
UNIVERSITY OF JOENSUU

COMPUTER SCIENCE AND STATISTICS

DISSERTATIONS 21

Roman Bednarik

Methods to Analyze Visual Attention

Strategies: Applications in the Studies of

Programming

Academic dissertation

To be presented, with the permission of the Faculty of Science

of the University of Joensuu, for public criticism in the Louhela

Auditorium of the Science Park, Länsikatu 15, Joensuu, on De-

cember 15th 2007, at 12 o’clock.

UNIVERSITY OF JOENSUU

2007

Supervisors Professor Markku Tukiainen
Department of Computer Science and Statistics
University of Joensuu
Joensuu, FINLAND

Professor Erkki Sutinen
Department of Computer Science and Statistics
University of Joensuu
Joensuu, FINLAND

Reviewers Professor Kari-Jouko Räihä
Department of Computer Sciences
University of Tampere
Tampere, FINLAND

Associate Professor Dario Salvucci
Department of Computer Science
Drexel University
Philadelphia, USA

Opponent Associate Professor Andrew T. Duchowski
School of Computing
Clemson University
Clemson, USA

ISBN 978-952-219-067-3 (printed)

ISBN 978-952-219-068-0 (PDF)

ISSN 1796-8100 (printed)

ISSN 1796-8119 (PDF)

Computing Reviews (1998) Classification: H.5.2, H.5.1, I.3.6, H.1.2, D.2.2

Joensuun yliopistopaino

Joensuu 2007

Methods to Analyze Visual Attention Strategies: Applications in

the Studies of Programming

Roman Bednarik

Department of Computer Science and Statistics

University of Joensuu

P.O.Box 111, FIN-80101 Joensuu, FINLAND

roman.bednarik@cs.joensuu.fi

University of Joensuu, Computer Science and Statistics, Dissertations 21

Joensuu, 2007, 188 pages

Abstract

T
he main problems identified by the research that employs visual attention

tracking to retrospectively evaluate user strategies are low efficiency and dif-

ficulties of the methodology in interpreting the data. In this thesis we attack

these problems in the domain of multirepresentational dynamic programming envi-

ronments. Firstly, by replicating a previous experiment in debugging, eye-tracking

was shown to be a superior technique for tracking the visual attention of program-

mers when compared to the Focus Window Technique. Traditional eye-tracking

measures and the approaches used to analyze them are, however, shown to be only

partially able to describe all the subtle behaviors of visual attention during program-

ming. Thus, secondly, alternative methods and new ways of processing eye-tracking

data and measures are presented. We suggest the eye-tracking studies should utilize

a) the segmentation of eye-tracking data sets, both temporally and spatially, b) a

binomial test when dealing with the sparse eye-tracking data sets, c) a visualiza-

tion of the data on multiple levels of detail, and d) employ high-level contextualized

measures. Thirdly, by applying these approaches, a more detailed and novel view

of the strategies of novice and expert programmers is presented. Expert and novice

programmers’ visual strategies are described and shown to differ in several aspects.

Expert programmers are better able to integrate more information from the repre-

sentations available. In particular, they concentrate more on code at the beginning

and on relating code to output at the later phases of the process. Novice program-

mers engage in a limited range of strategies that they seem to regularly alternate

i

between; in particular, they either switch their visual attention frequently between

code and graphical representation or they tend to mainly focus on one of them.

Finally, implications of the findings to the field of eye-tracking methodology are

drawn. These consist of, for example, a call for better automatic analysis tools that

facilitate the techniques presented here.

Keywords: eye-tracking, psychology of programming, visual attention, method-

ology

ii

Acknowledgements

I did not know that writing the acknowledgment section can easily became so

difficult. In a couple of lines I wished (and still do) to thank all of those who

helped me; but along the ragged road there were simply too many of them to be

mentioned here.

I thank Markku Tukiainen for giving me the opportunity to work with him,

sharing a passion to better understand the people, computers and their interactions,

and for his infinite trust, support and guidance. Erkki Sutinen deserves a word of

thanks for the opportunities he gave me and for teaching me the lessons of bravery,

devotion, thoughtful nuttiness and kindness.

I am indebted to my colleagues: to Niko Myller for being a diligent coauthor and

for the constant and instant feedback on my rambles, ideas and doubts; to Justus

Randolph for never slowly but always surely giving me precisely aimed advices, and

for being a coauthor and language editor of my work. Many of my colleagues deserve

my thanks, spending the working days with you is a pleasure and fun.

I thank Kari-Jouko Räihä and Dario Salvucci for agreeing being the reviewers of

my work, and providing helpful critique and comments. I am honored and thankful

to have Andrew Duchowski as an opponent.

This research has been supported in parts by the Faculty of Science, University

of Joensuu, Finland, by the East Finland Graduate School in Computer Science and

Engineering (ECSE), Finland, by the Emil Aaltosen Foundation, Finland, by the

Tekniikan edistämissäätiö (TES), Finland, and by the Psychology of Programming

Interest Group (PPIG). A part of the research and writing has been conducted at

the University of Pittsburgh, USA, and at the University of Kabarak, Kenya.

I thank to my dear ones, my family and my wife Kaisa, for what cannot be

expressed here in writing.

Joensuu, November 2007

– Roman Bednarik

iii

List of original publications

This thesis consists of an introduction and the following peer-reviewed papers, which

were reproduced here with permission:

P1. Bednarik, R., Tukiainen, M.: Validating the Restricted Focus Viewer: A Study

Using Eye-Movement Tracking. Behavior Research Methods, 39(2), 2007, pp.

274-282.

P2. Bednarik, R., Myller, N., Sutinen, E., Tukiainen, M.: Effects of Experi-

ence on Gaze Behaviour during Program Animation. In Proceedings of the

17th Annual Psychology of Programming Interest Group Workshop (PPIG’05),

Brighton, UK, June 28 - July 1, 2005, pp. 49-61.

P3. Bednarik, R., Myller, N., Sutinen, E., Tukiainen, M.: Analyzing Individual

Differences in Program Comprehension. Technology, Instruction, Cognition

and Learning (TICL), 3 (3-4), 2006, pp. 205-232.

P4. Bednarik, R., Randolph, J.: Studying Cognitive Processes in Program Com-

prehension: Levels of Analysis of Sparse Eye-Tracking Data. In Hammoud, R.

(ed): Passive Eye Monitoring: for Safety, Security, Communications, Medical

and Web Applications. 2008, Springer.

P5. Bednarik, R., Tukiainen, M.: An Eye-tracking Methodology for Characteriz-

ing Program Comprehension. In Proceedings of the 2006 Symposium on Eye

Tracking Research and Applications (ETRA 2006), March 27-29, San Diego,

CA, USA, ACM Press, pp. 125-132.

P6. Bednarik, R., Tukiainen, M.: Analysing and Interpreting Quantitative Eye-

Tracking Data in Studies of Programming: Phases of Debugging with Multiple

iv

Representations. In Proceedings of the 19th Annual Workshop of the Psychol-

ogy of Programming Interest Group (PPIG’07), Joensuu, Finland, July 2-6,

2007, pp. 158-172.

v

Contents

Acknowledgements iii

Contents vii

1 Introduction 1

1.1 Background and Motivation . 3

1.2 Focus of Research and Research Questions 4

1.3 Method . 5

1.4 Research Process . 6

1.5 Research Approaches and Analysis Methods in Human-Computer In-

teraction and Eye-Tracking Research 7

1.6 Organization of the Thesis . 9

2 Visual Attention and Eye-Tracking Methodology 11

2.1 Visual Attention Tracking and Analysis 13

2.2 Interpreting Eye-Tracking Data in Usability Studies 16

2.3 Types of Research Situations . 18

2.4 The Restricted Focus Viewer: An Alternative Tool to Track Visual

Attention . 19

2.5 Summary . 20

3 Behavioral and Cognitive Aspects of Programming 21

3.1 Program Comprehension, Debugging, and Skill Differences 22

3.2 Investigating The Behavioral and Cognitive Aspects of Programming 24

3.3 Studies of Visual Attention during Programming 26

vi

4 Improving Methods to Analyze Visual Attention Strategies in

Studies of Programming 31

4.1 P1: A replication of a previous study in programming using visual

attention tracking . 32

4.2 P2: An eye-tracking experiment in a dynamic program visualization

environment . 34

4.3 P3: Effects of expertise on visual attention patterns during dynamic

program animation: a detailed analysis 36

4.4 P4: Levels of analysis of sparse eye-tracking data 40

4.5 P5: Role of representations as reflected in eye-tracking measures dur-

ing program animation . 43

4.6 P6: Temporal properties of eye-tracking data during debugging with

static representations . 46

4.7 Contribution of the Author . 49

5 Summary of the Results 51

5.1 Low-Level and High-Level Eye-Tracking Measures 51

5.2 The Choice of Method . 53

5.3 Visual Strategies of Programmers . 55

5.4 Recommendations to Eye-tracking Developers 56

6 Conclusion 57

6.1 Questions for Future Research . 59

References 61

Original Publications 69

vii

viii

Chapter 1

Introduction

THIS thesis aims to explore and promote understanding of the link between

visual attention data and processes involved in programming by dealing with

the methodological challenges of eye-tracking as applied in that domain.

Although the technological problems of eye-tracking systems are being continu-

ally resolved, granting the increasing usability of the technique, the methodological

issues prevent it from being used further in a wider context. Apart from the some-

what remaining technical problems, Jacob and Karn (2003) list two methodological

problems with eye-tracking: labor-intensive data extraction and difficulties in their

interpretation.

Modern eye-tracking systems are easy to operate, do not interfere with partici-

pants, and are able to capture a large proportion of the population. Commercially

available eye-tracking systems are often supplied with an automatic recording and

analysis software, attempting to reduce the labor of data extraction. While this

automation can facilitate the analysis for static computer interfaces and relatively

simple tasks, the studies of complex user processing and interactive systems present

a new challenge to eye-tracking research.

In many cases the dynamics of the scenes being presented to participants –

such as in modern computer programming interfaces – makes it hard for an eye-

tracking researcher to easily link the eye-tracking data to the stimuli. Often, the

only solution to this problem is to manually annotate the video-recordings frame-

by-frame. Clearly, this approach, besides being inefficient, may bring about several

unwanted outcomes. For example, the manual annotation of the fixations might

pose a threat to the accuracy of the data analysis.

Another problem with the application of eye-tracking in evaluating interfaces is

that of interpreting and relating the extracted data to the underlying processing.

In a typical eye-tracking study, the analysis tends to be quantitative; it starts from

1

selecting the eye-tracking measures, continues through delimiting the scene into the

areas of interest, aggregating the measures with respect to the areas, and ends with

linking the observations to the phenomena in question. In the studies that investi-

gate cognition with interfaces that present text, graphics, and dynamic content, the

analysis phase of an eye-tracking experiment might become the most daunting task

of the whole investigation. In addition, to preserve the experimental validity of an

eye-tracking experiment, the researcher might not wish to impose constrains on the

participants’ behavior or to employ artificial tasks and environments. Balancing user

freedom, the validity of a study, and the constraints imposed by the study settings

can further increase the complexity of the analysis; the validity factors include, for

example, the presentation of information in several dynamic windows, the freedom

of users to select when and what information they want to see, or the possibility of

the system to present interaction dialogues such as questions. As the complexity of

the interaction and cognition increase, the link between the eye-tracking data and

underlying processing becomes more difficult to study.

This thesis describes research where visual attention tracking has been employed

to study human processes involved in program comprehension as performed with the

aid of multiple representations of a program. To comprehend a program, a program-

mer needs to construct a mental model of what the program does and how it does

it; program comprehension is thus an integral part of any software development pro-

cess. Program comprehension is also a cognitively complex skill that is difficult to

acquire. Thus, the question of how a novice becomes a skilled professional is one of

the central inquiries in studies of the psychology of programming. Although origi-

nally centered on professional programmers developing computer programs, studies

of programming now extend beyond these borders (Blackwell, 2002), both in terms

of users and application domains.

There are several possibilities to get insights into the behavior and strategies ex-

hibited by programmers interacting with a computer. In similar research situations

where the stimuli are visual and the user reasoning is related – or even dependent –

on it, eye-tracking systems have been shown to be useful in revealing the patterns

of visual attention during the task. The classical examples of applications of eye-

tracking include pioneering studies relating the eye-movement patterns to cognitive

processes (Just and Carpenter, 1976), research in reading (Rayner, 1998), or studies

investigating differences between novices and experts in terms of the eye-movement

patterns (e.g., Hyönä et al., 2002, Law et al., 2004).

In studies of programming, instead, investigations have been primarily based

on verbal protocols, a well established – and probably the most popular – method

used to capture and analyze human information processing. Despite their potential,

visual attention tracking methods have not been applied widely in this domain, but

they are slowly finding their place in the toolboxes of the researchers who study

2

the psychology of programming (Crosby and Stelovsky, 1990, Stein and Brennan,

2004, Romero et al., 2002b, Nevalainen and Sajaniemi, 2004, 2005). At the moment,

however, little is understood regarding the visual strategies of programmers and how

to study them using eye-tracking.

1.1 Background and Motivation

Program development normally takes place within integrated development environ-

ments. These tools often present the information related to the program being de-

veloped using multiple representations of the program. Several important questions

related to visual attention and its role during programming within these environ-

ments can be raised. A general question about what information sources program-

mers attend to when working with a development environment leads one to first ask

about how to record the visual attention in programming. Whether and how the

cognitive processes involved in programming are reflected in visual attention pat-

terns, however, is not completely understood. Are there general patterns of visual

attention with which programmers attend the source code and the adjacent repre-

sentations while comprehending the program? What are the programmers’ visual

strategies and how can they be identified from eye-movement data? Does the focus

of visual attention correlate with other information about the comprehension pro-

cess? Is it possible to distinguish between good and poor comprehension based on

the information about visual attention?

The lack of knowledge about these and related aspects of visual attention during

programming motivates the research presented in this thesis. Eye-tracking technol-

ogy seems to be a suitable tool to increase our understanding about the role of visual

attention in programming and, therefore, the possibilities and limitations of it and

the associated techniques need to be studied and understood.

The main motivation of this research is therefore a methodological one. As it will

become clear later, several methodological issues have been unearthed that need to

be considered before visual attention tracking – and eye-tracking in particular – can

be employed to study programming strategies in a meaningful way. For instance,

eye-tracking data come in large volumes, a property that makes them difficult to

process and directly link to the underlying processes. Previous eye-tracking research

has therefore developed techniques and measures that facilitate the analysis of eye-

tracking data in studies of usability. For example, Goldberg and Kotval (1999)

proposed a set of eye-tracking measures that allow for the automation of the process.

Thus, the large quantities of raw eye-tracking data can be significantly reduced to

make the analysis of the data considerably more efficient. However, determining

what measures to use and how to interpret the data and relate them to the underlying

3

processing or to usability aspects are tasks not well understood yet.

Linking eye-tracking data to underlying cognitive processes has become the pri-

mary challenge in eye-tracking studies. For instance, in the eye-tracking studies of

usability, Jacob and Karn (2003) argue that the challenge has been “probably the

single most significant barrier to the greater inclusion of eye tracking”. There are

several reasons contributing to this challenge, such as the aforementioned dynamic

nature of modern computer interfaces, the volumes of eye-tracking data, the com-

plexity of the tasks being studied, the sparseness of the data sets, other human

factors and the concerns of researchers to maintain high levels of validity, to name

just a few.

At the moment, little is known regarding how to apply eye-tracking to study

programming activities and about how to evaluate user strategies when dynamic

graphical interfaces are employed in programming. Therefore, we1 believe it is high

time to consider the methodological issues of eye-tracking as applied in this domain.

1.2 Focus of Research and Research Questions

This thesis is primarily concerned the with methodological aspects of visual attention

tracking studies of programming activities. In particular, it intends to contribute

to the understanding of how to record programmers’ visual attention patterns, and

how to analyze and interpret the resulting data. At the same time, this thesis

expands the knowledge obtained in the previous studies of visual attention during

reading algorithms (e.g., Crosby and Stelovsky, 1990) to real-world situations where

programmers have to deal with multiple representations and dynamic displays. To

summarize the focus of the thesis: we investigate how to obtain and make sense of

visual attention data in the context of programming with multiple representations

and then we apply these methods to improve the understanding of the processes

involved in programming.

This work does not specifically aim to answer issues related to cognition during

programming per se; it seeks to inform the studies of programming or problem-

solving about how to incorporate visual attention tracking. Nevertheless, by apply-

ing the knowledge of how to conduct, analyze, and interpret eye-tracking data in

programming studies, the work reported in this thesis presents new insights into how

programmers divide their visual attention. Finally, because the research situations

in this work closely correspond to those of eye-tracking studies of usability, these

and similar studies will also benefit from the findings.

1Although this thesis is written by a single author who coordinated the research, the plural
subject pronoun is used throughout this thesis because the research has not been conducted in
isolation and often there were several contributors.

4

We approached the development of an eye-tracking methodology for studies of

programming by answering the following questions, which are sorted into three main

research areas: 1) tools, 2) measures and strategies, and 3) analysis approaches.

1. An alternative tool to track visual attention, the Restricted Focus Viewer, has

previously been applied to study programming behavior. How does it compare

to a table-mounted remote eye-tracking device?

2. What are the characteristics of programmers’ visual attention strategies while

working with multiple representations and how does one identify them from

the eye-tracking measures? For example, are expertise levels of programming

reflected in the eye-tracking measures?

3. What are the limitations and advantages of the current approaches to the

analysis and interpretation of visual attention data during programming and

how they can be improved so that they provide better information about the

underlying processes?

1.3 Method

The work reported after this introduction attempts to answer the research questions

mentioned above. Focusing on the advancement of the methodological aspects of eye-

tracking, it borrows from multiple research paradigms and methods. At the heart of

the thesis lie two empirical studies. These studies – conducted under similar research

settings as eye-tracking studies of usability – serve two purposes. On their own, the

studies were designed to answer specific research questions and they produced new

knowledge about the aspects of visual attention strategies in programming.

In addition, the two experiments can be seen as exploratory case studies because

they provided the initial sources of eye-tracking data for subsequent analyses. These

analyses were performed in cycles to further investigate the potentials of the methods

to characterize the links between the underlying processes and overt visual atten-

tion during programming activities. The outcomes of these analyses are critically

discussed and serve as rationale for proposing improvements or alternative ways to

analyze and interpret the data. Using the new approaches, the work returns back

to the original studies and applies the new perspectives to discover new knowledge

about the strategies involved in programming.

Therefore, a part of the work in this thesis resembles the studies conducted within

the constructive research paradigm (Lukka, 2003), in how it iterates between the im-

plementation of a method and its evaluation. The implementation and construction

phases can be seen as applying both the current methods and as proposing alterna-

tive approaches and their improvements. The improved methods are the constructs

5

and the evaluation takes the form of analytical reflections on the findings achieved

using the established and the proposed approaches. As new findings come to light,

these are analyzed and the proposed solutions are integrated into the next phase

of the research. Therefore, in the way the different approaches are employed and

combined to gain understanding and knowledge, and in the analysis of what works

in practice, this research can also be seen as drawing from the pragmatic position

to science (Creswell, 2003).

Table 1.1 presents a summary of methods employed to answer the research ques-

tions.

R.Q. Method Paper(s) Section(s)

1 Experimental, Replication P1 4.1
2 Experimental P2 4.2

2,3 Experimental P3 4.3
3 Critical literature review P4 4.4

2,3 Case study P5 4.5
2,3 Case study P6 4.6

Table 1.1: Summary of methods employed to answer the research questions (R.Q.),
their respective publications, and the sections of this thesis that discuss the topic.

