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ABSTRACT 

 
With increasing amounts of spatial, spectral and temporal 
remote sensing data and heterogeneity of platforms, we have 
entered an era of big data in remote sensing research. Im-
agery now routinely exceeds the memory size of personal 
computers so splitting/distributing big remote sensing data 
becomes a necessary pre-processing step. Standard rectangle 
based splitting methods can distort existing geometric and 
topological information and lose features as images are split 
into tiles. 

To address these challenges, we propose a sampling 
based image splitting method, which models the dataset as a 
streaming service and splits the dataset with a Voronoi dia-
gram. The streaming data is systematically sampled to ini-
tially select the seeds of a Voronoi diagram. Voronoi re-
gions are then generated according to spatial and spectral 
distances using Fortune’s sweepline algorithm [1]. We test 
the splitting method with AVIRIS imagery of North Ameri-
ca in 2013 (courtesy of NASA/JPL-Caltech) to evaluate the 
ability to detect objects of our splitting method. For evalua-
tion we employ the object-based classification method of 
Hay and Castilla [2]. In contrast to rectangle based splitting 
approaches, most polygon borders generated by our method 
are found to converge with object borders (e.g., trees, build-
ing, and roads). When deployed with MapReduce, our sam-
pling based splitting method also helps balance the compu-
tation intensity between each computing node. 
 

Index Terms— Big Data, Splitting, Sreaming, Voronoi  
 

1. INTRODUCTION 
 
Big data has attracted considerable interest in a broad range 
of research fields, including economy [3], soci- ology [4], 
biology [5], Geographic Information Science (GIScience) 
[6], and Remote Sensing (RS) [7]. Big data is often de-
scribed by the “4Vs”: Volume, Variety, Velocity, and Ve-
racity. Advancements in sensing platforms, the spatial, spec-
tral, and temporal resolutions of remotely sensed imagery 
datasets mean that image processing represents an ideal type 
of big data. Platform growth and increasing resolutions re-
sult in larger data volumes, and RS datasets are increasing at 

petabyte-level rate [8]. Variety can be interpreted as images 
with different spatial and spectral resolutions, stored in dif-
ferent data formats (e.g., GeoTIFF and ecw) [9]. Even tiles 
with the same file size can express variety in terms of object 
complexity within the file [10]. Velocity comes from higher 
temporal resolutions of RS datasets, resulting in shorter data 
collection intervals. This means that data might be changed 
in the process of analysis (i.e., new data being added and old 
data being removed). Big data poses significant challenges 
in data management and also in corresponding analysis and 
computing. We may not have the accurate data attributes 
(e.g., spectral statistics and number of objects) available 
before we analysis the big RS datasets and these datasets 
may change in the flow of analysis. Therefore, we need new 
computing models for big RS data analysis. 

Large volumes of big RS datasets exceed the memory 
and storage of most desktops so imagery datasets must be 
split into smaller tiles for distributed computing [11]. The 
most widely used RS data splitting method is rectangle 
based partitioning [12], which simply assumes the spectral 
and special information in RS datasets is homogeneous. 
Rectangle based partitioning method can incur errors in ob-
ject-based RS analysis [2] because it changes the original 
object attributes in the RS imagery datasets by cutting ob-
jects. In this paper, we propose a sampling based Voronoi 
splitting method to address these drawbacks.  

We use a sampling based Voronoi splitting method to 
decompose big RS imagery datasets into Voronoi regions. 
The Voronoi diagram can efficiently decompose a space 
into a collection of disjoint polygons (regions) [1], which 
then can be analyzed with existing computing tools. By in-
tegrating spatial and spectral information in the distance 
calculation (see below), our algorithm can split large image-
ry datasets by object boundaries. We also use a duplicate 
sweepline algorithm to reduce the cutting of objects.  

This paper is organized as follows. Section 2 introduces 
related research and describes a central challenge: splitting 
big RS imagery datasets. In Section 3, we present our sam-
pling based Voronoi splitting method, based on systematic 
sampling, streaming, and Fortune’s algorithm. The compari-
son with rectangle based partitioning algorithm using 
AVIRIS imagery datasets in object-based classification is 
shown in Section 4. We conclude in Section 5.  
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2. PROBLEM STATEMENT 
 
Current research for big data in RS concentrates on high 
performance computing tools for big RS data processing but 
not necessarily the special features of big RS data. For ex-
ample, Liang et al. [13] utilize social networks and hybrid 
P2P (Peer-to-Peer) techniques to enable sharing and visuali-
zation of big environmental sensing datasets. Wang et al. 
begin to tackle the challenges in modifying geostatistics for 
big RS imagery by introducing cloud computing [14] for 
rapid clustering analysis [15]. However, big RS imagery 
datasets are much more than a collection of independent 
small image tiles, as objects may span several tiles.  

