log-normal prior for the species-appropriate translation factor are provided.
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Appendix

A Specifying a log-normal prior for the translation factor δAi

One common method for extrapolating doses across species is allometric scaling performed
on the basis of body surface area (BSA). FDA27 proposed calculating a human-equivalent
dose (HED) by multiplying the animal dose by a factor reflecting the relationship between
metabolic rate and mass in mammals:

HED(mg/kg) = Animaldose(mg/kg)× (BW/BSA)Animal

(BW/BSA)Human

, (7)
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where BW denotes the body weight (kg) and BSA is measured in square metres.

In the notation of this paper, δAi
= ((BW/BSA)Animal/(BW/BSA)Human) is the

interspecies translation factor. As noted in Section 2, we fit models treating each δSk
as

a random variable rather than a fixed constant to formally account for uncertainty about
translation factors. An independent log-normal prior is placed on each δSk

consistent
with the translation factor in (7). Body weight is commonly modelled by a log-normal
distribution, whilst for present purposes, we assume the body surface area has negligible
variation in animals and humans. As both the numerator and denominator of (7) are log-
normally distributed, the translation factor can be described using a log-normal distribution.

Given the species-specific body weight and body surface area information available from
the FDA draft guideline, displayed at the left of Table 1, we derive log-normal priors, based
on an optimiser, so that medians and 95% CIs are in good agreement with the reference and
working range of body weight. This is an optimisation problem in the sense that we aim to
minimise the distance between the summaries (reference and working range) and the key
percentiles (2.5th, 50th and 97.5th percentiles) of the log-normal prior. Specifically,

• For each animal species, BW/BSA can be summarised as Q = {qL, qM , qU}, in which
qM corresponds to the reference value and [qL, qU ] as the limits of the working range
• The reference value is taken as median of the log-normal prior
• The log-normal variance is determined such that the absolute distance between the

implied 2.5th and 97.5th percentiles and qL and qU is minimised, respectively
• Likewise, derive the log-normal prior for BW/BSA in humans
• Depending on the unit of human dose, either mg/kg or mg/m2, the log-normal prior for
δAi

is therefore obtained.

R code for the derivation is available at the publisher’s website.

B Priors for other parameters

Weakly informative priors for the robust component and the population meansm:
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• Prior for θ1i?: m01 ∼ N(log
(

0.25
1−0.25

)
, 22). This suggests that prior median for the

probability of toxicity at dRef = 28 mg/m2 is 0.25 and the 95% credible interval is
(0.007, 0.944).
• Prior for θ2i?:m02 ∼ N(0, 12). This prior for the slope parameter is weakly informative

as it allows for flat to very steep curves. Under this specification, when doubling the
dose, the odds of a DLT is multiplied by 2exp(0) = 2 (prior median), and the 95%
credible interval for this multiplier is (1.1, 137.1).
• Priors for m1 and m2: m1 ∼ N(log

(
0.25

1−0.25

)
, 1.982), and m2 ∼ N(0, 0.992). These

priors are similar to the ones for the robust component and therefore are also weakly
informative.

Half-normal distributions are chosen for elements of the covariance matrix Ψ and Σ as
follows.

• Priors for τ1 and τ2 that control borrowing within same species: τ1 ∼ HN(0.5), of
which the key summaries, say, median and 95% credible interval, are 0.337 and (0.016,
1.121), respectively. This allows for substantial between-study heterogeneity for the
intercept parameter, θ1i. τ2 ∼ HN(0.25), of which the key summaries, say, median
and 95% credible interval, are 0.169 and (0.008, 0.560), respectively. This allows for
moderate between-study heterogeneity for the slope parameter, θ2i.
• Priors for σ1 and σ2 that control borrowing across different animal species: σ1 ∼
HN(15), of which the median and 95% credible interval are 10.117 and (0.470,
33.621), respectively; σ2 ∼ HN(5), of which the median and 95% credible interval
are 3.372 and (0.157, 11.207), respectively. These are diffused priors used in the paper
for the special case K = 1.
• Priors for the correlation coefficients: ρ ∼ U(−1, 1) and κ ∼ U(−1, 1).
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Figure 1. Preclinical data from four studies in rats. The height of the bar represents the number of rats studied, and the height of the dark grey
segment counts the number experiencing an ocular toxicity. Doses listed in brown are the doses (mg/kg) administered to rats. Doses listed in black
are the human-equivalent doses (mg/m2). Projections are made by scaling animal doses using the prior median of δRat.
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Figure 2. Results of the Bayesian meta-analysis, corresponding to the synthesis of ocular toxicity data in rats without and with the human data,
respectively. Panels A and D show median and 95% CI of the marginal distributions for the probability of ocular toxicity. Panels B and E describe the
marginal distributions of wR = 0.5 using interval probabilities. The background red curve shows the median probability of toxicity of each human
dose. Panels C and and F display the entire marginal distributions for the risk of ocular toxicity on doses of particular interest.
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Figure 3. Summaries about the Bayesian analyses of the binary DLT data in dogs. Panel A shows median and 95% CI of the marginal prior
predictive distribution for the probability of toxicity in the future human phase I trial, for a range of doses to be assessed. Prior predictive distributions
are derived from a Bayesian meta-analysis of the dog data alone, setting wR = 0, 0.3 or 1. Panel B gives an overview on the toxicity interval
probabilities predicted based on a robust meta-analysis of dog data, setting wR = 0.3. The background red curve shows the prior median probability
of toxicity per human dose. Panel C presents prior densities for the risks of toxicity at potential starting doses.
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Figure 4. Trajectory of dose recommendations (Panel A) and posterior probabilities of exchangeability (Panel B) during the course of each
hypothetical phase I trial in data examples 1 to 8.
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Figure 5. Operating characteristics of BLRM-guided dose-escalation procedures basing inferences on Models A-D, defining δDog as a random
variable. The vertical black line indicates the true MTD in humans in each simulation scenario.
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Figure 6. Boxplots of poesterior medians of the translation parameter δDog under each meta-analytic model over all completed trials. The horizontal
black line represents the prior median of δDog .
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