1.4 Research Process

The initial purpose of the thesis was to investigate the role of visual attention during

programming tasks with multiple representations and apply the available method-

ologies to track and analyze visual attention. In the beginning, we had applied the

methods and tools – as it had been done in the previous and related research – to

help improve the understanding of the role of visual attention in programming.

During the research process, however, new challenges in applying the traditional

approaches appeared that forced us to expand the focus of the study to also in-

vestigate the weaknesses, limitations, and possibilities of visual attention tracking

techniques and methods. The studies reported in papers (P1) and (P2) serve as

the source of empirical data for the reports in (P6) and (P3, P5), respectively.

Methodological improvements are reported in (P1, P4, P6) and in Chapter 4.

Chapter 4 re-examines the findings from a new perspective and proposes solu-

tions to the problems encountered. The improved methods and measures allow for

more accurate description of visual attention strategies. The knowledge about the

strategies gradually increases and becomes more focused, as reported in all publica-

tions except for (P4).

6

1.5 Research Approaches and Analysis Methods in Human-

Computer Interaction and Eye-Tracking Research

Research methods in the behavioral and social sciences, according to the definition

of McGrath (1995), are the tools used to gather and analyze information. Human-

Computer Interaction (HCI), due to its multidisciplinary background, draws on

multiple research theories, approaches, and methods (Carroll, 2003). Of the set

of empirical methods, experimental approaches, cognitive modeling and task analy-

sis, ethnography, fieldwork, or case studies are examples of the diverse approaches

employed in modern HCI research.

Distinguishing how data about a phenomenon is gathered and analyzed, ethno-

graphic methods or case studies typically provide and allow for qualitative interpre-

tations of the phenomenon, while the other methods lend themselves to quantitative

views. However, as Sharp et al. (2007) points out, assuming that a certain form

of data gathering would result in either only quantitative or only qualitative data

would be a fallacy.

Modeling is a line of HCI research that focuses on understanding user behav-

ior and providing a formal description (i.e. the model) about some part of user

interaction. Models can be used, for example, to predict skilled user performance,

behavior, and cognition during a task. Other families of models focus on predicting

human movements during a specific interaction task. Two recent accounts provide

an overview of modeling in HCI: MacKenzie (2003) presents an overview of predic-

tive and descriptive models; and John (2003) presents an overview on the models

based on human information processing.

Based on psychological research, the experimental approaches in HCI mainly pro-

vide quantitative data about a phenomenon. The often cited advantages of involving

experimentation are the objective evaluation of human performance, measurement

precision, and rigorous control of the research situation. Quantitative data can be

evaluated using statistical procedures to make inferences about the relations between

the sampled population and researcher-controlled variables.

Experimental approaches, however, have also been criticized, among other prob-

lems, 1) for limiting HCI research by ignoring the variations in and effects of in-

dividual behavior, 2) for being susceptible to confounding variables that are hard

to control, 3) for de-contextualization, and 4) for focusing too much on the casual

relations between the variables. The emphasis of experimental approaches on ob-

jective measurement and on strict control limits the range of behavior that can be

studied (Miller, 1984). In particular, controlled experiments reduce the situation

to a number of measurable independent and dependent variables. The reductionist

approach can, for instance, be seen in the studies of psychology of programming.

7

In those studies, for example, a performance measure – such as an average time of

a group of participants spent on a programming activity – can be related to some

of the characteristics of that group. Monk et al. (1993) call this lack of focus on

individual behavior as not paying “due attention to the richness (and fine detail) of

human behaviour”.

The limitations of experimentation in HCI motivated the shift to ethnographic

approaches (Ormerod et al., 2004). Ethnographic approaches, in contrast to con-

trolled experiments, typically provide qualitative data collected in a naturalistic

settings. Trying to cause as little distraction to the observed participants, an ethno-

graphic researcher investigates the participants who are already engaged in carrying

out their natural tasks. The goal of the ethnographic study is to gain a holistic un-

derstanding of phenomena. At the moment, there seems to be an ongoing discussion

about the role of ethnography in HCI research (Räsänen and Nyce, 2006).

What are the ways to best make use of such diametrically opposing methods?

Monk et al. (1993) discuss the tensions between experimentally rooted research

and ethnographic approaches to the study of computer-mediated communication.

They claim, for instance, that taking either of the two approaches to interpret the

same data can lead to different interpretations of the data. While arguing for more

ethnography-based research in HCI, in their attempt to reconcile the proponents

of these two approaches Monk et al. (1993, p.4) say that “Both ethnographic and

experimental methods have their place in the study of human thought and behavior.

The problem is to select the right method, and then to apply it correctly.”

While selecting the right method might be difficult, mixing different methods

seems to be a common practice in HCI research (Ormerod et al., 2004). Examples

of this approach can be seen in the work of Ormerod et al. (2004), integrating

ethnography and experimentation, or in the study of Murphy et al. (1999) combining

a case study approach and an experiment. Through the integration of multiple

perspectives, a deeper understanding of a phenomenon on one hand, and objective

evaluation of it, on the other hand can, with hope, be achieved.

It shall then come as no surprise that the current situation in research practice

is not anymore a debate of qualitative versus quantitative (Creswell, 2003). In-

stead, mixed approaches are employed “... because they work to provide the best

understanding of a research problem” Creswell (2003, p.12).

Using the terminology of McGrath (1995), methods (called modes of treatment)

are the “ways by which a researcher can deal with a particular feature of the hu-

man systems that are to be studied.” Measurement methods, a subset of modes of

treatment, are techniques to determine what value, state, or level the feature of in-

terest has. Eye-movement tracking (hereafter eye-tracking) – and similar tools such

as display-masking techniques – then can be seen as measurement techniques for

determining a feature of human visual system called visual attention.

8

Which methods of data collection and analysis to use are the central questions

in research design (Creswell, 2003). In past, eye-tracking has been used as a data

collection technique for various methods of HCI, including modeling and evalua-

tion.2 As it will be shown later, a great number of past retrospective eye-tracking

studies that evaluated user strategies take the reductionist approach to data and

measurements. This approach, which is supposed to capture, describe, and inform

about the user visual strategies, however, might be insufficient in more complex

problem-solving situations, such as debugging a program.

At the present, eye-tracking is considered to be a standard tool of an HCI analyst

(Renshaw et al., 2006). Yet, how to make use of the data to maximize the benefits

of the technology for evaluation purposes is not well understood. In this thesis

we therefore investigate one of the central questions in eye-tracking research. We

aim to apply the current approaches methods to eye-tracking analysis, identify their

methodological challenges, and suggest ways to address these problems.

1.6 Organization of the Thesis

This is a multiple-paper thesis that consists of an introduction and original research

articles. From the next chapter, we give an overview of the current situation in

two research areas that underpin the present work – that is the studies that used

eye-tracking for retrospective evaluation of computer displays and user strategies,

and the studies of psychology of programming. In the former, the state-of-the-art

of data analysis and interpretation methods, as conducted in recent studies that

employed eye-tracking data to evaluate user strategies with computer displays, is

presented. In the latter, the methodologies employed to the study behavior of com-

puter programmers, and the recent studies that used eye-tracking for doing so are

overviewed. After the overviews, the contribution of this thesis is reported as a ret-

rospective discussion of the research process and its results. This general discussion

complements the results and discussions in each of the original publications. Next,

summaries of the main findings and results are presented. The thesis concludes with

an outline for future work.

2The other mainstream of eye-tracking research, identified by Jacob and Karn (2003), is using
eye-tracking as a real-time input device. In this thesis we do not consider the methodological
challenges stemming from this research direction.

9

10

Chapter 2

Visual Attention and

Eye-Tracking Methodology

AS the eyes of the reader of this thesis dart over the text of this chapter, a set

of processes is orchestrated that produce the resulting mental representation of

the meaning of the text. Because parafoveal reading is difficult, a new region of text

needs to be fixated, encoded, and comprehended.

Studies of reading have greatly benefited from knowing where the eyes fixate

at during reading (Rayner, 1998), and visual attention tracking methods have been

employed to mediate that information. Reading, however, is a well-defined task and

also a task that is much more constrained than, for example, visual search (Goldberg

and Wichansky, 2003) or some other complex problem-solving tasks with modern

dynamic displays.

Besides reading (e.g., Just and Carpenter, 1980, Rayner, 1998), eye-tracking has

been employed in a wide range of studies and application areas, including gaze-based

interaction (e.g., Jacob, 1991, Jacob and Karn, 2003), eye typing (Majaranta and

Räihä, 2002), menu selection (Crosby and Peterson, 1991, Aaltonen et al., 1998),

usability (Goldberg and Kotval, 1998, 1999), driving (Underwood et al., 2003), or

in virtual reality (Duchowski et al., 2000, 2002). These and other investigations

show that there are several good reasons for employing eye-tracking as a research

methodology to investigate visual attention patterns. Among the many advantages

for applying eye-tracking to study human behavior, participants in eye-tracking

studies do not have to be trained to exhibit their natural strategies (as they need to

be trained when thinking aloud). In addition, most of the current eye-trackers are

highly non-invasive. These properties make eye-tracking a usable, non-intrusive tool

causing no or little interference with natural behavior. At the moment, eye-tracking

11

is considered to be a standard technique in HCI research (Renshaw et al., 2006).

In the following section, we first discuss the main assumptions upon which the

applied eye-tracking research relies and then we focus on the current methodologies

to track and analyze visual attention.

As do all vertebrates, humans have movable eyes. We move our eyes in order to

bring an image of the inspected object onto the fovea, a small and high-resolution

area of the retina where the cones are most densely packed. Once the image of

the object is stabilized on the retina, the information can be extracted. This way

visual attention is linked with the current gaze direction, and most of the time the

visual information is processed the visual attention is also diverted to the point of

inspection. In eye-tracking research, this principle is called an eye-mind assumption

(Just and Carpenter, 1980). In a complex information processing task, the connec-

tion between the focus of attention and gaze direction is presumably tight (Rayner,

1998).

There are, however, situations when visual attention and gaze direction are dis-

sociated; parafoveal or peripheral processing can be used to extract information

from the environment. As Duchowski (2003, p.14) points out: “...in all eye-tracking

work...we assume that attention is linked to foveal gaze direction, but we acknowl-

edge that it may not always be so.” This thesis rests on the assumption of Just and

Carpenter; however, similarly to Duchowski, we acknowledge that the focus of visual

attention and the direction of gaze might be, at times, dissociated.

Because of the limited size of the fovea, the gaze has to be re-directed to the new

locations of interest in the scene or object in order to allow for the new details to be

perceived and processed. Once the eyes are directed and stabilized on the area of

interest, the visual information can be extracted and encoded. The relatively stable

position of the gaze direction is called fixation, while the shift of the gaze between

two fixations is called saccade. A single saccade can last between 30 and 120 ms

and can span over 1 to 40 degrees of visual angle (Sibert and Jacob, 2000), with

velocities ranging up to 500 degrees per second (Rayner, 1998). It is assumed that

a) during the saccades the vision is suppressed and no information is extracted and

processed (this phenomenon is known as saccadic suppression (Matin, 1974)), and

b) once initiated, a saccade’s destination cannot be altered.

Fixations, on the other hand, are the movements of eyes during which infor-

mation can be extracted, encoded, and processed. This principle of the immediate

processing of information during a fixation is called the immediacy assumption (Just

and Carpenter, 1980). Typically, the fixation duration ranges from 200 to 300 ms

(Rayner, 1998) and is thought to be related to the processing required to extract

and interpret the information (Just and Carpenter, 1976, Goldberg and Kotval,

12

1999).1 Following the implications of the eye-mind assumption and the immediacy

assumption, if we can track the movements of the eyes, we can also obtain insights

into and investigate the path and focus of visual attention. Knowing which objects

and elements have been visually fixated, in which order, with what frequency, and

in which context, we can attempt to infer what cognitive processes were involved

in performing a task related to these objects. Previous research has indeed firmly

confirmed this relation among eye movements, visual attention, and underlying cog-

nitive processes (e.g., Just and Carpenter, 1976, 1980, Rayner, 1998).

Other types of eye-movements exist (Carpenter, 1988, Duchowski, 2003). Smooth

pursuits occur when the eyes track a moving object to match the velocity of the

eyes with that of the target’s and, therefore, reduce the target’s retinal motion

to minimum. Nystagmus eye movements serve to correct the motion of the head

or to attend to repetitive patterns. Miniature eye movements, such as drifts and

microsaccades, that might appear as a noise in the eye-movement signal are executed

to stabilize the retinal image during a fixation. Finally, the movements of the eyes

that are not conjugate, executed for instance when attending an approaching object,

are called vergences. For a more detailed review of eye-movements and their models,

we refer an interested reader to (Carpenter, 1988).

2.1 Visual Attention Tracking and Analysis

Accepting that the fixations and underlying processes are connected, how does one

make use of that information? Jacob and Karn (2003) distinguish between two ways

of using the gaze data from an eye-tracking device: real-time eye-tracking and retro-

spective analysis.2 The former approach involves gaze location as a direct interaction

medium, so that the eyes of the user have a direct impact on the interaction with

the interface in real time.

The latter use of gaze-data – on which this thesis is primarily focused – as

a retrospective analysis tool, is normally conducted in either a top-down way or

in a bottom-to-top fashion. For studies based on a cognitive theory (using the

top-down approach to data), Salvucci and Anderson (2001) propose relating the

eye-movements to the predictions of a process model. However, there are many

situations when the researcher approaches the analysis of eye-tracking data in a

bottom-up way: the resulting data are investigated for common patterns and only

then a model or a hypothesis about underlying cognitive processing is created.

This normally starts with a researcher defining so-called areas of interest, which

1There are numerous definitions of fixation in the literature. The working definition applied in
this thesis is the one of Jacob and Karn (2003).

2Retrospective analysis is sometimes also referred to as diagnostic use of eye-tracking.

13

are usually rectangular static areas covering the interface elements in question. The

researcher then conducts an experiment, records the gaze data, and, after the exper-

iment, processes the data into measures, tries to relate the measures over the areas of

interest to the manipulated variables and underlying cognitive processes. Therefore,

it is the central task of the eye-tracking researcher to operationalize the behavior

in terms of the eye-tracking measures, construct the measures from the recorded

gaze points, and retrospectively relate the measures to the observed, hypothetical,

or manipulated changes or interventions in the task and stimuli.

2.1.1 Eye-tracking Measures

Bower and Clapper (1989, p.298) pointed out that “The main difficulty with eye-

movement recordings [to study cognitive processes] is that the investigator is in dan-

ger of becoming buried in mounds of data as well as details of the technical apparatus.

Therefore scientists considering the use of eye-movement recordings are advised to

become familiar with the costs in time and money before they embrace such an ex-

pensive and data-rich source. Also they will need a set of practical data-reduction

programs to help them deal with the huge volume of eye-fixation data generated by a

few subjects reading just a few passages.”

Goldberg and Kotval (1998, 1999) proposed a set of eye-tracking measures that

allow for the reduction of eye-tracking data and for the automation of the evaluation

process. The set of eye-tracking measures includes (using the definitions of Jacob

and Karn (2003, p. 585)):

• Number of fixations: the number of fixations overall is thought to be negatively

correlated with search efficiency.

• Proportional time on each area of interest : on each area of interest, this mea-

sure is thought to reflect the relative importance of the area.

• Fixation duration: mean fixation duration is thought to be related to difficulty

with extracting information and with the depth of the required processing.

• Number of fixations on each area of interest : the number of fixations on a

particular area (e.g., on an interface element) should reflect the importance of

that area.

By using the measures, the large quantities of raw eye-tracking data can be

significantly reduced to make the analysis of the data more efficient. However,

how to interpret the data and relate them to the underlying processing or to the

usability aspects are tasks yet not completely understood, as discussed by Goldberg

and Wichansky (2003) and Jacob and Karn (2003).

14

Goldberg and Kotval (1999) also presented a classification of eye-movement mea-

sures. They proposed that a measure can be seen as temporal, if it describes a time-

based property of a scanpath, that is, the time spent on a certain area of interest.

For instance, the duration of a fixation is a temporal measure. Spatial measures,

on the other hand, describe the spread and coverage of a scanpath. For instance,

the number of saccades or scanpath length are both referred to as spatial measures.

A transition matrix, according to Goldberg and Kotval (1998) is a spatial measure

(and according to Goldberg and Kotval (1999) it is both a spatial and temporal

measure) that contains the number of transitions of visual attention between areas

of interest.

In their summary of recent usability studies, Jacob and Karn (2003) report on

the most commonly used eye-tracking measures. Of these studies, 11 made use of

number of fixations, seven reported the proportional time spent looking at each area

of interest. Another six studies used mean fixation duration and number of fixations

on each area, five employed the mean gaze duration and five reported the rate of

fixations per second. This thesis, however, does not focus on providing an exhaustive

list of all eye-tracking measures employed in usability studies, see (Jacob and Karn,

2003, Goldberg and Kotval, 1998) for a review and more details, respectively. It

is worthwhile to note that, based on the data provided by Jacob and Karn (2003),

an average of 14.6 participants take part in usability studies that incorporated eye-

tracking and had been reported in a scientific forum.

There are, however, also eye-tracking measures that have appeared recently and

have been employed to evaluate users’ visual behavior. In particular, a shift can

be observed from the measures computed from the raw eye-movement data to more

sophisticated measures and procedures that take the specific context of a study into

consideration. An example of context-specific eye-tracking measures can be found

in the study of Yoon and Narayanan (2004). The authors refer to coverage as the

percentage of areas of interest that were attended to for an interval greater than a

predefined threshold. They also investigate the order of fixations to measure how

systematically a user attends to casually related areas of interest.

While Yoon and Narayanan (2004) captured the correctness of the fixation se-

quence as a single number, also analyses of whole sequences of fixations – i.e. scan-

paths – based on string editing seem to be increasingly popular. Some examples of

this approach are the studies of Josephson and Holmes (2002) and Pan et al. (2004),

which made use of string algorithms to the compare similarity of fifteen seconds long

scanpaths of participants viewing repeating Web images and complete Web pages.

15

2.2 Interpreting Eye-Tracking Data in Usability Studies

Investigations that attempt to relate eye-tracking measures to aspects of usability

belong to the retrospective use of eye-tracking. In the aforementioned summary of

over twenty eye-tracking usability studies, Jacob and Karn (2003) acknowledge the

early human performance investigation of Fitts et al. (1950) as the first usability

study that incorporated eye-tracking. In the following we do not aim to review the

long history of all the previous usability studies that have incorporated eye-tracking;

instead, the aim is to highlight the typical approaches to eye-tracking data analysis

and interpretation and to the research settings of the previous studies.

The often cited study of Goldberg and Kotval (1999) can be considered as fol-

lowing the experimental and reductionist tradition of HCI. The implicit hypothesis

of the investigation – that is, whether there is an effect of poor or good design on

user search strategies as described by the eye-tracking data – is tested using para-

metric statistical procedures. The resulting eye-tracking measures – taking the form

of averaged data points at the end of the experiment – are supposed to provide

information about the user strategies.

The experimental interface Goldberg and Kotval (1999) employed was artificially

made and the task given to the participant consisted of only searching for targets

with a focus on the speed. The duration of a unit of the resulting eye-tracking data

averaged around 1.5 seconds.3 However, the interaction with modern computer

interfaces, such as with multimedia learning systems, can hardly be considered to

be simple target search task without more elaborate goals.

Recent studies, such as the web-page usability evaluation of Cowen et al. (2002),

recognize the problem and employ a more realistic task and context.4 Finding no

significant effects of task and page interaction on eye-tracking measures, the authors

discuss the possibility that the whole strategy might comprise of more than one type

of processing and it cannot be effectively evaluated by a single eye-tracking measure.