To handle big RS imagery datasets, scientists tend to 
use a divide and conquer method—partition into smaller 
tiles and then process in individual computing nodes in a 
distributed environment [16]. Generally, the tiles are nu-
merous equal-size rectangular blocks to balance the load on 
each computing node [17]. This method neglects the spec-
tral and spatial information in the data and can fail to bal-
ance objects in each tile. Figure 2-1 exemplifies the inability 
of current techniques to consider the spatial and spectral 
information of the imagery datasets and the lack of load 
balancing of computing intensity in object-based analysis. 
Figure 2.1 (a) and (b) show rectangle partitioned DMIT sat-
ellite images taken from two different locations in Montreal 
2006 [18]. Their corresponding object extraction [19] in (c) 
and (d) produce quite different results. Moreover, using 
eCognition [20] to obtain (c) takes 7 seconds on a Dell lap-
top while (d) takes 21 seconds with the same computing 
configurations.  
 

 
Figure 2-1 (a) and (b) are tiles from [18] (60 cm RGB); (c) 

and (d) are objects extracted using eCognition (object-based image 
analysis software) from (a) and (b), with color=0.3 and scale=150 

 
A particular problem in this simple partitioning is that 

the objects are cut and therefore the object’s attributes are 
altered. In Figure 2-1 (c) and (d), the cutting borders do not 
actually exist but they have to be analyzed as the real 
boundaries of objects. In (d), rectangle base partitioning 
creates two “false ends” to the highway (red circles), which 
changes the original characteristics of the road. To address 
these challenges, we propose a sampling based Voronoi 
splitting method.  

 

3. SAMPLING BASED VORONOI SPLITTING 
METHOD 

 
3.1. Big Data as Streaming Service 

 Considerable research is being conducted into data 
streaming in big data, for example, mining Twitter data for 
sentiment analysis [21]. Whereas, most of the big data re-
search is on social media like Twitter, we use stream in the 
multimedia sense [22], which represents data as a sequence 
of chunks delimited by spatial extent and time stamps. In 
RS, data streaming has previously been utilized to visualize 
big RS datasets [23] or collect RS imagery datasets in real-
time [24]. Large volumes can be modeled as several data 
streams, where different types of streams can be used for 
various purposes (e.g., vegetation and transportation). In this 
way, streaming services encapsulate the volume, variety, 
and velocity features of big RS data.  

 For us, the most straightforward reason for using data 
streaming modelling is to provide an efficient way to load 
big RS imagery datasets into distributed computing memo-
ries. Our streaming modelling provides such a mechanism. 
We split the data in two phases. First, we stream the data as 
“chunks” and then pass Fortune’s algorithm through them in 
multiple passes. We do this in sequential passes to limit the 
effect of cut borders or edges (Section 3.2). The streaming 
process allows us to generate the second splitting into Voro-
noi regions [25], which are also distributed.  
 
3.2. Sampling Based Voronoi Splitting Method 
A Voronoi diagram partitions space into a collection of re-
gions, using a set of seeds. The Voronoi region of seed s is 
all the points in the image for which s is the closest seed. 
Voronoi diagrams are widely employed in GIS data analy-
sis. Akdogan et al. [26] use Voronoi diagram for geospatial 
query processing, and Li et al. [27] utilize Voronoi diagram 
for image segmentation. We employ the Voronoi diagram 
for big RS imagery dataset splitting. We define distance d of 
a pixel (x,y) from seed s as a combination of spatial and 
spectral distance: 

 
||I-Is||2 is the spectral distance and α is the weight parameter 
with range from 0 to 1, which can be tuned according to 
different requirements.  

We use a systematic sampling method to select the 
seeds for Voronoi diagram generation [28], in which every 
(ith,jth) pixel in a 2D sequence is selected. This guarantees 
Voronoi seeds are evenly distributed in the imagery dataset. 
Although the Voronoi seeds can be selected through optimi-
zation techniques [29], we choose systematic sampling due 
to its simplicity.  