Finding no significant effects using the quantitative statistical approach, the authors

utilized the visualizations of the eye-tracking measures to find qualitative evidence

for their discussion.

Cowen et al. (2002) argue for establishing benchmark measures and investigating

the relation between underlying processing and eye-movement patterns. They also

suggest that the visibility of a target might influence the patterns and that more

tasks should be studied to uncover the factors affecting usability and eye-movement

patterns.

Recently, Renshaw et al. (2004) explored the depth of analysis of eye-tracking

3The paper of Goldberg and Kotval (1999) reports averages of 2.17 and 2.53 fixations for good
and poor interfaces, respectively.

4Mean total fixation duration in Cowen et al. (2002) ranges from 12 to 23.5 seconds.

16

measures and evaluated the design of two line charts. Total fixation duration, mean

fixation duration, and fixation rate were examined for five areas of the charts, using

a repeated-measures design and ANOVA. In addition, the temporal distribution of

the measures was investigated by segmenting the whole session into four five-second

intervals. This analysis revealed a persistent effect of the interval on the eye-tracking

measures.

Although segmentation yields new insights into strategies during chart-reading,

the interpretation of the results, as Renshaw et al. (2004) admit, is non-trivial. In

addition, achieving the increased temporal resolution of the analysis cannot be at

the moment fully automatized. Presumably, also in the study of Renshaw et al., the

segments had to be hand-coded, an unwanted trade-off an eye-tracking researcher

has to pay for the clearer view on the user strategies.

Although similar to previous investigations that employed relatively short tasks,

the descriptive study of Josephson and Holmes (2002) stands out from the pool

of studies reviewed in this chapter. To find representative sequences of fixations,

Josephson and Holmes (2002) used a variety of sophisticated data analysis pro-

cedures, including string editing, multidimensional scaling, and hierarchical cluster

analysis; no significance testing is reported. When facing the mixed results caused by

between-subject variability and personal preferences, the authors turned to visually

analysing and “eye-balling” the data sets to find explanations for the differences.

This overview has shown that eye-tracking studies have employed a variety of

techniques to describe ocular behavior and relate it to usability and user strategies.

The tasks given to participants were usually relatively simple, and the resulting se-

quences of eye-tracking data from which the measures were computed were limited to

a range of seconds. This approach to data extraction, interpretation and its relation

to underlying cognitive processing can be considered to belong to the reductionist

tradition of human-computer interaction studies.

Yet, several eye-tracking researchers have converged on the finding that the

analysis and interpretation of the resulting eye-tracking data is non-trivial, and

both complicated and tedious (e.g., Salvucci and Anderson, 2001). Jacob and Karn

(2003) even argue that ”[t]his daunting task remains a hindrance to more widespread

inclusion of eye-tracking in usability studies”. In the following section, we make a

distinction among three types of research situations and consider the “dauntingness”

of the analysis of eye-tracking data and its relation with the complexity of the task

and interaction.

17

2.3 Types of Research Situations

Modern computer applications – and generally all research situations where the

stimulus is unpredictable and users can interact with the display system freely –

introduce another challenge to researchers wishing to employ eye-tracking. The

stimuli in many previous studies have been static and so have the corresponding

areas of interest. Automation of the analysis of the resulting eye-tracking data

is rather simple in these cases and most manufacturers support this task by their

eye-tracking analysis software.

Let us consider, however, studies where the stimuli become dynamic. We can

further distinguish between two types of such studies. In one class of eye-tracking

studies the researcher has access to the system generating the display. This class

includes, for example, studies of Web page browsing or studies of driving with a

simulator.

The latter class of eye-tracking investigations includes studies in which the re-

searcher does not have access to the system generating stimuli. Studies of driving

on real roads or interaction with ambient environment belong to this class.

An access to the system calls that generate the dynamic content makes it possible

to map the eye-tracking data on the content. Current eye-tracking data analysis

tools, however, do not allow one to efficiently set up and perform the analysis of

such data. To deal with the dynamic nature of stimuli, behavioral researchers,

regardless of the type of the study, have often been left with only manual extraction

and annotation of fixation data. The problem with this approach to analysis is that

it requires considerable efforts on the part of the researcher, and perhaps is another

hindrance to the widespread use of eye-tracking techniques in more complex and

dynamic research situations.

Another consequence of dynamic scenes and free interaction in eye-tracking stud-

ies is that the resulting data might become sparse. To emulate real-world settings,

researchers allow participants to perform the task voluntarily, without imposing a

stricter control over what parts of the task the participants need to perform and

how. This is the case in studies of programming behavior or in studies of driving,

where in order to record natural behavior the participants need to be engaged in

the task without restrictions. For example, a researcher might ask whether the out-

put of a program has been visually attended more than some other representation

of the program during a debugging task. It might turn out that only some of the

participants willfully attend to the output of the program at all. This will cause

the resulting sets of data to become sparse, and poses limits on parametric statisti-

cal procedures. Given the effort and expense related to conducting an eye-tracking

study, the researcher might not choose to recruit more participants to ensure sta-

tistical validity of the sample. In addition, the sparseness of the data-sets might

18

also be caused by technical problems in eye-tracking, which might render parts of

the recordings unusable. Therefore, methods for dealing with the sparseness of the

eye-tracking data need to be developed.

2.4 The Restricted Focus Viewer: An Alternative Tool

to Track Visual Attention

An alternative method to eye-tracking, Focus Window Techniques (FWT) has been

designed to reduce the technical problems inherent to eye-tracking. The FWT screen

is blurred except for a small focused section that is supposed to be linked to users’

foci of visual attention. If users wish to investigate another part of the display, they

need to move the small focused section to that location. Because the technique

cannot lose the gaze as eye-trackers sometimes do – because it is not based on the

recording of the gaze direction from the eyes – it can be thought of as a partial

solution to the sparseness problem.

Recently, the Restricted Focus Viewer (Jansen et al., 2003), a tool that imple-

ments FWT, has been introduced as an alternative tool to track visual attention.

The tool blurs the computer display and restricts users to only a small focused spot

within an otherwise blurred stimulus. When researchers employ the Restricted Fo-

cus Viewer (RFV) to track the visual attention, they need to prepare several versions

of the stimuli with gradual levels of blurring. As a participant moves the focused

region using a computer mouse, the RFV records the movements of the spot over the

stimuli and stores them for later analysis. The tool collects the timestamped data

for the mouse and the keyboard events, the index of the focused region, the total

durations of sessions, and other events. Voice protocols can be recorded along with

the interaction data. The RFV tool, naturally, is not capable of collecting visual

attention data when the blurring is turned off.

The Restricted Focus Viewer has been validated in two experiments run by

Jansen et al. (2003); however, these validations involved only a relatively simple

reasoning tasks with visual stimuli. In other studies, RFV-based technology has been

applied 1) to discover the strategies of participants debugging computer programs

with an aid of multiple and linked visual representations of the programs (Romero

et al., 2002a,b, 2003a,b), 2) to investigate the usability of hyper-linked documents

(Tarasewich and Fillion, 2004, Tarasewich et al., 2005), or 3) to research shifts of

visual attention during the integration of text and graphics (Futrelle and Rumshisky,

2001). Similar to eye-tracking studies, the analysis and interpretation of the data

recorded by RFV and their relation to the investigated task is up to the researcher.

Usually, the so-called areas of interest (AOI) are defined within the interface and

19

several metrics are computed, such as the total or proportional time spent on an AOI.

How RFV-based measurements of visual attention during programming compare to

those of eye-tracking, is an open question.

2.5 Summary

Attempts to solve the major methodological challenges in eye-tracking, that is the

problems of how to automate the analysis of eye-tracking data and how to relate the

resulting measures to the underlying processing, have not yet arrived at a coherent

understanding of the process and the relation itself. Previous eye-tracking stud-

ies have mostly taken the reductionist-controlled approach to data collection and

analysis. While this approach might work where the research situation is relatively

controlled and simplistic, it is not clear whether it also applies to more complex and

natural domains. This gap necessitates an increase in the knowledge available about

the connection itself in a specific domain and the knowledge about how to conduct

the analysis to investigate the link in general.

Considering the dynamic modern computer interfaces, more studies are needed

to investigate the properties of eye-tracking data in that type of interaction. While

the technical problems with eye-trackers seem to be progressively eliminated by

industrial vendors or by alternative research tools to track visual attention, method-

ological problems still persist. The lack of methods to analyze and interpret the

eye-tracking data together with the low efficiency and limited functionality of avail-

able analysis packages continue to inhibit the spread of the promising technology.

20

Chapter 3

Behavioral and Cognitive

Aspects of Programming

PROGRAMMING has long been recognized as a challenging and cognitively

demanding task (Shneiderman, 1986, Hoc et al., 1990, Détienne, 2002). The

complexity of programming is multifarious, and lies in the need to acquire the un-

derstanding of and to coordinate many entities. These elements are often hidden,

latent, interconnected and interdependent. Success in programming requires spe-

cialized knowledge and expertise in a variety of subtasks and strategies. Some even

claim that “programming is far more complex than usual human mental activities

studied by psychologists” (Weinberg and Shulman, 1974, p.70).

One of the central skills in many programming tasks, such as during the creation,

maintenance and modification of a software product, is program comprehension – the

ability to understand programs written by others (Littman et al., 1986, Pennington,

1987), and also one’s own programs after an extended period.

Comprehension of a program means constructing an internal representation (men-

tal model) of the target software (von Mayrhauser and Vans, 1995). That means

that while comprehending a program, a programmer has to build an understanding

of what the program does and how it does it. Elements of a mental model include,

for example, text structures, chunks, plans, hypotheses, beacons and rules. During

program comprehension, a programmer also needs to uncover the various implicit re-

lations and hidden dependencies in the program and integrate those with the mental

representation of the program. The correct comprehension of a program, in turn,

allows the programmer to debug and modify the program. Thus, program com-

prehension is a complex cognitive process that involves several strategies, extensive

application, domain and program knowledge, and the coordination and integration

21

of new and existing knowledge.

Comprehension, a critical cognitive activity in programming (Brooks, 1983), is,

at the same time, one of the major activities carried out during software develop-

ment. Many see program comprehension as central for successful maintenance (e.g.,

Littman et al., 1986, von Mayrhauser and Vans, 1995, Corritore and Wiendenbeck,

2001). Rajlich (1994) claims that during software maintenance the comprehension

related costs make up 50% of total lifecycle costs. Layzell et al. (1993) estimate

that the maintenance and support costs make up more than half of the total costs.

Therefore, studying and understanding how a programmer approaches comprehen-

sion is important for supporting both task completion and productivity. In order

to develop tools to aid programmers in comprehension, the very process of program

comprehension needs to be first understood.

Several models of program comprehension have been proposed in the previous

research. In the following we will first review the related research in program com-

prehension, and then we give attention to the methodologies employed to study the

underlying cognitive processing.

3.1 Program Comprehension, Debugging, and Skill Dif-

ferences

Theories of program comprehension, the models of code cognition, attempt to ex-

plain how a programmer approaches and understands the program code. While all

comprehension theories agree that a programmer uses existing knowledge during

comprehension, they disagree about how the comprehension processes are carried

out and coupled with the knowledge to obtain the new knowledge about the program.

In broad terms, three types of program comprehension models were established and

investigated in past research: top-down models initiated by the work of Brooks

(1983) or Letovsky (1986), bottom-up models investigated, for example, by Penning-

ton (1987), and as-needed models proposed by Littman et al. (1986). For a survey

of the research about comprehension before 1995 see (von Mayrhauser and Vans,

1995). The research of program comprehension is still flourishing, as evidenced by

the models proposed by Mayrhauser and Vans (the integrated model of code cogni-

tion) (von Mayrhauser and Vans, 1996) or O’Brian et al.’s recent findings (O’Brian

et al., 2004).

How a novice becomes an expert is an important question in studies of prob-

lem solving and in studies of psychology of programming. Numerous studies have

investigated the effects of expertise on the performance and strategies of program-

mers. This research has clearly shown that expert programmers outperform novices

22

in several aspects. Expert programmers are superior in terms of domain knowledge

and strategies that lead to improved performance. In previous studies, experienced

programmers have found more bugs, found them faster, and tended to spend more

time on building a mental model of the problem (Gugerty and Olson, 1986b). Other

studies have shown that experts are also more able to remember specific parts of

the source code (Fix et al., 1993), they focus on relevant information needed to

solve the problem (Koenemann and Robertson, 1991), they are not committed to

one interpretation as novices (Vessey, 1985), and are, therefore, able to change their

strategies as needed.

Despite the superiority of expert programmers in terms of performance and

knowledge, several studies converge on the finding that the strategies involved in

comprehension do not differ between novice and expert programmers. Brooks (1983)

suggested that differences in comprehension strategies caused by expertise might not

be as large as those caused by differences in programming and domain knowledge.

Gugerty and Olson (1986a) have shown that while experts outperform novices in

debugging, the proportional times spent on different activities during comprehen-

sion are similar for the two groups. Based on the similarities found in the strategies,

it has been suggested that experts can make better use of the information and the

knowledge available.

Burkhardt et al. (2002) studied the effects of expertise and task on comprehen-

sion of an object-oriented program. It has been found that experts are better in

constructing mental representations. In particular, when asked to comprehend a

program for the purpose of documentation, experts constructed different situation

models than novices, although the program models were similar. The number of

comments produced by experts and novices was not different; however the source

of the comments and the expertise interacted significantly. When asked to com-

prehend a program for the purpose of reuse, no effects of expertise on performance

was found. Furthermore, strategies exhibited by novice and experts, as measured

by reuse activities, did not differ.

In summary, the previous findings seem to indicate that the increased perfor-

mance in program comprehension or debugging is not accompanied by a difference

in the externalized strategies; instead, larger knowledge base, better mappings be-

tween the program domain and programmer’s cognitive models and resources, and

experience in a familiar application domain all enable expert programmers to have

superior performance.

23

3.2 Investigating The Behavioral and Cognitive Aspects

of Programming

Given the importance of program comprehension and its understanding, there is a

great need for research methodologies that allow for a proper and effective inves-

tigation and analysis of the underlying processes. How do researchers then study

programmers performing a programming task like comprehension?

Several reviews of the methodologies employed in studies of programming have

been published. For example, a broad overview of the current research methods

used in the psychology of programming can be found in a classic collection edited

by Hoc et al. (1990). Although Shneiderman (1986) admits that there are many

ways to do research on programmers, he suggests that controlled experiments are

the authoritative methodology to produce reliable results.

The experimental tradition in the studies of programming is indeed notoriously

famous. Many empirical studies of programming borrow their methodologies from

experimental psychology (Blackwell et al., 2001); Blackwell et al. (2001) argue that

hypothesis testing is the main research technique employed in the studies of program-

ming. In the larger domain of empirical software engineering, utilizing hypothesis

testing and the associated statistical significance testing has “become the backbone of

the topic” (Miller, 2004, p. 183). Miller (2004), however, warns against the problems

with application of the technique. For example, he points out, human participants

in software engineering experiments have large variations in ability.

Individual variability among programmers is noted by many sources as discussed

by (Sheil, 1981). Regarding the individual variability among programmers of a sim-

ilar background, Sheil (1981, p.702) points out that in experimental designs “slight

systematic differences between conditions tend to be washed out by large within-

condition variation.” Yet, studies in psychology of programming tend to employ

controlled experimentation to study human information processing and problem-

solving.

For instance, Gilmore (1990) presents the studies of programming as having a

historical tendency toward experimentation and hypothesis testing; however, he also

identifies a shift towards observational and exploratory data collection. In addition

to hypothesis testing, observation indeed seems to be the second most popular type

of methodology employed in the studies of programmers, as seen from surveys of

program comprehension studies and data collection techniques. Mayrhauser and

Vans present an overview of the main program comprehension studies conducted

prior to 1996 and their experimental settings (von Mayrhauser and Vans, 1996).

A recent paper of Lethbridge et al. (2005) surveys the data collection methods

employed in software engineering research. In all of the surveyed studies, however,

24

no attempt to investigate visual attention and its role during comprehension had

been reported.

Regarding the data collection method employed to capture and analyze the un-

derlying processing, it turns out that most of the studies in the field made use of some

version of the think-aloud method (e.g., Brooks, 1977, Vessey, 1985, Letovsky, 1986,

Littman et al., 1986, Pennington, 1987, von Mayrhauser and Vans, 1996, Vessey,

1985, Ko and Myers, 2004, Owen et al., 2006, and many others). Using on the think-

aloud method, the studies typically conducted some version of protocol-analysis (Er-

icsson and Simon, 1984) to explore the underlying cognitive processing. For instance,

Littman et al. (1986) conducted an empirical study of ten professional programmers

performing a maintenance task. Using think-aloud protocols they showed that there

were two distinct comprehension strategies, a systematic and an as-needed strat-

egy. Programmers using the systematic strategy were able to acquire the knowledge

about the program and to perform a modification task successfully.

The approaches based on verbal reports, however, have been criticized widely

(e.g., Branch, 2000, Nielsen et al., 2002, van den Haak et al., 2003). While the think-

aloud protocol is undoubtedly a useful and well-grounded tool to study strategies

during programming, it does not provide detailed information about what particular

sources of information programmers attend to as they carry out the task. Analysis

of think-aloud data is also difficult and time-consuming (Chi, 1997). Some attempts

to formalize and improve the methodology of protocol analysis, however, exist (Chi,

1997, von Mayrhauser and Lang, 1999).

When verbal reports are applied to study novice participants, it might be ar-

gued that the need for verbalizing thoughts might interfere with otherwise natural

processing by adding an extraneous cognitive load (Nielsen et al., 2002). Because

many of the studies of programming strategies are conducted with novice partici-

pants performing some complex task of programming, it might be hypothesized that

the tasks impose a heavy cognitive load. This extraneous load might result in an

interference with their normal problem-solving strategies and, therefore, bias results.

In the context of usability studies, Goldberg and Wichansky (2003) also point out

that individuals are not aware of some aspects of behavior, such as the focus of

attention during a task, and these are, thus, hard to verbalize.

Besides the tools and techniques for recording the human behavior during pro-

gramming, also methodologies to analyze the cognitive processing and the resulting

outcomes are needed. The outcomes of program comprehension are the mental mod-

els acquired by the programmer during the comprehension task. Good and Brna

(2004) developed a schema based on the types of information found in comprehen-

sion summaries. The schema allows a researcher to evaluate the mental models

acquired during comprehension in terms of the proportions of different information

types, such as statements related to control-flow, data-flow, function or operation.

25

In addition, it allows a researcher to classify the statements according to the level

of abstraction describing the program objects. Recently, Byckling et al. (2004) sug-

gested that the irrelevant category should also be included in the schema.

Another alternative option to investigate the mental models are comprehension

questions, a method originally developed by Pennington (1987). The application of

comprehension questions is straightforward. After a comprehension task, or a part

of it has been completed, the participants are asked several questions that test the

information that they have available.

Comprehension questions, questionnaires, or comprehension summary analysis

answer questions about the outcome of the process, but not about the process itself.

Some researchers have therefore made use of a combination of two or more method-

ologies, such as Burkhardt et al. (2002) who used both comprehension questions and

think-aloud protocols. Both the process and the outcome of program comprehension

can then be studied using a combination of two methods. A relatively new data col-

lection technique employed in the studies of the processes involved in programming

is visual attention recording.

3.3 Studies of Visual Attention during Programming

Analysis of behavior based on visual attention data is becoming increasingly popular

in studies of programming. Previous studies in programming that employed visual

attention tracking focused, for example, on how programmers read the source code

(Crosby and Stelovsky, 1990), how programmers make use of and coordinate mul-

tiple representations (Romero et al., 2002a,b, 2003a,b) or on the effects a graphical

visualization of a program has on the visual attention patterns of novice program-

mers (Nevalainen and Sajaniemi, 2005).

Crosby and Stelovsky (1990) employed an eye-tracker to explore the patterns of

programmers’ visual attention while reading a binary search algorithm written in

Pascal. Using mostly qualitative approaches, but also parametric tests, the authors

analyzed fixation times and the number of fixations to reveal the strategies involved

in reading source code. Crosby and Stelovsky argue that while the participants with

greater experience paid attention to meaningful areas of source code and to complex

statements, novice participants, on the other hand, visually attended to comments

and comparisons. Both groups paid the least attention to the keywords, but did not

exhibit any systematic differences in reading strategies. Crosby and Stelovsky also

reported that the two most similar scanning patterns while reading an algorithm

belonged to subjects from opposite experience groups.

The attempt of Crosby and Stelovsky (1990) might be considered to be pioneer-

ing; however, only one representation of program was used at the time. Also, their

26

research focused mainly on the critical, but surface features of code and not on the

multiple and dynamic representations often present in modern program development

interfaces.

Figure 3.1: An IDE using multiple representations to present a program.

Multiple representations are commonly found in modern programming environ-

ments, where the main representation (e.g., the code) is accompanied by another

view on some aspect of the program. Figure 3.1 shows an example of a multirep-

resentational programming environment presenting the source code of a program, a

graphical representation of it, and its current output.

One of the first attempts to investigate visual attention patterns when debug-

ging in multirepresentational environments was that of Romero et al. (2002b). The

authors investigated the coordination strategies during debugging by measuring the

overall long-term times spent on different representations of a program (Romero

et al., 2002b). Using an environment based on RFV technology (Jansen et al., 2003)

and the traditional hypothesis testing framework and parametric statistical proce-

dures, Romero et al. provided insights into representation use and visual attention

behavior during debugging.

The measures of visual attention were computed by taking the same long-term-

27

aggregated perspective as the eye-tracking measures in the usability studies intro-

duced above; a measurement in this particular study was an averaged aggregate of

all data between the beginning and the end of a debugging session. Programming

experience, according to Romero et al., promoted more balanced switching behavior

between the adjacent representations of the program.

Also, other studies of visual attention in programming tended to analyze the

data sets on the most aggregated level (e.g., Nevalainen and Sajaniemi, 2005, 2006).

To investigate the link between the underlying processing and overt visual attention

patterns, in these, and many other studies, the hypothesis testing framework had

been utilized. Similarly as in other investigations, behavioral data were approached

from the long-term-means perspective.

For example, Nevalainen and Sajaniemi (2005) presented twelve participants

with a program comprehension task and two programming tools – a traditional tex-

tual environment and a graphical visualization system – and compared the resulting

visual attention patterns. As the dependent eye-tracking measures, the authors used

absolute viewing times (the sum of all fixations during each of the comprehension

sessions) and the proportions of these times over three discrete areas. Differences

were found in the ways participants targeted their visual attention while working

with a graphical program visualization tool compared to the patterns exhibited while

working with the textual programming tool. It seems likely, however, that the dif-

ferences in the absolute viewing times might have been related to or biased by the

time needed to complete the task using each of the tools. Interestingly, using any

of the tools produced about 58-64% of time being spent looking outside code or vi-

sualization. In addition, no significant effect of a tool on the mental models created

was found.

In another program comprehension study, Nevalainen and Sajaniemi (2006) em-

ployed a between-subject design and compared the total proportional fixation times

on the elements of a display between two groups using two different versions of a

program animation tool. Similarly to previous studies, the eye-tracking measures

were represented by long-term (approximately 15 minutes) averages. These data

sets were then analyzed using parametric statistical procedures. They found out

that most of the time was spent on reading the code, regardless of the group the

participants were assigned to. To investigate the results in a finer detail, Nevalainen

and Sajaniemi reported employing also a qualitative analysis of short segments of

video protocols with a superimposed gaze-path.

The approach of Uwano et al. (2006) for analyzing visual attention patterns

during programming is a contrast to the mainly quantitative methods of the studies

introduced above. Uwano et al. (2006) studied five intermediate programmers during

six short source code review tasks as they attempted to find a bug. Instead of

evaluating the recorded visual attention using statistical procedures, the authors

28

made use of the visualization of the line of code that a single programmer was

attending. This vertical point was plotted against time and the visualization served

then as the source of further analysis; this included, for example, estimating the

time a certain proportion of source code had already been attended.

The findings of Uwano et al. related to retrospective thinking suggest to use the

recorded eye-tracking patterns for educational or training purposes. These results

can be seen as supporting the motivation of Stein and Brennan (2004). Stein and

Brennan made use of gaze recordings of expert programmers during debugging to

support the performance of other programmers. Another group of programmers

found bugs more quickly after the gaze of one of the expert programmers had been

replayed to them.

Little has been done in the past to investigate how eye-tracking data can be uti-

lized to evaluate user strategies and the underlying processing during programming

tasks with dynamic computer environments. Although novel in employing multiple

representations of a program (e.g., Romero et al., 2002b) or studying short-term

effects of program animation on visual attention (e.g., Nevalainen and Sajaniemi,

2005), researchers have often approached the analysis of eye-tracking data in pro-

gramming only from a long-term, global point of view. The data have been treated

as aggregate means over a whole comprehension session. A single eye-tracking mea-

sure, such as the mean fixation duration or the total fixation time, is employed

to describe or evaluate a strategy of a number of participants performing a rather

complex cognitive process, such as comprehending a computer program.

Studies of visual attention in programming tend to be quantitative and often

reduce the situation to a number of eye-tracking measures. These approaches might

be an oversimplification of the underlying processes and demonstrate a need to

develop a more thorough understanding of the strategies involved in programming.

To characterize and analyze the cognitive processes involved in programming in

greater detail, therefore, other approaches need to be involved.

29

30

Chapter 4

Improving Methods to Analyze

Visual Attention Strategies in

Studies of Programming

“Aut Viam Inveniam Aut Faciam.”

– Hannibal Barca

IN the following sections, the main findings from the original reports are presented

with respect to the main focus of this thesis. The following sections consist of a

brief summary of the main objectives of each of the reported studies, and a summary

of the findings as reported in the papers. In addition, a discussion of the findings

and the methodological issues with respect to the thesis’ main aims is presented for

each publication. For the detailed results and exact tabulated values, we refer the

readers to the publications attached at the end of this thesis.

At the beginning of the research process, we adopted three eye-tracking measures

(the mean fixation duration, the proportional fixation time, and the frequency of

switching between areas of interest) and quantitative analysis methods to investigate

visual attention patterns of computer programmers.

For the first measure, the data were usually aggregated and analyzed with regard

to an area of interest or in overall for the whole display (e.g. a mean fixation duration

on output, and an overall mean fixation duration). For the proportional fixation

time, or the proportional count of fixations, the resulting data were calculated and

analyzed for each area of interest. Finally, for the frequency of switching, the data

were analyzed with regards to either the type of switch (e.g. any switch between

code and output) or/and for overall switching frequency regardless of the origin and

31

destination.

4.1 P1: A replication of a previous study in program-

ming using visual attention tracking

4.1.1 Background and aims

In (P1) we compared two tools to track visual attention during programming. We

conducted a full replication of a previous study of debugging that employed a tool

based on the FWT to track visual attention of programmers. In addition to tracking

visual attention using the RFV, we recorded the visual attention of programmers also

by a remote eye-tracking device. To investigate the possible effects of the RFV tool

on the strategies of programmers, participants performed one debugging task with

the restrictive view and another task without the restrictive view. The analysis of

the resulting data consisted of performing comparisons and correlations of the three

streams of visual attention data: a stream of data acquired by the RFV under the

blurring condition, a stream of data acquired by an eye-tracker under the blurring

condition, and a stream of data acquired by an eye-tracker under the unrestricted

full-display condition.

4.1.2 Results

An effect of blurring on the frequency of visual attention switches per minute and an

effect of tool on the frequency of switching were found. Under the blurred condition,

the programmers performed less switches than with the unrestricted display and the

eye-tracker measured more switches than the RFV tool. In addition, we discovered

an interaction effect of the tool and the type of switch on the number of switches.

The switching frequency data from RFV were not correlated with the data from the

eye-tracker.

Finding the effects of the RFV tool and blurring on the visual attention data,

we investigated whether and how the blurring might have affected on the debugging

strategies and performance of programmers. These behaviors were measured only

using the eye-tracker. While the performance of more experienced programmers

slightly increased when the display was blurred, there was no effect of the blurring

condition on the overall performance of programmers.

The proportional time spent on either one of the three main representations was

not affected by the blurring of the display. It is also worthwhile to note that the

distributions of the times spent on the main areas of the display were statistically

not different for the less and more experienced programmers, suggesting that both

32

groups engaged in similar strategies; however, an observation of the graphs of the

proportions indicated that more experienced programmers tended to attend the code

slightly more than the less experienced programmers.

Analysis of the frequency of visual attention switching indicated an effect of blur-

ring on the strategies of programmers; more experienced programmers performed

significantly fewer switches when the display was blurred. A correlation of the fre-

quencies of switching between the two conditions showed that more the experienced

programmers might have changed their switching strategies due to the blurring.

While not explicitly stated in (P1), the switching frequency of the two groups of

programmers was similar when the display was not blurred. This observation also

suggests that the dynamics of the coordination strategies was similar for the two

groups.

Finally, the mean fixation duration was measured and analyzed. This analysis

showed a constant increase in the mean fixation duration caused by the blurring,

and shorter mean fixation durations of more experienced programmers. Less expe-

rienced programmers did not exhibit any significant differences in the mean fixation

durations between the two conditions. Interestingly, there also was an effect of

the representation on the mean fixation duration; a graphical representation was

attended to using the shortest fixations.

4.1.3 Discussion of the findings

Although the RFV can solve the technical problems inherent in eye-tracking tech-

nology – such as noise in the data stream or the loss of gaze – it does produce

essentially the same stream of complex data as the eye-movement recording does;

and so it does not simplify the analysis and interpretation of data. On the grounds

of the results, we have to warn the potential users of the RFV against employing

the tool to track visual attention of users performing complex problem-solving tasks.

In our study of debugging, eye-tracking clearly outperformed the RFV in terms of

the validity of the visual attention data measurement. At the same time, the RFV

technique was shown to interfere with strategies of expert programmers and caused

higher mean fixation duration.

4.1.4 Methodological discussion

This study, from the methodological point of view, made use of the hypothesis testing

framework and took a long-term perspective on eye-tracking measures. A single

session was limited to ten minutes and also the corresponding three eye-tracking

measures were calculated to represent the strategy of the programmers during the

interval. No significant differences in the strategies under the natural condition were

33

found in terms of proportional fixation time and frequency of switching between areas

of interest. Yet, when video replays were analyzed, some low-level differences in the

strategies of the programmers were found. These could not have been described

using the employed approach.

The integrated development environment employed in this study was artificial.

Although participants could select which class of the source code would be shown

and what part of visualization would be displayed, the content of each was static

and the environment did not allow any other interaction. In the following study

we, therefore, employed a tool that allowed for a more natural interaction and we

employed only eye-tracking because of the problems found with the FWT-based

technique.

4.2 P2: An eye-tracking experiment in a dynamic pro-

gram visualization environment

4.2.1 Background and aims

In the second paper (P2), we began to evaluate the visual strategies of programmers

during the animation of a program. The study was designed to determine, whether

there is an effect of experience on the visual attention patterns of programmers.

Similar to the previous study, we employed a remote eye-tracker and the three eye-

tracking measures to capture and describe the patterns of visual attention.

There are, however, several differences between the first and the present study.

First, the task given to participants differentiates the studies; in the present study

participants were asked to comprehend a program to write a summary of it. Sec-

ond, the environment employed in the study allowed for dynamic visualization of

program execution; participants could invoke the visualization as often as they found

it necessary. Third, participants could voluntarily select whether, and how, to use

the visualization of the program or not. As a consequence of these two differences,

the whole comprehension session comprised of phases with and without animation

being displayed on the screen and these phases could occur irregularly during the

session. Finally, the participants were not limited in the time allocated to conduct

the task.

Except for one alternation, the resulting data were analyzed using a similar

approach as in the first study: the whole screen was divided into areas of interest

(code, visualization, output, and control), eye-tracking measures were aggregated in

time and across the areas, we used parametric quantitative statistics, and visualized

the data as plots of measures over the areas of interest. The difference in the analysis

approach was that we included only the eye-tracking data during the animation of

34

a program, as that was the only time when all representations were concurrently

available. We selected this approach to segmentation to avoid the contamination

of the results by alloying eye-tracking data from the two different tasks: multiple

representations coordination and code-reading.

4.2.2 Results

More experienced programmers performed the comprehension significantly faster

than less experienced programmers and spent proportionally more time reading the

source code. Mean fixation duration of experts was significantly shorter than that

of less experienced participants on all but the control-area. The effect of area on

the mean fixation duration was found to be significant at p = .052. From the

areas that contained any information related to the program, the shortest mean

fixation durations were on the output of the program, followed by the fixations on

visualization, and the longest fixations were paid on the source code of the program.

However, other two eye-tracking measures, relative fixation count and switching

frequency, appeared not to be sensitive to the difference in programming experience.

There was an effect of area of interest (representation) on the proportion of fixations.

Over a half of the time of the animation, all programmers visually attended to the

visualization (about 55% of all fixations); second mostly attended to was the textual

representation of the program (about 40% of all fixations). The raw difference of ap-

proximately 15% between the proportional times spent on these two representations

was statistically significant.

Programmers of both expertise groups performed most of the visual attention

switches between code and visualization. Overall, less experienced participants

tended to switch slightly more.1

4.2.3 Discussion of the findings

Consistent with the findings from the previous study (P1), mean fixation duration

was found to be sensitive to the level of expertise. The findings related to comple-

tion time are also consistent with previous studies of programming. However, the

expected differences in visual strategies did not materialize.

To our knowledge, (P2) had been the first study to employ eye-tracking to exam-

ine differences in visual strategies during program visualization. Finding differences

in the time to carry out the task, in the proportional time spent animating the

program, and in the mean fixation durations – but not in the other eye-tracking

metrics – this study sets the goal for the following investigations: Understanding

1The original paper fails to report that a t-test on the overall switching frequency showed no
significant difference between the groups (t(14) = .55, ns).

35

how to better interpret eye-tracking data, and how to identify the visual attention

strategies using eye-tracking and more efficient analysis methods and more accurate

measures.

4.2.4 Methodological discussion

There are several possible explanations for the surprising findings of this study.

While the discussion in (P2) considers confounds related to experimental setting,

such as sample size or a lack of difference in expertise, it is also possible that there

is, indeed, no difference in visual strategies.

In hindsight, it becomes, however, clear that the analysis approach employed in

the first two studies was not adequate to describe the eventual difference in the visual

strategies. The quantitative approach conducted on the relatively long segments of

data and with large areas of interest cannot completely describe all the nuances of

programmers’ visual behavior. It is thus possible that the areas of interest were

designed too coarsely and the actual differences happened on a finer level of detail.

4.3 P3: Effects of expertise on visual attention pat-

terns during dynamic program animation: a de-

tailed analysis

4.3.1 Background and aims

Although the previous study managed to describe some aspects of visual behavior

during programming, it indicated that the actual differences in visual strategies

might have happened on a level that was not captured by the selected analysis

approach. Therefore, in the third paper (P3), we focused further on the effects of

expertise on visual attention patterns as measured by an eye-tracker.

To achieve a more detailed level of analysis, we further divided the interface of

the programming tool into smaller areas of interest. In particular, the visualization

of a program contained views of different aspects of program execution. Thus, the

visualization area was further divided into finer level areas matching the different

views. In total, there were seven areas of interest. As a consequence, twenty-one

different types of switches were possible to perform while changing focus of attention

from one area to another. This allowed for comparing and contrasting the granularity

of the present analysis to the one conducted in the previous paper.

Another new level of detail of analysis introduced in this study concerns the

evaluation of the impacts of different programs on visual behavior during compre-

36

hension. Finally, we also conducted the analyses of 1) the correctness of program

summaries using a grade, and 2) the resulting mental models of programmers using

the approach of Good and Brna (2004).

4.3.2 Results

No significant effects of experience on performance and on the contents of mental

models were found. We also found no significant effects of the target program on

these dependent variables. However, there was an interaction effect between the

program and the type of the information in the resulting mental models.

Proportions of fixation counts were affected neither by expertise nor by program;

however, area of interest had an effect on the distribution of fixations. Also, there

was an interaction of program and area of interest on the proportional fixation

count.2 Other interactions were found to be not significant.

Frequency of visual attention switching was not significantly affected by the

program, while there was an effect of experience approaching significance at p =

.089. The type of switch had a significant effect on the switching frequency. The

interaction of program and switch type on the switching frequency was significant.3

The effect of experience and the interaction effect of experience and area on the

mean fixation duration were significant. There was no effect of program and no

interaction effect of program and area on the mean fixation duration. The mean

fixation duration of more experienced programmers was consistently shorter than

that of less experienced programmers, with the exception of the control area that did

not show any information related to the program and the measure was approximately

equal for both groups.

4.3.3 Discussion of the findings

This detailed analysis uncovered new facts about visual attention during interaction

with multiple representations. First, it showed that there were interaction effects of

2The paper misses to report on a further analysis of this interaction effect. A series of adjusted
pairwise t-tests discovered no statistical differences in proportional fixation counts between the
programs on code, output, control, and constant areas; however the measure was significantly greater
on method area during program 2 (t(16) = 3.79, p = .002), significantly smaller on expression area
during program 2 (t(16) = 2.25, p = .039), and significantly smaller on instance area during program
2 (t(16) = 4.64, p < .001).

3Pairwise comparisons, not shown in the paper, revealed that the frequency of switches was: 1)
higher between code and method areas in program 2 (t(15) = 2.97, p = .009), 2) lower between
code and instance areas in program 2 (t(15) = 3.48, p = .003), and 3) lower between expression
and instance areas in program 2 (t(15) = 6.33, p < .001).

37

program on visual attention strategies during animation. Attention to different ar-

eas changed when the program changed and also the type of switching followed these

differences. This finding can be explained by the differences in the programs. When

the programs differed, their resulting visualizations resulted in the graphical repre-

sentations that differed in many aspects. For example, when the program contained

more method calls – such as the recursive binary search program – consequently, the

visualization showed more information related to method calls. The increase in the

number of fixations that landed on the area that displays the visualization of the

method calls seem to be a natural consequence, as well as is the increased number

of switches per minute between the code and that area.

Although a great deal of variance was found in the strategies, the visualization

of the measures shows that more experienced programmers focused more on code

than the less experienced programmers did. The output and control areas were

attended with minimal number of fixations and we can safely discard their influence

on the distribution of fixations on other areas; therefore, the increase of the visual

attention on the code resulted in a lower number of fixations the more experienced

programmers paid to the visualization than the less experienced did. The increased

granularity of the areas of interest revealed that proportional fixation count is not,

in a statistical sense, sensitive to the effect of expertise. However, it allowed for

delineation of the distribution of visual attention on semantically distinct areas of

visualization and switching between them during program visualization.

The findings related to the frequency of visual attention switching seem to be

in partial contrast with those related to proportional fixation count. The effect of

experience on the switching frequency had not been, strictly speaking, statistically

significant. However, it approached what is traditionally recognized as an acceptable

level of statistical significance. It is hard to predict, however, whether if more

participants would have taken part in the study, would the analysis of variance have

shown a significant difference. Further studies need to be conducted to confirm

or reject that eventuality. Regarding the effect of program, the programmers were

switching their attention at about same rate; however, the programs influenced the

type of the switching.