Figure 3-1 shows how we use Fortune’s sweepline al-
gorithm to generate the Voronoi regions. In Figure 3-1 (a), 
the sweepline moves in the opposite direction of the incom-
ing data stream (if they move in the same direction, it will 
always be the same pixels on the sweepline). We use a du-
plicate sweepline method to reduce the influence of cut bor-
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ders (Figure 3-1 (b)). The duplicate sweepline takes 50% of 
each neighboring stream to forge a new input stream. We 
then remove duplicated tiles and partial ones. The algorithm 
does not change the generated Voronoi image tiles, since a 
Voronoi diagram is unique given the set of seeds [25]. Sam-
ple Voronoi tiles are shown in Figure 3-1 (c) and we can see 
that the cutting borders coincide with some object bounda-
ries. Although a tile size may differ, Voronoi regions allow 
us to maintain a similarity of object level complexity. 

 
Figure 3-1 (a) Fortune’s algorithm with streaming data model-

ing; (b) duplicate sweepline algorithm; (c) sample tiles obtained 
using our Voronoi splitting method 

 
We implement the system with the MapReduce frame-

work [30]. MapReduce offers scalability and reliability for 
parallel computing support. The map phase reads data via 
the streaming services and then splits large RS imagery da-
tasets using our sampling based Voronoi splitting algorithm 
with the duplicate sweepline method. The reduce phase re-
moves duplicated tiles and merges partial ones. Our Voronoi 
splitting method minimizes the cutting border influence and 
balance the object level complexity with MapReduce im-
plementation.  

 

4. PERFORMANCE EVALUATION 
 
We use object-based classification to compare the perfor-
mance of our Voronoi splitting method and the rectangle 
based partitioning method. (Our performance evaluation, 
where the analysis would normally occur, also utilizes 
MapReduce in a distributed environment.) Approximately 1 
TB of AVIRIS imagery datasets of North America collected 
in 2013 (courtesy of NASA/JPL-Caltech) are utilized as the 
testing data, with 15m spatial resolution and 224 bands 
(365nm to 2496nm) spectral resolution. We set different tile 
sizes (from 50 MB to 1GB) to evaluate the influence of dif-
ferent splitting method on classification accuracy. The accu-
racy is represented as the average accuracy [31] of different 
classes. We use seven classes: forest, grass, farmland, bare 
ground, water, roads and buildings.  

We use the distributed computing environment in Roger 
Tomlinson Laboratory of McGill University as the test bed. 
We initialized 10 map nodes and 2 reduce nodes for our 
Voronoi splitting method (α =0.4); whereas 10 identical map 
nodes (the same number of splittings) are used for the rec-
tangle based partitioning. All the image tiles are stored on a 
2 TB network hard disk for classification evaluation on one 
Dell laptop running eCognition® [20].  

 
Table 4-1 Performance Comparison of Voronoi Splitting and 

Rectangle based Splitting Method 
Tile Size Rectangle based 

Splitting 
Voronoi Splitting 

1GB 92.1% 92.3% 
500MB 89.3% 90.7% 
200MB 87.9% 89.6% 
100 MB 84.6% 89.0% 
50 Mb 79.2% 87.7% 

 
 
Table 4-1 shows the evaluation results. With the in-

crease of tile numbers (or decrease of tile size), the classifi-
cation accuracy of rectangle based partitioning method de-
creases faster than our Voronoi based splitting method. 
When the tile size becomes 50MB, the rectangle splitting 
method generates considerable noisy geometric and topolog-
ical information due to cut borders. Evaluation shows Voro-
noi splitting method outperforms traditional rectangle parti-
tioning method by combining spectral and spatial distance.  
 

5. CONCLUSION 
 
We have presented a sampling based Voronoi splitting 
method for big RS imagery dataset object-based analysis, 
which also models datasets as a stream. Compared to the 
rectangle based partitioning method, our Voronoi splitting 
method better balances object level complexity and lessens 
distortions due to cutting borders. The streaming modeling 
of big data can represent objects in big imagery data and is 
compatible with the sweepline based Voronoi algorithm and 
MapReduce framework. Evaluation with different tile size 
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configuration demonstrates that our method outperforms the 
rectangle based partitioning method.  

We plan to improve the performance of our method 
with three approaches. First, the seeds of a Voronoi diagram 
can be selected using optimization method as centroids of 
objects [32]. Second, we plan to explore Apache Storm [33] 
to replace MapReduce, which provides better real-time par-
allel computing support for data streaming. Finally, our 
work presents a big data solution for data decomposition. 
Recomposing distributed analyses also demands research.  
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