In general, the strategical difference can be described on two levels: overall,

both groups spent about same time on different representations of the program and

switched between code and visualization at approximately the same rate; the more

experienced group switched the visual attention less often than the less experienced

group, a difference obvious especially within the four areas of visualization. Once

the more experienced programmers targeted their attention on the visualization,

they performed less switches within that area. Out of these switches, only the

difference in switching frequency between instances and method areas turned out to

be significant; however, because a great number of comparisons were performed, the

38

significant outcome of the test could have also occurred by chance.

Analysis of mean fixation durations confirmed the findings from the previous

studies. Increased experience in programming is characterized by shorter mean

fixation duration on program-related areas and in total. In addition, the effect of

area on mean fixation duration shows that information visualized in expressions

required the longest processing, followed by the mean fixation duration on code,

instances area, method area, in that order. The output of the programs and constant

area were attended with the shortest mean fixation durations.

4.3.4 Methodological discussion

From the methodological point of view, the results allow for a comparison of the

granularity of areas of interest as presented in (P2) with the increased spatial gran-

ularity of the present study. The increase in the granularity of the analysis – that

is, when a larger area of visualization is split into several smaller but semantically

distinct areas – brings about several interesting observations that have implications

for the use of this approach to study programming.

When the number of areas of interest increased, the analysis of frequency of

switching began to provide us with new perspectives on some differences in how

groups of programmers of varying experience deploy their visual attention during

comprehension. While programmers spent about same time visually attending the

regions of the interface, the temporal allocation of fixations between these regions

seems to better distinguish skilled and novice programmers.

Therefore, further analyses of strategical differences in visual attention during

programming with multiple representations should concentrate on the temporal prop-

erties of the strategies as seen in eye-tracking data collected from semantically mean-

ingful areas of interest. A switch of visual attention between two areas, compared

to the proportional gaze time on the two areas of interest, could become a promising

dynamic eye-tracking measure of cognitive activity.

There are, however, also drawbacks to using a fine-level of detail in the design of

areas of interest. Using the statistical approaches, the high number of areas might

result in a higher number of tests for post-hoc comparisons. To achieve a reasonable

power of statistical comparisons, a high number of participants have to be involved

in the experiments or the overall significance level has to be adjusted.

Similar to the previous report, it seems that the variability in visual strategies

impairs the ability of the analysis method to reliably detect the differences. When

the number of areas increases, some participants might choose not to attend to

particular areas. This behavior results in empty cells in the resulting data set – the

data set becomes sparse – and, thus, it poses problems for the statistical analysis.

Due to the missing values, whole cases of data are excluded from the data-sets,

39

further decreasing the power of the statistical tests.

One way to circumvent the problems is through the use of visualization of fix-

ations superimposed over the interface. (P3) shows a static visualization of the

most attended areas. This visualization, however, provides only a static view on the

strategies. Video recordings of gaze path of individual participants were instrumen-

tal in driving the subsequent research, because the more subtle differences in visual

strategies could be observed (regardless the non-significant findings of quantitative

statistical methods).

Another challenge of using a finer-level granularity in the analysis of the eye-

tracking data is the amount of labor associated with preparing the data sets for

analysis. This is especially true for segmenting the eye-tracking recordings into

shorter events, therefore, increasing the number of analysis units. Current analysis

software packages do not allow handling this task effectively; the duration of the

analysis intervals varies between subjects so that an alignment of the respective

intervals in time is not possible to do with the current tools.

The present findings do not present enough evidence to completely describe

the visual attention strategies of programmers. Instead, they provide a static and

relatively coarse view on the use of multiple program representations. It is likely

that programmers do engage in a variety of strategies and, thus, they do change

their strategies during the process, and they make use of different information at

different stages of the comprehension. In other words, the results suggest that it is

likely that the roles of the representations change during different stages of building

a mental model of a program.

Whether the building of the model and dynamics of the process is observable

in the visual strategies is not understood at the moment. In the following studies

we attempted to answer these questions by considering the temporal properties of

eye-tracking data.

4.4 P4: Levels of analysis of sparse eye-tracking data

4.4.1 Background and aims

Because the previous experiments did not provide sufficient evidence for the pre-

sumed differences in the visual attention patterns during comprehension, we further

considered the challenges of eye-tracking data analysis. Paper (P4) deals with the

efficiency of conventional analysis methods as applied in eye-tracking research: there

is a trade-off between increasing the number of participants to ensure the statistical

power of the tests and the feasibility of doing so.

The previous studies have shown that eye-tracking data in programming can

40

easily become sparse. In addition, the static measures of the use of different areas of

interest are not sufficient to evaluate the visual strategies involved in programming.

In (P4) we therefore propose and discuss two solutions to these two problems.

4.4.2 Results

A review of eye-tracking studies in programming that included some of the stud-

ies presented in this thesis (P2, P3) has shown the current research practices in

studying the role of visual attention during programming. With few exceptions, the

previous attempts to evaluate the visual attention strategies of programmers tended

to employ a factorial design and compared the resulting eye-tracking measures using

a parametric statistical procedure. Only a few studies have taken a visual approach

to the analysis of the visual attention, by, for example, analyzing the visual attention

patterns of a single programmer.

The review shows that a typical eye-tracking study in programming involves

about ten to sixteen participants (thirteen on the average). In most of the studies

contained in the sample a relatively short program was used and the participants

were given a task to comprehend or to debug the program. Similar to usability

eye-tracking studies, researchers divide the whole interface into areas of interest.

The eye-tracking measures are recorded and aggregated with respect to these areas

and the parametric statistical procedures are conducted to compare the measures

between the areas. The average duration of a session from which these measures are

constructed is about 13.5 minutes.

In (P4) we propose that studies of visual attention in programming should take

a visual approach to analysis and that the eye-tracking data-sets can be reframed

so that a binomial test can be conducted to investigate trends in eye-tracking data.

The eye-tracking data, we suggest, can be visually analyzed on at least three

levels of detail. On the lowest level, raw eye-position data can be plotted against time

and stimulus. In the domain of eye-tracking studies of programming, this approach

has rarely been used, but has recently been introduced by Uwano et al. (2006).

We make use of this approach to demonstrate that the same long-term eye-tracking

measure can represent two markedly different strategies during programming and

vice-versa. However, when plotted over time, the locations of the point of gaze show

that the differences in how two programmers allocate their attention happen on a

finer scale.

A conventional plot of aggregated eye-tracking measures has been used in a

variety of studies. However, in this paper we propose to arrange the eye-tracking

measures in a series of trials and plot them in time for each of the participants. This

arrangement allows for a single-case type of analysis of visual strategies.

On a hypothetical, but authentic, data-set we demonstrated that it is hard to

41

satisfy the assumptions of parametric statistical procedures when eye-tracking data

become sparse. Such analysis of sparse data can result in either low statistical

power or inadequate evaluation of the visual strategies. We, therefore, propose to

reframe the original data set to construct a new perspective on the eye-tracking data.

We then also suggest that a binomial test might be one of the alternatives to the

conventional procedures to evaluate visual strategies and we discuss the advantages

and disadvantages of this method.

4.4.3 Discussion

Perhaps due to the roots in research methods of psychology, modern eye-tracking

studies of programming tend to employ hypothesis-testing designs. These research

settings inherently lend themselves to quantitative data and to parametric statistical

analyses; mostly used are repeated-measures procedures that compare the means and

variances of two or more groups of measures.

Basili et al. (1999) state that experimentation in software engineering is difficult

and that carrying out empirical work is complex and time consuming. This seems

to be true for conducting and analysing experiments that employ eye-tracking. Au-

tomation of data extraction and analysis, together with the reductionist approach to

the situation, seem, at first, to be the efficient ways of dealing with the complexity

and increased labor.

By adopting the hypothesis testing designs and procedures, eye-tracking re-

searchers, however, “adhere” to the traditions of that framework. This, on one

hand, brings about the advantage being able to process large volumes of data au-

tomatically, but it also presents 1) danger of providing a too-coarse view on the

strategies, 2) threads of underpowered statistical results, and 3) problems when

data sets become sparse. In (P4) we discussed the last two challenges and pro-

posed some alternative ways to analyze the eye-tracking data. While not necessarily

novel, these approaches provide ways of triangulating the data and dealing with the

challenges of sparseness.

The first problem with the conventional analysis approach, the too-coarse level of

detail in strategies in programming, has been tackled first in (P3) by deconstructing

part of the interface into smaller areas. The approach suggested in the current report

requires deconstructing the data set into shorter segments in time and computing

new eye-tracking measures of the original metrics from these shorter segments.

Although the finer level of analysis of visual attention strategies in programming

brings new insights, its main disadvantage – as it has been argued also in the previous

discussion due to the inefficient software tools – lies in the excessive amount of efforts

researcher has to put into processing the data. Also, how to segment the data sets

and what should be the boundaries of the segmentation are tasks not well understood

42

at the moment; the following investigations are meant to answer this question.

The unequal number of trials when participants voluntarily engage in performing

some activity results in missing data and, hence, results in sparse data sets. By

reframing the original eye-tracking data into series of trials, we presented a method

for coping with these two intertwined problems inherent in the analysis of data from

programming studies.

The measures of proportional or total fixation time or the number of fixations

are often regarded as indicators of visual attention to spend time on a certain area

and of the importance of an area. An implicit proposal of (P4) is that the ratio

of this measure for two areas can therefore reflect the relative importance of one

area over another. In addition, when these ratios are sampled during a session and

arranged into a series, the resulting series of proportions can be analyzed for trends.

The resulting measure, however, should not be confused with the proportion of time

on each area of interest, and to our knowledge, it has not been previously presented

in the related literature.

4.5 P5: Role of representations as reflected in eye-tracking

measures during program animation

4.5.1 Background and aims

In paper (P5), we take a different approach to the analysis of eye-tracking data

and also attempt to deal with the sparse-properties of eye-tracking data. Adopting

the proposed analysis approach from (P4), we reframed the data from (P3) and

conducted a new analysis. We thus perform triangulation in the sense mentioned in

Sharp et al. (2007, p. 293): “Triangulation is a strategy that entails ... using more

than one data analysis approach on the same set of data”.

A motivation of this study was to find out what are the roles of representations

during different stages of comprehension and whether and how these roles change and

develop. The importance of a representation was operationalized as the proportional

time spent visually attending to the representation. To answer the question whether

about the relative importance of the two main representations (i.e. the code and

the visualization) changes over time, we employed the binomial test to investigate

prevailing trends in the series of ratios of fixation times. In addition, the trends in

the frequency of switches of visual attention and in the mean fixation durations were

analyzed. The two other areas of interest, the area containing the control buttons

and the output of the program, were not included in this analysis.

43

4.5.2 Results

The whole population of participants was divided into two groups, depending on

the number of times the visualization of the program execution was replayed. This

way of grouping resulted in significant differences in expertise between the groups.

Because of the findings from (P3) that suggested that there is an effect of the

target program on visual attention patterns, the visual attention data from the two

programs were analyzed separately.

Only the data from the less experienced group were transformed into series of

trials; however, the data from the remaining more-experienced participants were

analyzed for possible differences between the target programs. These findings are

summarized first.

More experienced participants split their attention between the code and visual-

ization in approximately the same way regardless of the target program. The ratio

of the total fixation time spent on the code to the total fixation time spent on the

visualization was slightly less than one during animations of both of the programs,

but did not significantly differ between the two programs.

Considering the dynamics of visual attention switching between any of the areas

of interest, more experienced participants exhibited about same attention switching

behavior during both of the target programs.

The overall mean fixation duration was shown not to be significantly affected by

the program being comprehended and the measure on each of the areas of interest

was about same between the programs. However, ANOVA analysis has shown an

effect of area of interest. The area containing the evaluations of expressions was

attended with the longest mean fixation duration, while the constants were attended

using the shortest fixation duration. The code area was attended with the fixations

whose mean durations were under the overall mean fixation durations.

The data sets of the less experienced group were transformed into 28 and 37

trials, respectively, for each of the two target program animations. The ratio of the

total fixation time on code to the total fixation time on the animation has shown an

increasing trend in both of the programs, indicating that the less experienced group

spent more time on the code than on the animation during the later phases of the

comprehension task.

The frequency with which the less experienced participants switched their atten-

tion between the areas, on the other hand, shown that there is a decreasing trend

in both of the programs.

Finally, the analysis of the mean fixation durations focused on possible trends

in the measure for each of the areas of interest and for the whole display. The only

statistically important decreasing trends were found in the mean fixation durations

on the areas containing the visualizations of methods and instances in one of the

44

programs. Other trends were not statistically significant; however, it can be observed

that the mean fixation duration increased on the source code of the program.

4.5.3 Discussion of findings

When working with multiple representations, one of the questions that need to be

answered is whether and how the role of representations changes as programmers try

to build the mental model of a program. Compared to the previous analyses of visual

attention in programming that described the overall distribution of fixations and

their transitions between the areas for the whole process, in this paper we analyzed

the trends in the eye-tracking measures during the process. Thus, in addition to

the previous static views on representation use during programming, this study

introduced an alternative perspective on the dynamics of visual attention strategies.

Different stages of the comprehension process were delimited by subsequent re-

plays of the visualization. The resulting segments were analyzed using the approach

suggested in (P4). The analysis of these series suggested that the use of different

representations of the program develops during subsequent uses of visualization. For

example, at the beginning of the comprehension, less-experienced participants used

the graphical representation more than during the later stages of comprehension. In

addition, the dynamics visual attention switching of the less experienced participants

can be characterized as decreasing. That means, at the beginning of comprehension

these programmers were performing higher number of switches per minute.

Taken together, the findings could reflect a difference in how and when the mul-

tiple representations are used and integrated. More-experienced programmers inte-

grated new information about the program at the later stages of comprehension, af-

ter they had visually attended the source code. On the other hand, less-experienced

programmers first made more use of the graphical representation while trying to co-

ordinate it with the textual representation through higher frequencies of switching.

At the end of the task, the less experienced programmers concentrated more on the

source code while not switching frequently to other available representations.

4.5.4 Methodological discussion

The findings presented here complement the previous knowledge on the visual strate-

gies during comprehension with multirepresentational programming environments.

Yet, they further exemplify the need for an increased granularity of temporal eye-

tracking data analysis.

While the analysis method based on the binomial distribution seem to be useful

in studies of programming, it also can be applied in other domains in which trends

and the dynamics of the visual strategies need to be evaluated.

45

4.6 P6: Temporal properties of eye-tracking data dur-

ing debugging with static representations

4.6.1 Background and aims

In (P6) we further investigate our claim from (P5) that argues that “the compre-

hension process ... cannot be effectively examined by studying long-term averages [of

eye-tracking measures]”. In this paper we, therefore, further investigated this issue

and examined the temporal changes in eye-tracking measures during debugging with

multiple available representations.

Many related studies approached behavioral measures from the reductionist per-

spective, where the reductionism takes the form of computing the long-term average

values at the end of an experiment and supposing that the measures provide infor-

mation about the processes that generated the data. The findings presented in the

previous papers, however, indicate that the temporal granularity of this approach is

not sufficient. Therefore, some form of segmentation of the eye-tracking data and a

finer-level analysis should be conducted to reveal the visual attention strategies as

the programmers work with the environment.

The segmentation strategy proposed in (P5) is based on the boundaries between

different tasks. In the present paper the segments are determined based on fixed

time intervals. A portion of the experimental data from (P1) served as a case

study and has been further analyzed using this segmentation strategy. Each of the

whole ten-minute debugging sessions was manually divided up into five two-minute

intervals to bring increased temporal detail into the analysis. Our motivation for

doing so was to explore the temporal properties of eye-tracking data.

From the original data set, two groups of participants with less and more ex-

perience in programming were formed. The result of this assignment materialized

not only as the statistically significant differences in experience levels, but also in

performance. A summary of the analysis of the eye-tracking data of the two groups

is presented in the following section.

4.6.2 Results

The analysis of proportional fixation times showed a statistically significant effect of

segment on the measure, an effect of areas of interest on the measure, and an effect

of experience. An interaction effect of segment and experience was not significant;

however, there was an interaction between segment and area.

A line plot visualizing the proportional fixation times during the five segments

showed that there were differences in how the two groups paid attention to different

representations during the session. The textual representation was attended to the

46

most; its role, however, changed during the process, during which the experts were

using it from about 75% of the total fixation time to about 97% of the time.

The use of the graphical representation negatively mirrored the use of the textual

representation, particularly evident in the regular patterns of novice programmers.

While the plots of the use of the textual and the graphical representations seem to

be similar for the two groups and appear to be constantly offset most of the time,

the main characteristic that separates the two experience groups is the use of the

output. Expert programmers gradually increased their attention to the output of

the program, reaching up to approximately 10% of the overall fixation time at the

last phase of debugging.

The analysis of the switching behavior was conducted for the overall frequency of

switches and for frequency of switches with respect to the type of switch. The main

effect of segment on the overall switching frequency was statistically significant,

however, the effect of experience was not. The line plot of the overall switching

frequency showed that the two groups exhibited similar behavior during the first

three phases of debugging. Both groups began with a higher frequency of about

eight switches per minute and dropped to about two switches per minute in the

second segment. During the third phase the frequency of switching returned to its

initial amplitude.

During the last two phases, however, expert programmers again increased the

frequency of switching behavior up to about nine switches per minute at the end of

the session. Novice programmers, at the same time, first decreased the switching to

finish the debugging with a slightly increased frequency of switches.

The breakdown of the overall switching behavior into three major types of

switches provided an explanation of the increased switching activity of the expert

group toward the end of the debugging session. The interaction between the segment

of a session, type of switch, and experience turned out to be statistically significant.

While both groups frequently switched their attention between textual and graphi-

cal representations, expert programmers also began to exhibit switches between the

source code and output during the later phases of the task.

4.6.3 Discussion of findings

Segmentation of the eye-tracking data into shorter intervals allowed us to form a

clearer picture of how programmers’ visual strategies during debugging change. In

summary, the three views on the visual attention patterns (i.e. the proportional time

spent on each representation, the overall- and the detailed visual attention switching

frequencies) provide information about the development of strategical differences in

novice and expert coordination activities.

Novice programmers engaged in two visual strategies: either switching frequently

47

between the code and visualization or output or focusing mainly on code and having

a low frequency of switches to other representations. Experts, in addition to these

two strategies, also exhibited a high-frequency of switching between code and output

and increased attention to the output areas at later phases of debugging. This finding

suggests that experts, more than novices, try to integrate the available information

and attempt to relate the source code of a program to the output of the program.

The findings also suggest that the use of representations as measured by eye-

tracking should not be regarded as constant throughout the debugging process.

The frequency of visual attention switching ranged from 1 to over nine switches

per minute and the proportional fixation time on code ranged from 64% to 97%.

Therefore, the temporal analysis of eye-tracking data needs to be conducted to reveal

the variety of strategies involved in programming.

4.6.4 Methodological discussion

Segmentation of eye-tracking data during complex problem-solving tasks seems there-

fore to be not only promising, but also necessary. There are several ways to conduct

the segmentation. For example, the segments can be determined by a fixed time

interval, as shown in this study. The relative simplicity of this segmentation strat-

egy can be seen as an advantage over other methods based on data, such as the one

conducted in (P5).

On the other hand, a weakness of the proposed segmentation strategy – with

regard to the numerical statistical analysis – is that it seems likely that experts who

found more bugs quicker were engaged in other activities at the later phases and,

therefore, their visual strategies were different from those of novices. Segments that

correspond with task boundaries, such as the points when a bug was found, might,

therefore, be better suited for statistical evaluation of user strategies.

While some level of automation of the analysis is supported by the present anal-

ysis tools, video replays, manual extraction and hard-coding of the scenes for each

new segment delimited by a task-reference point is still necessary. An eye-tracking

practitioner then needs to be aware that increasing the number of participants and

the temporal and spatial granularity of the analysis might not be feasible.

Finally, we observed that the eye-tracking measure of switching between two ar-

eas of interest might not completely capture the richness of programmers’ strategies.

Particularly during the later phases of debugging, more experienced programmers

tended to integrate all three representations by switching not only between two ar-

eas of interest, but by traversing through all available representations. The matrix

containing the transitions of visual attention between the representations then be-

comes asymmetrical; we suggest that the asymmetry of the matrix can possibly be

a future eye-tracking measure to evaluate user coordination strategies.

48

4.7 Contribution of the Author

The work presented in this thesis has not been conducted in isolation, but is a result

of joint efforts of several contributors. The author of this thesis was the principal

author of all publications and was responsible for the final drafting of the papers;

however, in some instances it is hard to evaluate the exact division of labor. The

author of this thesis was the main writer of the first publication (P1), has designed

and conducted the experiment and analyzed the resulting data.

In papers (P2, P3) the author was responsible for designing and conducting the

experiment, and analysing the data; Niko Myller’s assistance and help throughout

the process is acknowledged. The writing of the reporting paper (P3) was a joint

contribution of several authors. In particular, Niko Myller has contributed to the

overall work in many ways. Paper (P4) had two authors whose contribution was

about equal. Paper (P5) is a result of discussion with Justus Randolph, who pro-

vided many very useful insights and comments. In paper (P6) the author proposed

and conducted the analysis of the data and he was the primary writer.

49

50

Chapter 5

Summary of the Results

“Insanity: doing the same thing over and over again and expecting different results.”

– Albert Einstein

THE contributions of this thesis are many. The two main contributions lie in

1) advancing the methodological aspects of eye-tracking in studies of program-

ming and 2) in extending the body of knowledge about visual strategies during

programming with multirepresentational environments.

In particular, supportive evidence was presented for utilizing eye-tracking to

study visual attention in programming. We then also argued that approaching the

analysis of eye-tracking data sets only by adopting quantitative long-term reduction-

ist approaches might not be sufficient to evaluate the user’s visual strategies during

complex problem-solving processes. In several research inquiries, we were concerned

with gaining a deeper understanding of the problem and to relate visual attention to

complex reasoning processes. In those inquiries, we advocated employing a variety

of analysis approaches to eye-tracking data and we proposed interpreting the (orig-

inally) quantitative eye-tracking data from a more qualitative perspective. Using

these methods, we then described the strategies of programmers when comprehend-

ing or debugging a program in multirepresentational environments.

5.1 Low-Level and High-Level Eye-Tracking Measures

The findings presented in the previous chapters and in the original publications

suggest that the currently employed eye-tracking measures are not sufficient to com-

pletely evaluate user’s visual strategies during programming. While carrying out

a task, programmers engage in a variety of strategies, like reading a source code,

coordinating different representations, tracking a bug, searching for a statement, or

51

studying documentation. Elementary measures, such as the time spent attending

to the source code, might be useful to provide a static view on these strategies.

This thesis do not attempt to dismiss them. However, the richness and dynamics

of the strategies over time might not be visible when areas of interest match the

most general level of detail of the programming interface and the elementary mea-

sures are aggregated using a long-term time-frame. One of the conclusions of this

thesis is that the elementary eye-tracking measures need to be further processed

to better facilitate the exploration and identification of the user’s strategies during

programming.

Therefore, in addition to the classification of Goldberg and Kotval, we suggest

arranging eye-tracking measures as belonging to either of two categories that we label

low-level and high-level.1 Low-level eye-tracking measures are computed directly on

the information about single fixations or saccades and no other information is used.

For example, mean fixation duration, total fixation duration, or the total number

of fixations, are all low-level measures. Scanpath duration is yet another example

of a low-level eye-tracking measure that can be computed without other contextual

information, because it “can be calculated independently of the actual screen layout”

(Goldberg and Kotval, 1998, p. 531).

A high-level eye-tracking measure, on the other hand, is a higher-level composed

construct, amalgamating the low-level measures and other behavioral information,

such as time, task order, or other measures derived from eye-tracking data. For

example, the transition matrix can be regarded as a high-level eye-tracking measure,

as it contains not only the mere fixations; it attempts to capture the sequential

behavior of the visual attention in time and with respect to the areas of interest.

When the cells in the transition matrix are further manipulated and analyzed, new,

even higher level information on visual behavior can be obtained, as suggested in

(P4, P6).

For example, the counts of the transitions between each of the areas could be re-

lated to the time a user was carrying on the task – the counts of transitions could be

divided by the duration of the task to obtain the frequency of the switching – to de-

scribe the dynamics of the attention switching behavior between areas. Concerning

the transition matrix measure, Goldberg and Kotval (1998) suggest characterizing

the transition matrix by a single value: the number of active cells is divided by the

total number of cells in the matrix. Depending on the content, a large value of the

resulting measure would indicate a lengthy undirected scanpath.

Graphical visualizations of gaze behavior can be considered as yet another high-

level measure of the users’ visual strategies. Plots of fixations superimposed on the

1Other alternatives to label the measures could be direct and indirect, or independent and
contextual.

52

areas of interest in time can provide information about the distribution of the gaze

direction with respect to the stimuli within a given time segment. Static as well

as dynamic visualizations of eye-movements (video replays) can be utilized for this

approach.

All of the most often used eye-tracking measures that Jacob and Karn (2003)

listed belong to the low-level class of eye-tracking measures. We argue that to

study visual strategies during complex tasks, these measures, if used alone and

approached from the reductionist perspective, are inadequate to aid the researcher

in evaluating the link between visual attention and underlying processing. Single

measures, without the context of the sequence and task they belong to, and without

a link to the related stimuli, provide information only about a static, long-term

characteristics of the users’ strategies. As we have shown, these strategies often

change and evolve during programming activities and, therefore, low-level long-term

eye-tracking measures cannot completely evaluate them.

5.2 The Choice of Method

The choice of a particular measurement method and analysis approach might depend

on several factors, such as the type of research situation, on the driving research

question and analysis concerns, on the size of the sample population, on the length

of a unit of analysis, or on other properties of the data-set.

To answer the research questions related to the tools, this research has shown

that remote eye-tracking is a superior measurement method to an alternative method

to track visual attention in programming. Based on those findings, we recommend

the researchers in complex problem-solving domains, such as the psychology of pro-

gramming, consider employing eye-tracking to study aspects of visual attention.

Conventional quantitative approaches the to automation of the analysis of the

visual attention data operate on long-term eye-tracking measures and provide in-

formation about the overall distribution of visual attention on interface elements.

They, however, are not suitable for guiding a researcher investigating strategic dif-

ferences in visual attention during complex interaction tasks. In addition, it seems

that traditional measures of visual attention, such as fixations and saccades, are

not exhaustive enough and are not context-specific enough to guide the eye-tracking

researcher wanting to make sense out of eye-tracking data in programming.

To answer the research questions related to the analysis approaches, we therefore

suggest two ways of dealing with the problems. The first solution is to design and

employ the higher-level eye-tracking measures described above that can facilitate

answering the intuitive questions about visual attention patterns. In this thesis,

we suggested that eye-tracking measures should be arranged into series and seen as

53

consecutive trials; these series were analyzed for containing trends. This approach

helps to overcome the problems of sparse eye-tracking data sets that are common in

the type of studies conducted in this thesis.

The second solution suggested by this work is that more detailed and qualitative

approaches to analysis have to be employed and combined with the quantitative

views that eye-tracking measures naturally support. In particular, segmentation of

the data sets has been shown as a way to discover finer level differences in visual

strategies. Segmentation of lengthy eye-tracking data sequences and a segmentation

of the display into smaller, more semantically distinct areas of interest are just two

ways of bringing more detail into the conventional coarse-level analysis.

Combining different methods in HCI research is a usual practice (Sharp et al.,

2007) that leads to triangulation of results to achieve a better understanding of a

phenomenon. This thesis suggested that combining different analysis methods of

eye-tracking data and multiple measures allows for constructing a better picture of

the complex processes involved in programming.

To summarize the methodological viewpoint of this work, the studies reported

in this thesis show how different eye-tracking techniques, measures and the methods

to analyze the data can contribute to the understanding of the link between visual

attention and underlying processes in programming. To maximize the contribution

of each method, we advise the researchers of visual attention to (with references to

the papers that primarily discussed each item):

• Employ the Focus Window Technique with caution, as it tends to interfere

with natural strategies (P1).

• Approach the analysis of data on multiple levels of detail (P4).

• Focus the questions related to the visual attention patterns to also investigate

the temporal aspects of the strategies and reframe the data sets into consec-

utive trials in order to identify the potential trends in use of areas of interest

(P4, P5).

• Employ the ratio of two low-level eye-tracking measures of total fixation time

to reveal the relative importance of two areas of interest (P4, P5).

• Segment the sessions into meaningful shorter fragments (P6). In the case of

sparse datasets that can appear due to the segmentation, employ the binomial

analysis (P4).

• Capture and triangulate other contextual information about the interaction

and underlying processing to create a more complete picture (P3).

54

5.3 Visual Strategies of Programmers

By applying various data analysis methods, we have gained new insights into the

visual strategies of programmers. The new knowledge together with the analysis

methods and measures presented here provide the answers to the questions related to

visual attention strategies during programming. Therefore, in addition to advancing

methodological aspects of eye-tracking, this work contributes to the understanding

of the role of visual attention during programming with multiple representations.

More specifically, we found out that:

• Mean fixation duration is sensitive to the level of programming experience

(P1, P3).

• Different representations of a program are attended with different mean fix-

ation durations. A source code of a program is typically attended with the

longest fixations, while a graphical representation elicits shorter mean fixation

durations (P1, P3).

• Long-term proportional fixation times on different representations during vi-

sualization are not affected by experience in programming (P1, P3).

• The increased number of switches between the representations seem to in-

dicate that that expert programmers integrate more information than less

experienced programmers (P1, P6).

• Short-term proportional fixation times and the frequency of visual attention

switching reveal how and when programmers attempt to integrate information

from multiple sources (P5, P6). A detailed analysis of overall visual attention

patterns shows that expert programmers tend to first focus on understanding

the code (P5) and integrate more information mostly at the later phases of

comprehension and debugging. Experts, also, tend to attend to the output

and relate it to the source code of the program (P6).

• More experienced programmers attend more to source code than to other avail-

able representations (P1, P3, P6) and also attend to the source code more

than novice programmers do (P3, P6).

• During program visualization, there is an effect of the visualized program

on the general visual attention patterns (P3). However, more experienced

programmers employ similar strategies regardless of a program being compre-

hended (P5).

55

• Indicated by both long-term quantitative and by qualitative analyses, the vi-

sual strategies of experienced programmers are more diverse than the visual

strategies of less experienced programmers.

5.4 Recommendations to Eye-tracking Developers

A part of the research conducted in this thesis has been carried out using instruments

and tools supplied by the manufacturers of eye-tracking systems. Another part of

the research, however, could have not been performed without developing new tools

and methods to analyze eye-tracking data from the new perspectives introduced

above.

Based on the experiences with conducting eye-tracking research in the domain

of dynamic computer displays and based on the findings of this thesis, there are

recommendations we believe that manufactures of future eye-tracking systems and

tools need to make use of. The most important feature that is currently missing

and that would further improve the efficiency of analysis of eye-tracking data is a

systematic way for allowing mapping of eye-tracking data to dynamic scenes. The

following list also contains other features that the future systems should implement

and support, to further facilitate the evaluations of user’s visual strategies with

dynamic computer displays:

• Allow for dynamic areas of interest that can be created, disabled, moved, and

their geometry modified; all operations should be made available during both

the recording and the analysis process.

• Provide open ways of mapping dynamic content to the related eye-tracking

data. This can be achieved, for example, by allowing user applications to send

standardized events to the eye-tracking application to manipulate the areas of

interest during the recording time.

• Allow automatic analysis and visualization of the eye-tracking data with re-

spect to the aforementioned events.

• Provide means of building and applying customized analysis and visualization

methods and custom contextual eye-tracking measures.

56

Chapter 6

Conclusion

“You need the willingness to fail all the time. You have to generate many ideas and

then you have to work very hard only to discover that they don’t work. And you keep

doing that over and over until you find one that does work.”

– John W. Backus (3.12.1934 - 17.3.2007)

APPLYING a new data collection method requires an understanding of the ad-

vantages, possibilities, limitations and challenges of that method. McGrath

(1995) sees research methods as “bounded opportunities”; that is, a method not only

offers opportunities to gather knowledge not available through other methods, but

it also has inherent limitations in its use. In this thesis, the methodological issues

of eye-tracking as applied to the study of the visual strategies of programmers were

discussed.

The research reported in this thesis has presented eye-tracking as a superior

technology to track visual attention during programming with multiple representa-

tions. A comparison of eye-tracking with the Focus Window Technique has shown

the problems associated with restricting the displays by blurring and requiring users

to manually indicate the focus of attention.

Although eye-tracking is a tool that does not interfere with the natural strategies

of users, it produces essentially the same complex stream of behavioral data as other

methods. Even a short recording results in eye-tracking data of large volumes. For

example, an average number of fixations in the first study (P1) was approximately

1000 fixations per one participant during only the unrestricted display treatment.

Processing such mountainous streams of data manually is obviously not feasible.

Therefore, there is a need to expand the analysis methods and tools to these sit-

uations. One of the ways of dealing with the challenges is to develop automatic

approaches to analyze the eye-tracking data.

57

In this thesis, different approaches to analyzing eye-tracking data and evaluating

the visual strategies during programming were discussed. We began our investiga-

tion by applying the quantitative approaches to data analysis, as is the tradition in

eye-tracking usability studies and in experimental studies of psychology of program-

ming. We then expanded the variety of available analysis methods and argued 1) for

employment of a method to evaluate the trends in eye-tracking data sets that can

be sparse, 2) for the exploration of temporal properties of visual attention patterns,

and 3) for the employment of more qualitative methods to analysis.

Goldberg and Kotval (1999, p. 644), in the context of evaluating users’ strategies

during search tasks, argue that “strategy differences are most evident during lengthy

(e.g. 10-15 s) tasks”. Using their method, we have investigated the strategical

differences in tasks that are considerably longer and more complex. We proposed

to explore the multiple levels of detail present in the eye-tracking data that cannot,

we argue, be well explored by the purely quantitative approaches. Although not

necessary novel, the proposed approaches are not currently present in the repertoire

of eye-tracking studies nor are they supported by commonly available analysis tools.

Yet, they provide a more detailed level for interpretation and, thereby, allow us to

get a deeper understanding of the strategies involved in computer programming.

The analysis methods proposed in this thesis help not only to deal with the

challenges that an eye-tracking study of complex problem solving might face, the

improvements also help in the other part of the eye-tracking challenge – that is, in

interpretation of eye-tracking data. The method proposed in (P4) and applied in

(P5) requires reframing the research questions and data sets so that longer inter-

vals are segmented into shorter units. Similarly, segmentation of eye-tracking data

into shorter intervals based on a time frame, as introduced in (P6), suggests that

the eye-tracking researchers needs to find an appropriate segmentation strategy.

This instructive characteristic of the presented analysis methods guarantees that

the analysis of eye-tracking data is no longer approached only from the long-term

perspective.

When applied to the study of the visual attention strategies during programming

with multirepresentational environments, the proposed approaches helped not only

in the understanding of what the effects of experience on the strategies are in overall,

but also when they materialize. Expert programmers were shown to be better able

to integrate more information from the available representations. In particular, they

concentrated more on the textual representation at the earlier phases of program

understanding. During later phases, they focused on relating the code to the output.

Novice programmers, on the other hand, engaged in a limited set of strategies and

they seemed to alternate between them. In particular, they either performed a high

frequency of visual attention switching between code and graphical representation

or they tended to mainly maintain the focus of visual attention on one of them.

58

6.1 Questions for Future Research

This thesis hints at several directions that future research might take. The notion of

higher level eye-tracking metrics is one of them. In (P6) we proposed another way

of constructing higher-level measures. In particular, we suggested that the degree of

asymmetry of a transition matrix of switching frequency between different areas of

interest might be the next high-level eye-tracking metric. Although rooted in and

specific to the application domain, it is easy to imagine that this metric could also

be applied in other fields, such as usability.

The development of new high-level eye-tracking measures, however, requires a

further increase in the detail of the analysis by means of temporal and spatial seg-

mentation of the data sets. It is easy to envision the amount of manual labor and

time associated with each increase of detail. This progress needs to be accompa-

nied by improved analysis tools; thus, future eye-tracking research needs to carefully

consider software tool development.

The problem of identifying the meaningful segmentation strategies is left for

future research. An approach that we see promising is allowing for adaptive dura-

tion of the data segments, based on events during the process, to account for the

variability in the strategies.

In addition to the analysis methods discussed in this thesis, there are also other

ways to evaluate systematic differences in visual strategies. For example, Hyönä

et al. (2002) and Hyönä and Nurminen (2006) employed a clustering algorithm to

find individual differences in reading patterns. It is possible that clustering of data

sets produced by programmers during comprehension or debugging might yield new

insights into their visual strategies. We suggest that this direction is investigated in

future studies.

Our studies indicate that there is an entirely new level of detail in visual atten-

tion data during programming that has not been explored before. The studies of

programming are, however, only one particular domain we selected to conduct this

investigation. Our results have the potential of informing other domains, but future

work is needed to extend the findings.

59

60

References

Aaltonen, A., Hyrskykari, A., and Räihä, K.-J. (1998). 101 spots, or how do users
read menus? In CHI ’98: Proceedings of the SIGCHI conference on Human factors
in computing systems, pages 132–139, New York, NY, USA. ACM Press/Addison-
Wesley Publishing Co.

Basili, V. R., Shull, F., and Lanubile, F. (1999). Building knowledge through families
of experiments. IEEE Transactions on Software Engineering, 25(4):456–473.

Bednarik, R., Myller, N., Sutinen, E., and Tukiainen, M. (2005). Effects of expe-
rience on gaze behaviour during program animation. In Proceedings of the 17th
Annual Psychology of Programming Interest Group Workshop (PPIG’05), pages
49–61, Brighton, UK.

Bednarik, R., Myller, N., Sutinen, E., and Tukiainen, M. (2006). Analyzing Individ-
ual Differences in Program Comprehension. Technology, Instruction, Cognition
and Learning, 3(3-4):205–232.

Bednarik, R. and Randolph, J. (2008). Studying cognitive processes in program
comprehension: Levels of analysis of sparse eye-tracking data. In Hammoud, R.,
editor, Passive Eye Monitoring: for Safety, Security, Communications, Medical
and Web Applications. Springer.

Bednarik, R. and Tukiainen, M. (2006). An eye-tracking methodology for character-
izing program comprehension processes. In ETRA ’06: Proceedings of the 2006
symposium on Eye tracking research & applications, pages 125–132, New York,
NY, USA. ACM Press.

Bednarik, R. and Tukiainen, M. (2007a). Analysing and interpreting quantitative
eye-tracking data in studies of programming: Phases of debugging with multiple
representations. In Proceedings of the 19th Annual Psychology of Programming
Interest Group Workshop (PPIG’07), pages 158–172, Joensuu, Finland.

Bednarik, R. and Tukiainen, M. (2007b). Validating the restricted focus viewer: A
study using eye-movement tracking. Behavior Research Methods, 39(2):274–282.

Blackwell, A. F. (2002). First steps in programming: A rationale for attention in-
vestment models. In HCC ’02: Proceedings of the IEEE 2002 Symposia on Human
Centric Computing Languages and Environments (HCC’02), page 2, Washington,
DC, USA. IEEE Computer Society.

61

Blackwell, A. F., Whitley, K. N., Good, J., and Petre, M. (2001). Cognitive factors
in programming with diagrams. Artificial Intelligence Review, 15(1/2):95–114.

Bower, G. H. and Clapper, J. P. (1989). Experimental methods in cognitive science.
pages 245–304.

Branch, J. L. (2000). Investigating the information-seeking processes of adolescents:
The value of using think alouds and think afters. Library and Information Science
Research, 22(4):371–392.

Brooks, R. (1977). Towards a theory of the cognitive processes in computer pro-
gramming. Int. Journal of Man-Machine Studies, 9:737–751.

Brooks, R. (1983). Towards a theory of the comprehension of computer programs.
Int. Journal of Man-Machine Studies, 18:543–554.

Burkhardt, J., Détienne, F., and Wiedenbeck, S. (2002). Object-oriented program
comprehension: Effect of expertise, task and phase. Empirical Software Engineer-
ing, 7(2):115–156.

Byckling, P., Kuittinen, M., Nevalainen, S., and Sajaniemi, J. (2004). An inter-rater
reliability analysis of good’s program summary analysis scheme. In Proceedings
of the 16th Annual Workshop of the Psychology of Programming Interest Group
(PPIG 2004), pages 170–184, Institute of Technology Carlow, Ireland.

Carpenter, R. H. S. (1988). Movements of the Eyes. (2nd ed.). Pion, London, UK.

Carroll, J. M. (2003). HCI Models, Theories, and Frameworks. Morgan Kaufman
Publishers, San Francisco.

Chi, M. T. H. (1997). Quantifying qualitative analyses of verbal data: a practical
guide. Journal of Learning Sciences, 6(3):271–315.

Corritore, C. L. and Wiendenbeck, S. (2001). An exploratory study of program
comprehension strategies of procedural and object-oriented programmers. Inter-
national Journal of Human-Computer Studies, 54(1):1–23.

Cowen, L., Ball, L. J., and Delin, J. (2002). An eye-movement analysis of web-
page usability. In Faulkner, X., Finlay, J., and Détienne, F., editors, People and
Computers XVI: Memorable yet Invisible: Proceedings of HCI 2002. Springer-
Verlag Ltd.

Creswell, J. W. (2003). Research Design: Qualitative, Quantitative, and Mixed
Methods Approaches. SAGE Publications. second edition.

Crosby, M. and Peterson, W. (1991). Using eye movements to classify search strate-
gies. In Proceedings of the Human Factors Society 35th Annual Meeting, pages
1476–1480.

Crosby, M. E. and Stelovsky, J. (1990). How do we read algorithms? A case study.
IEEE Computer, 23(1):24–35.

Détienne, F. (2002). Software Design - Cognitive Aspects. Springer-Verlag, Inc.,
London, UK.

Duchowski, A. T. (2003). Eye Tracking Methodology: Theory & Practice. Springer-

62

Verlag, Inc., London, UK.

Duchowski, A. T., Medlin, E., Cournia, N., Gramopadhye, A., Melloy, B., and Nair,
S. (2002). 3D eye movement analysis for VR visual inspection training. In ETRA
’02: Proceedings of the symposium on Eye tracking research & applications, pages
103–110, New York, NY, USA. ACM Press.

Duchowski, A. T., Shivashankaraiah, V., Rawls, T., Gramopadhye, A. K., Melloy,
B. J., and Kanki, B. (2000). Binocular eye tracking in virtual reality for inspection
training. In ETRA ’00: Proceedings of the symposium on Eye tracking research
& applications, pages 89–96, New York, NY, USA. ACM Press.

Ericsson, K. A. and Simon, H. A. (1984). Protocol analysis: Verbal reports as data.
Braford Books/MIT Press, Cambridge, MA.

Fitts, P. M., Jones, R. E., and Milton, J. L. (1950). Eye movement of aircraft
pilots during instrument-landing approaches. Aeronautical Engineering Review,
(9):24–29.

Fix, V., Wiedenbeck, S., and Scholtz, J. (1993). Mental representations of programs
by novices and experts. In CHI ’93: Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 74–79, New York, NY, USA. ACM
Press.

Futrelle, R. P. and Rumshisky, A. (2001). Discourse structure of text-graphics doc-
uments. In Proceedings of 1st International Symposium on Smart Graphics, New
York, NY, USA. ACM Press.

Gilmore, D. J. (1990). Methodological issues in the study of programming. In Hoc,
J. M., Green, T. R. G., Samurcay, R., and Gilmore, D. J., editors, The Psychology
of Programming, pages 83–98. Academic Press.

Goldberg, J. and Kotval, X. P. (1998). Eye movement-based evaluation of the com-
puter interface. In Kumar, S. K., editor, Advances in Occupational Ergonomics
and Safety, pages 529–532. IOS Press.

Goldberg, J. and Kotval, X. P. (1999). Computer Interface Evaluation Using Eye
Movements: Methods and Constructs. International Journal of Industrial Er-
gonomics, 24:631–645.

Goldberg, J. H. and Wichansky, A. M. (2003). Eye tracking in usability evaluation:
A practitioner’s guide. In Hyönä, J., Radach, R., and Deubel, H., editors, The
Mind’s Eye: Cognitive and Applied Aspects of Eye Movement Research, pages
493–516. Elsevier Science.

Good, J. and Brna, P. (2004). Program comprehension and authentic measurement:
a scheme for analysing descriptions of programs. International Journal of Human
Computer Studies, 61(2):169–185.

Gugerty, L. and Olson, G. (1986a). Debugging by skilled and novice programmers. In
CHI ’86: Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 171–174, New York, NY, USA. ACM Press.

Gugerty, L. and Olson, G. M. (1986b). Comprehension differences in debugging

63

by skilled and novice programmers. In First Workshop on Empirical Studies of
Programmers on Empirical Studies of Programmers, pages 13–27.

Hoc, J. M., Green, T. R. G., Samurcay, R., and Gilmore, D. J. (1990). The Psy-
chology of Programming. Academic Press.

Hyönä, J., Lorch, R., and Kaakinen, J. K. (2002). Individual differences in reading
to summarize expository text: Evidence from eye fixation patterns. Journal of
Educational Psychology, 94:44–55.

Hyönä, J. and Nurminen, A.-M. (2006). Do adult readers know how they read?
evidence from eye movement patterns and verbal reports. British Journal of
Psychology, 97:31–50(20).

Jacob, R. J. K. (1991). The use of eye movements in human-computer interaction
techniques: what you look at is what you get. ACM Transactions of Information
Systems, 9(2):152–169.

Jacob, R. J. K. and Karn, K. S. (2003). Eye tracking in human-computer interaction
and usability research: Ready to deliver the promises (section commentary). In
Hyönä, J., Radach, R., and Deubel, H., editors, The Mind’s Eye: Cognitive and
Applied Aspects of Eye Movement Research, pages pp. 573–605. Elsevier Science.

Jansen, A. R., Blackwell, A. F., and Marriott, K. (2003). A tool for tracking visual
attention: The Restricted Focus Viewer. Behavior Research Methods, Instru-
ments, and Computers, 35(1):57–69.

John, B. E. (2003). Information processing and skilled behavior. In Carroll, J. M.,
editor, HCI Models, Theories, and Frameworks, pages 55–101, San Francisco.
Morgan Kaufman Publishers.

Josephson, S. and Holmes, M. E. (2002). Visual attention to repeated internet
images: testing the scanpath theory on the world wide web. In ETRA ’02: Pro-
ceedings of the 2002 symposium on Eye tracking research & applications, pages
43–49, New York, NY, USA. ACM Press.

Just, M. A. and Carpenter, P. A. (1976). Eye fixations and cognitive processes.
Cognitive Psychology, 8:441–480.

Just, M. A. and Carpenter, P. A. (1980). A theory of reading: From eye fixations
to comprehension. Psychological Review, 87(4):329–354.

Ko, A. J. and Myers, B. A. (2004). Designing the whyline: a debugging interface for
asking questions about program behavior. In CHI ’04: Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 151–158, New York,
NY, USA. ACM Press.

Koenemann, J. and Robertson, S. P. (1991). Expert problem solving strategies for
program comprehension. In CHI ’91: Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 125–130, New York, NY, USA. ACM
Press.

Law, B., Atkins, M. S., Kirkpatrick, A. E., and Lomax, A. J. (2004). Eye gaze
patterns differentiate novice and experts in a virtual laparoscopic surgery train-

64

ing environment. In ETRA’2004: Proceedings of the Eye tracking research &
applications symposium, pages 41–48, New York, NY, USA. ACM Press.

Layzell, P. J., Champion, R., and Freeman, M. J. (1993). Docket: program
comprehension-in-the-large. In Proceedings of IEEE Second Workshop on Pro-
gram Comprehension, pages 140–148.

Lethbridge, T. C., Sim, S. E., and Singer, J. (2005). Studying software engineers:
Data collection techniques for software field studies. Empirical Software Engineer-
ing, 10(3):311–341.

Letovsky, S. (1986). Cognitive processes in program comprehension. In Papers
presented at the first workshop on empirical studies of programmers on Empirical
studies of programmers, pages 58–79, Norwood, NJ, USA. Ablex Publishing Corp.

Littman, D. C., Pinto, J., Letovsky, S., and Soloway, E. (1986). Mental models
and software maintenance. In Papers presented at the first workshop on empir-
ical studies of programmers on Empirical studies of programmers, pages 80–98,
Norwood, NJ, USA. Ablex Publishing Corp.

Lukka, K. (2003). The constructive research approach. In Ojala, L. and Hilmola,
O.-P., editors, Case study research in logistics. Publications of the Turku School
of Economics and Business Administration, Series B 1, pages 83–101.

MacKenzie, I. S. (2003). Motor behavior models for human-computer interaction.
In Carroll, J. M., editor, HCI Models, Theories, and Frameworks, pages 27–54,
San Francisco. Morgan Kaufman Publishers.

Majaranta, P. and Räihä, K.-J. (2002). Twenty years of eye typing: systems and de-
sign issues. In ETRA ’02: Proceedings of the symposium on Eye tracking research
& applications, pages 15–22, New York, NY, USA. ACM Press.

Matin, E. (1974). Saccadic suppression: a review and an analysis. Psychological
Bulletin, 81(12):889–917.

McGrath, J. E. (1995). Methodology matters: doing research in the behavioral
and social sciences. In Human-computer interaction: toward the year 2000, pages
152–169, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Miller, J. (2004). Statistical significance testing – a panacea for software technology
experiments? Journal of Systems and Software, 73(2):183–192.

Miller, S. (1984). Experimental Design and Statistics. Routledge, London, UK.
Second edition.

Monk, A., Nardi, B., Gilbert, N., Mantei, M., and McCarthy, J. (1993). Mix-
ing oil and water?: Ethnography versus experimental psychology in the study of
computer-mediated communication. In CHI ’93: Proceedings of the SIGCHI con-
ference on Human factors in computing systems, pages 3–6, New York, NY, USA.
ACM Press.

Murphy, G. C., Walker, R. J., and Baniassad, E. L. A. (1999). Evaluating emerging
software development technologies: Lessons learned from assessing aspect-oriented
programming. IEEE Trans. Software Eng., 25(4):438–455.

65

Nevalainen, S. and Sajaniemi, J. (2004). Comparison of three eye tracking devices in
psychology of programming research. In Proceedings of the 16th Annual Workshop
of the Psychology of Programming Interest Group (PPIG 2004), pages 151–158,
Institute of Technology Carlow, Ireland.

Nevalainen, S. and Sajaniemi, J. (2005). Short-term effects of graphical versus
textual visualisation of variables on program perception. In Proceedings of the
17th Annual Psychology of Programming Interest Group Workshop (PPIG’05),
pages 77–91, Brighton, UK.

Nevalainen, S. and Sajaniemi, J. (2006). An experiment on short-term effects of an-
imated versus static visualization of operations on program perception. In ICER
’06: Proceedings of the 2006 international workshop on Computing education re-
search, pages 7–16, New York, NY, USA. ACM Press.

Nielsen, J., Clemmensen, T., and Yssing, C. (2002). Getting access to what goes
on in people’s heads? Reflections on the think-aloud technique. In Proceedings of
The Second Nordic Conference on Human-Computer Interaction (NordiCHI’02),
pages 101–110, New York, NY, USA. ACM Press.

O’Brian, M. P., Buckley, J., and Shaft, T. M. (2004). Expectation-based, inference-
based, and bottom-up software comprehension. Journal of Software Maintenance
and Evolution: Research and Practice, 16:427–447.

Ormerod, T. C., Mariani, J. A., Morley, N. J., Rodden, T., Crabtree, A., Mathrick,
J., Hitch, G., and Lewis, K. (2004). Mixing research methods in HCI: Ethnography
meets experimentation in image browser design. In EHCI/DS-VIS, pages 112–128.

Owen, S., Brereton, P., and Budgen, D. (2006). Protocol analysis: a neglected
practice. Communications of the ACM, 49(2):117–122.

Pan, B., Hembrooke, H. A., Gay, G. K., Granka, L. A., Feusner, M. K., and Newman,
J. K. (2004). The determinants of web page viewing behavior: an eye-tracking
study. In ETRA ’04: Proceedings of the 2004 symposium on Eye tracking research
& applications, pages 147–154, New York, NY, USA. ACM Press.

Pennington, N. (1987). Comprehension strategies in programming. In Empirical
studies of programmers: second workshop, pages 100–113, Norwood, NJ, USA.
Ablex Publishing Corp.

Rajlich, V. (1994). Program reading and comprehension. In Proceedings of Sum-
mer School on Engineering of Existing Software, pages 161–178, Dipartimento di
Informatica, University of Bari, Italy.

Rayner, K. (1998). Eye movements in reading and information processing: 20 years
of research. Psychological Bulletin, 124:372–422.

Renshaw, J. A., Finlay, J., and Webb, N. (2006). Getting a measure of satisfaction
from eyetracking in practice. In CHI ’06: CHI ’06 extended abstracts on Human
factors in computing systems, pages 1723–1726, New York, NY, USA. ACM Press.

Renshaw, J. A., Finlay, J. E., Ward, R. D., and Tyfa, D. (2004). Understand-
ing visual influence in graph design through temporal and spatial eye movement

66

characteristics. Interacting with Computers, 16:557–578.

Romero, P., Cox, R., du Boulay, B., and Lutz, R. (2002a). Visual attention and rep-
resentation switching during java program debugging: A study using the restricted
focus viewer. In DIAGRAMS ’02: Proceedings of the Second International Con-
ference on Diagrammatic Representation and Inference, pages 221–235, London,
UK. Springer-Verlag.

Romero, P., du Boulay, B., Cox, R., and Lutz, R. (2003a). Java debugging strategies
in multi-representational environments. In 15th Annual Workshop of the Psychol-
ogy of Programming Interest Group (PPIG’03), pages 412–434.

Romero, P., du Boulay, B., Lutz, R., and Cox, R. (2003b). The effects of graphical
and textual visualisations in multi-representational debugging environments. In
Proceedings of 2003 IEEE Symposia on Human Centric Computing Languages and
Environments, pages 236–238, Washington, DC, USA. IEEE Computer Society.

Romero, P., Lutz, R., Cox, R., and du Boulay, B. (2002b). Co-ordination of multiple
external representations during Java program debugging. In HCC ’02: Proceed-
ings of the IEEE 2002 Symposia on Human Centric Computing Languages and
Environments (HCC’02), pages 207–214, Washington, DC, USA. IEEE Computer
Society.

Räsänen, M. and Nyce, J. M. (2006). A new role for anthropology?: rewriting
”context” and ”analysis” in HCI research. In NordiCHI ’06: Proceedings of the
4th Nordic conference on Human-computer interaction, pages 175–184, New York,
NY, USA. ACM Press.

Salvucci, D. D. and Anderson, J. R. (2001). Automated Eye-Movement Protocol
Analysis. Human-Computer Interaction, 16:39–86.

Sharp, H., Preece, J., and Rogers, Y. (2007). Interaction Design: Beyond human-
computer interaction. Second edition. John Wiley & Sons, Inc., New York, NY,
USA.

Sheil, B. A. (1981). The psychological study of programming. ACM Comput. Surv.,
13(1):101–120.

Shneiderman, B. (1986). Empirical studies of programmers: the territory, paths,
and destination. In Papers presented at the first workshop on empirical studies
of programmers on Empirical studies of programmers, pages 1–12, Norwood, NJ,
USA. Ablex Publishing Corp.

Sibert, L. E. and Jacob, R. J. K. (2000). Evaluation of eye gaze interaction. In
CHI ’00: Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 281–288, New York, NY, USA. ACM Press.

Stein, R. and Brennan, S. E. (2004). Another person’s eye gaze as a cue in solving
programming problems. In ICMI ’04: Proceedings of the 6th Int. Conference on
Multimodal Interfaces, pages 9–15, New York, NY, USA. ACM Press.

Tarasewich, P. and Fillion, S. (2004). Discount eye tracking: The enhanced restricted
focus viewer. In Proceedings of 2004 Americas Conference on Information Sys-

67

tems, pages 1–9, New York, NY, USA.

Tarasewich, P., Pomplun, M., Fillion, S., and Broberg, D. (2005). The enhanced
restricted focus viewer. International Journal of Human-Computer Interaction,
19(1):35–54.

Underwood, G., Chapman, P., Brocklehurst, N., Underwood, J., and Crundall, D.
(2003). Visual attention while driving: Sequences of eye fixations made by expe-
rienced and novice drivers. Ergonomics, 46(6):629–646.

Uwano, H., Nakamura, M., Monden, A., and ichi Matsumoto, K. (2006). Analyz-
ing individual performance of source code review using reviewers’ eye movement.
In ETRA ’06: Proceedings of the 2006 symposium on Eye tracking research &
applications, pages 133–140, New York, NY, USA. ACM Press.

van den Haak, M., Jong, M. D., and Schellens, P. J. (2003). Retrospective vs. con-
current think-aloud protocols: testing the usability of an online library catalogue.
Behaviour and Information Technology, 22(5):339–351.

Vessey, I. (1985). Expertise in debugging computer programs: A process analysis.
International Journal of Man-Machine Studies, 23(5):459–494.

von Mayrhauser, A. and Lang, S. (1999). A coding scheme to support systematic
analysis of software comprehension. IEEE Transactions on Software Engineering,
25(4):526–437.

von Mayrhauser, A. and Vans, A. M. (1995). Program comprehension during soft-
ware maintenance and evolution. Computer, 28(8):44–55.

von Mayrhauser, A. and Vans, A. M. (1996). Identification of dynamic comprehen-
sion processes during large scale maintenance. IEEE Transactions on Software
Engineering, 22(6):424–437.

Weinberg, G. and Shulman, E. (1974). Goals and performance in computer pro-
gramming. Human Factors, 16(1):70–77.

Yoon, D. and Narayanan, N. H. (2004). Mental imagery in problem solving: an eye
tracking study. In ETRA ’04: Proceedings of the 2004 symposium on Eye tracking
research & applications, pages 77–84, New York, NY, USA. ACM Press.

68

Original Publications

69

70

P1.

Bednarik, R., Tukiainen, M.: Validating the Restricted Focus Viewer: A Study Using
Eye-Movement Tracking. Behavior Research Methods, 39(2), 2007, pp. 274-282.

Reprinted with permission, Copyright 2007 Psychonomic Society, Inc.

1

Copyright 2007 Psychonomic Society, Inc.	 274

Researchers who investigate cognitive processing dur-
ing reasoning tasks have several options for how to get
insights into the behavior and strategies exhibited by the
participants. Especially in situations in which the stimulus
is visual and the reasoning is related (and dependent on
it), eyetracking systems have proven useful in revealing
the patterns of visual attention during the task. Typical
examples of successful applications of eye-movement
tracking include studies relating eye-movement patterns
to cognitive processes (Just & Carpenter, 1976), studies
on reading (e.g., Rayner, 1998), and studies that investi-
gated differences between novices and experts with regard
to eye-movement patterns (e.g., Hyönä, Lorch, & Kaaki-
nen, 2002; Law, Atkins, Kirkpatrick, & Lomax, 2004).
However, the relatively high price of accurate eyetrack-
ing equipment, and other issues (such as drift, a need for
calibration, and a certain level of obtrusiveness), have pre-
vented a wider application. To remedy some of the prob-
lems and limitations typical of eyetracking, researchers
have sought to develop cheap, yet accurate, alternatives.

Recently, the Restricted Focus Viewer (RFV; Jansen,
Blackwell, & Marriott, 2003), a tool that blurs the display
and restricts users to only a small focused point, has been
introduced as an alternative tool to track visual attention,
and it has also been used in various studies. The RFV has
been validated in two experiments run by Jansen et al.
(2003); however, these validations involved only relatively
simple reasoning with visual stimuli. In other studies, the
RFV-based technology has been applied (1) to discover

strategies of participants debugging computer programs,
with the aid of multiple and linked visual representations
of the programs (Romero, Cox, du Boulay, & Lutz, 2002;
Romero, du Boulay, Cox, & Lutz, 2003; Romero, du Bou-
lay, Lutz, & Cox, 2003; Romero, Lutz, Cox, & du Boulay,
2002), (2) to investigate the issues of usability of hyper-
linked documents (Tarasewich & Fillion, 2004), and (3) in
a study of shifts of visual attention during integration of
text and graphics (Futrelle & Rumshisky, 2001). For the
purposes of visual attention tracking during complex rea-
soning tasks such as computer program debugging, the
use of the RFV-based approach has been questioned (Bed-
narik & Tukiainen, 2004).

In this article, we present a replication of a previous
study by Romero and colleagues, in which visual attention
of computer programmers was recorded using the RFV.
In our study, together with the RFV-based measurement
of visual attention, we used a remote eyetracker to col-
lect the patterns of eye movements of participants who
were debugging computer programs. Although the RFV
has already been validated in previous studies, this valida-
tion has involved only relatively simple tasks. It remains
an open question whether the behavior of experimental
participants during cognitively more demanding tasks is
influenced by having to manually move the only focused
spot within otherwise blurred visual stimuli.

This article contributes to the body of knowledge in
many ways. First, it is important in validating and cross-
validating the tools employed in the experiments investi-

Validating the Restricted Focus Viewer:
A study using eye-movement tracking

Roman Bednarik and Markku Tukiainen
University of Joensuu, Joensuu, Finland

Investigation of cognitive processes and visual attention during problem-solving tasks is an important part of
understanding human reasoning. Eyetracking technology has proven to have many benefits in revealing visual
attention patterns. However, the high price of accurate eyetrackers and the difficulties associated with using
them represent major obstacles to their wider application. Therefore, previous studies have sought to find alter-
natives to eyetracking. The Restricted Focus Viewer (RFV) brings a small part of an otherwise blurred display to
the focus of visual attention: A user controls what part of the screen is in focus by using a computer mouse and
explicitly selecting the area to be shown in focus. Recently, some studies have employed the RFV to investigate
cognitive behavior of users, and some researchers have even enhanced the tool to study usability. We replicated
a previous RFV-based study while also recording gaze data. We compared the attention allocation in time and
space as reported by the RFV and an eyetracker. Further, we investigated the effects of RFV’s display blurring on
the visual attention allocation of 18 novice and expert programmers. Our results indicate that the data obtained
from the two tools differ. Also, the RFV-blurring interferes with the strategies utilized by experts, and has an
effect on fixation duration. However, task performance was preserved.

Behavior Research Methods
2007, 39 (2), 274-282

R. Bednarik, bednarik@cs.joensuu.fi

Validating the Restricted Focus Viewer     275

gating visual attention and cognitive processing in general.
Although the RFV technology is not supposed to replace
eye-movement-tracking systems, it aims to provide ac-
curate information about visual attention allocation dur-
ing reasoning with visual stimuli. By replicating one of
the previous studies in which the RFV was employed, we
compare the RFV-based measurement with the data col-
lected using a remote eye-movement tracker. Second, we
investigate a possible effect of the display-blurring tech-
nique on the behavior and performance of experimental
participants. Recently, some researchers have started to
use the RFV for recording visual attention patterns during
tasks involving complex reasoning. We provide important
information about (1) how the actual implementation of
the RFV technique influences the participants, (2) the data
collected, and therefore also (3) the conclusions drawn
from the experiments.

Previous Related Studies
The RFV (Jansen et al., 2003) has been developed as an

alternative to eye-movement-tracking technologies. One
of the main claimed advantages of RFV is that it allows for
an automated collection of participants’ foci of visual at-
tention. The RFV blurs the stimulus image and displays it
on a computer screen, allowing the participant to see only
a limited focused region at a time. In order to have another
part of the stimuli focused, the participant has to move the
focused region using the computer mouse. The RFV then
records the moves over the stimuli, which are stored for later
analysis. The tool collects time-stamped data about mouse
and keyboard events, the currently focused region’s index,
the total durations of sessions, and other events. Voice pro-
tocols can be recorded along with the interaction data. The
RFV is of course not capable of collecting visual attention
data when the blurring is turned off.

Analysis and interpretation of the data recorded by
RFV, and the data’s relation to the investigated task, are (as
is also true for eyetracking) up to the researcher. Usually,
the so-called areas of interest (AOIs) are defined within
the interface, and several metrics can be computed—for
example, the total or proportional time spent on an AOI.

In the context of Java program debugging with multiple
representations, a modified version of the RFV has been
employed in various studies (Romero, Cox, et al., 2002;
Romero, du Boulay, Cox, & Lutz, 2003; Romero, du Bou-
lay, Lutz, & Cox, 2003; Romero, Lutz, et al., 2002). In
these studies, a software development environment (SDE)
was built on top of the RFV and was employed to track
visual attention to investigate the coordination strategies
of programmers debugging Java programs, who were
working with multiple adjacent representations. Several
eye-movement-like metrics were derived, to identify su-
perior debugging strategies of participants or to measure
the effects of different visualizations on the coordination
strategies. For example, a balance in accumulated fixation
times between different representations (regions) could
reflect a good debugging performance (Romero, du Bou-
lay, Lutz, & Cox, 2003). Another measure derived in the
aforementioned studies was the number of switches per

minute between the representations of a program. More
experienced programmers were found to switch more fre-
quently between the main representations.

Previous research focusing on program debugging and
differences between novice and skilled programmers has
shown the superiority of expert programmers over nov-
ices in terms of domain knowledge, performance, and
strategies: Expert programmers found more bugs, found
them faster, and tended to spend more time on building a
mental model of the problem (Gugerty & Olson, 1986).
Experts also (1) are more able to remember specific parts
of the source code (Fix, Wiedenbeck, & Scholtz, 1993),
(2) focus only on relevant information needed to solve
the problem (Koenemann & Robertson, 1991), (3) are not
committed to one interpretation, as novices are (Vessey,
1985), and (4) are therefore able to change their strategies
as needed.

Figure 1 shows a screen shot of the SDE when the re-
stricted condition of the RFV was turned on. The SDE’s
interface contains three main areas: The code is in the left
window pane, the frame containing a visualization of the
program is in the top-right pane, and the output is at the
bottom right. In Figure 1, the focused region, as set by
the user’s mouse, is located over the visualization in the
top-right pane.

The RFV has also been employed in the research of
shifts of visual attention during integration of text and
graphics (Futrelle & Rumshisky, 2001). Because the orig-
inal version of the RFV was limited to only static stimuli,
other researchers tried to improve the RFV idea, using an
enhanced version of RFV for usability studies of hyper-
linked documents (Tarasewich & Fillion, 2004).

Experiment
We are very interested in the possibilities and limita-

tions of experimental tools, and want to find out whether
their use actually interferes with the (otherwise unaltered)
behavior of the participants in an experiment. The pur-
poses of the present experiment were (1) to compare the
RFV-based measurements of visual attention shifts to
the data obtained through eye-movement tracking, and
(2) to investigate possible interference of the blurring
technique used by the RFV with the debugging strategies
and performance. We fully replicated a previous experi-
ment (Romero, Lutz, et al., 2002) that employed the RFV;
a remote eye-movement tracker also recorded the visual
attention shifts of the participants. The changes in visual
attention when the stimuli were blurred and fully focused
were analyzed.

Method

Participants
A total of 19 participants were recruited from a population of stu-

dents, researchers, and teachers from the authors’ department. One
participant withdrew from the experiment prematurely; therefore,
the analysis is based on the data recorded from 18 participants. All of
the participants had normal or corrected-to-normal vision, accord-
ing to their own report, and had never taken part in an eyetracking
experiment. The average age was 25.3 (SD 5 4.4) years. Three

276     Bednarik and Tukiainen

participants were female. The programming and Java experience
of the participants varied: Some had just passed a Java course and
had little experience, whereas others were professionals working in
programming-related careers. Experience with Java programming,
and especially professional background, was chosen as the main fac-
tor for classification. The participants were divided into two groups.
The less experienced group consisted of 10 programmers, who had
an average of 63 (SD 5 33.1) months of programming experience,
8.13 (SD 5 6.1) months of which were Java programming. No nov-
ice participant had ever worked as a professional programmer. The
expert group was formed from the remaining 8 participants; they
had a mean programming experience of 96 (SD 5 24.7) months and
a mean Java experience of 16.25 (SD 5 17.9) months, and all of
them, except 1, had professional programming experience.

Materials and Design
The target programs used in this study were identical to those used

in Romero, Lutz, et al. (2002). The warm-up program inspected
whether a point was inside a rectangle. The first program (the “Fam-
ily” program) printed out the names of the children of a sample fam-
ily, and the second program (the “Till” program) counted the cash in
a cash-register till, giving subtotals for the different denominations
of coins. In their study, Romero, Lutz, et al. (2002) had two versions
of the target programs; the main difference between the versions
was that the second one was a more sophisticated version of the
first one. In our replication, we used the less sophisticated versions
of Romero’s programs and the graphical functional representations
in visualizations.

The two main experimental programs contained four errors each;
the warm-up program was seeded with two errors. Following the
classification of the errors established in Romero, Cox, et al. (2002),
Romero, du Boulay, Cox, and Lutz (2003), Romero, du Boulay,
Lutz, and Cox (2003), and Romero, Lutz, et al. (2002), the errors in
the target programs could be classified as functional, control-flow,
and data-structure errors. There were no syntactical errors in the pro-
grams (all of the programs could be compiled), and the participants
were notified of this.

We used a mixed design with one within-subjects factor (RFV
restricting condition, hereafter referred to as RFV-on/RFV-off) and

one between-subjects factor (level of experience), with four depen-
dent variables (number of errors spotted, accumulated fixation time,
mean fixation duration, and switching frequency, as measured by an
eyetracker). The accumulated fixation time is the total time a partici-
pant spent during a session fixating an area of interest (AOI). For an
AOI, all of the fixations were summed, and the number was divided
by the total fixation count throughout the debugging session, giving
the mean fixation duration. The switching frequency refers to the
average number of attention switches per minute between each of
the AOIs. The mean fixation duration is a measure related to the
depth of required processing and therefore to the mental workload
during the task (Goldberg & Kotval, 1998). Most of the results were
analyzed by performing ANOVA and/or planned paired t tests.

Procedure
The experiment was conducted in a quiet laboratory. Each partici-

pant was seated in a comfortable chair facing a 17-in. TFT display, at
a viewing distance of about 80 cm. Before the experiment, the partic-
ipants had to successfully go through an automatic eyetracking cali-
bration procedure. After that, the participants read detailed instruc-
tions about the experiment and the environment used. Participants
debugged three programs. The first warm-up session was performed
under the RFV restricted-view (RFV-on) condition so that the partic-
ipants could become familiar with controlling the focused spot and
operating the debugging environment. Then, the two main debugging
sessions were performed; one session was performed under the RFV-
on condition, and the other session was performed under the RFV-off
condition, in which the whole display was presented in focus. The
order of the programs and conditions was counterbalanced.

Each session had two phases. First, the specification of the pro-
gram was displayed. It described the problem the program was sup-
posed to solve and the approach to the solution. Two sample interac-
tions were provided—the desired behavior and the actual behavior
of the program. Second, the participants were given 10 min (this
limitation was taken from the previous studies) to debug the pro-
gram; they were instructed to find as many errors as possible and to
report them aloud.

Finally, after the debugging session, the participants were infor-
mally interviewed.

Figure 1. The software debugging environment built on top of the RFV. The
focused area is at the top right on the visualization (dashed line added by the
authors).

Validating the Restricted Focus Viewer     277

Apparatus
The SDE used in the previous studies (Romero, Cox, et al., 2002;

Romero, du Boulay, Cox, & Lutz, 2003; Romero, du Boulay, Lutz,
& Cox, 2003; Romero, Lutz, et al., 2002) was employed for the ex-
periment as a source of stimuli. In these studies and in the present
experiment, RFV Version 2.1 was used. The settings of the underly-
ing RFV-based mechanism for blurring the stimuli were the same as
in the replicated studies (e.g., Romero, Cox, et al., 2002); the pro-
gram code, the visualization, and the output were precomputed and
static. There were three transition steps between the clear view and
the fully blurred stimuli, and all of the regions were rectangular, with
widths and heights as follows (from outermost to the fully focused
region, in pixels): 800 3 400, 700 3 300, 620 3 240, and 540 3
190. It was not possible to read the source code when it was blurred,
and the speed of motion blur was set to 1 pixel per sec. Figure 2 il-
lustrates the level of RFV-blurring in the experiment.

For eyetracking, the remote Tobii ET-1750 (sampling rate of
30 Hz) eyetracker was used. The device is built into the 17-in. dis-
play (resolution of 1,280 3 1,024), makes no contact with partici-
pants, and contains no movable or audible parts that could possibly
interfere with the participants (Figure 3). The eyetracking data were
collected throughout the whole experiment; the RFV was able to
collect data only in the RFV-on condition. The AOIs were defined to
correspond with the three main panels in the SDE window: the code,
the visualization, and the output pane.

RESULTS

The RFV as a Visual Attention Tracking Tool
To investigate the ability of the RFV to accurately re-

cord the switches in visual attention between the areas of
the interface, we compared the number of switches per
minute. Six types of switches, between three main areas
(code, visualization, and output), were possible, as shown
in Figure 4. We compared the switching behavior as mea-
sured by the RFV to the number of switches as measured
by the eyetracker, and we analyzed the differences with
the blurring (RFV-on) and without the blurring (RFV-off).
Because the RFV cannot measure any switching in visual
attention without having the display blurred, only data
from the eyetracker were available for that condition.

Three separate two-way ANOVAs (tool 3 switch type)
were run to compare the conditions and measurement
tools. First, the RFV- and eyetracking-based data under
the RFV-on condition were compared, to investigate the
effects of tool. The main effect of tool on the number of
switches was significant [F(1,17) 5 30.23, p , .001], and
the interaction effect between tool and switch type was
significant [F(5,85) 5 7.83, p , .001].

The second comparison included the number of
switches as measured by the eyetracker, with and without
the blurring condition. The main effect of the blurring on
the number of switches was significant [F(1,17) 5 5.90,
p , .05], and the interaction between blurring and type of
switch was not significant [F(5,85) 5 0.48, n.s.].

Finally, to compare the tools in their natural settings, we
analyzed the differences between the number of switches as
measured by the RFV in the RFV-on condition and the num-
ber of switches as measured by the eyetracker in the RFV-off
condition. The main effect of tool and condition was signifi-
cant [F(1,17) 5 32.62, p , .001], and the interaction effect
with type of switch was also significant [F(5,85) 5 5.58,
p , .001]. For all three comparisons, there was a main effect
of switch type on the number of switches [F(5,85) 5 35.37,
p , .001; F(5,85) 5 23.94, p , .001; F(5,85) 5 22.32, p ,
.001, respectively].

The shapes of the amplitudes of the values shown in Fig-
ure 4 might suggest that the data obtained by the two tools
could be systematically correlated. In other words, the
RFV might constantly report lower numbers of switches
than the eyetracker, and the relation between these two
might be linear. To complement the previous results, we
therefore analyzed how the measurements from the two
tools and between the two blurring conditions were cor-
related (Table 1). No significant correlation was found
between the measures obtained using the RFV and those
recorded by the eyetracker.

Effects of Display Blurring
Since the previous results raised some doubts about the

reliability of the RFV technique, the rest of the results,
related to the behavior of the experimental groups, were
obtained using only the remote eyetracker.

Effects of display blurring on debugging perfor-
mance. The debugging performance was measured by the
number of errors spotted. Under the RFV-on condition,
the less experienced group found 2.1 (SD 5 1.10) errors,
on average, and the more experienced group spotted 3.125
(SD 5 0.84) errors, on average [t(16) 5 2.18, p , .05].
Under the RFV-off condition, the less experienced group
found 2.1 (SD 5 0.88) errors, on average, and the more
experienced group spotted 2.88 (SD 5 1.13) errors, on
average [t(16) 5 1.65, n.s.]. According to an ANOVA, the
effect of the restricted-view condition on the debugging
performance was not significant, whereas the effect of

Figure 2. Two snapshots detailing the source panel with RFV blurring off
(left) and on (right).

278     Bednarik and Tukiainen

experience on the number of bugs found was significant
[F(1,16) 5 5.28, p , .05].

Effects of display blurring on debugging strate-
gies. According to ANOVA, the distribution of relative
accumulated fixation time, as measured by the eyetracker,
was not affected by the RFV condition for either of the
two experimental groups (Figure 5). Novice participants
spent, on average, 82% of the total time fixating on the
code panel, 14% of the time on visualization, and 4% of
the time on the output AOI. For experts, the relative ac-
cumulated fixation time followed a distribution of 87%,
10%, and 3%, respectively. Although no effect of experi-
ence on the fixation time was found, the effect of AOI was
significant [F(2,32) 5 623.07, p , .001].

Dynamics of attention-switching behavior were mea-
sured by the eyetracker as the number of switches between
any of the three main representations of the program (the
code, the visualization, and the output). Figure 6 presents
the results obtained by the eyetracker for the blurred (RFV-
on) and fully focused (RFV-off) stimulus. On average,
the experts performed 4.93 (SD 5 1.93) and 8.86 (SD 5
4.09) switches per minute under the RFV-on and RFV-off

conditions, respectively, whereas novices performed 7.00
(SD 5 2.13) and 7.76 (SD 5 3.50) switches per minute
under the RFV-on and RFV-off conditions, respectively.
The effect of RFV condition was significant [F(1,16) 5
7.82, p , .05], and the interaction between level of ex-
perience and RFV condition was significant, α 5 .92
[F(1,16) 5 3.59, p , .08]. We observed a decrease in
the number of switches per minute when the display was
blurred, which was significant for experts [t(7) 5 2.53,
p , .05]. Moreover, the average number of switches per
minute of novices was significantly correlated under the
RFV-on and RFV-off conditions [r(10) 5 .642, p 5 .046],
whereas the same correlation for experts was low and not
significant [r (8) 5 .068, p 5 .873].

The mean fixation duration is often used as a measure
of cognitive workload and depth of required processing
(Goldberg & Kotval, 1998). We analyzed the mean fixa-
tion durations, measured by the eyetracker for the two
experimental groups and the two blurring conditions,
for the three main areas of the SDE interface and overall
(Figure 7). The analysis of the results revealed an effect
of RFV condition on mean fixation duration [F(1,16) 5
4.45, p , .051], and no interaction between level of experi-
ence and RFV condition [F(1,16) 5 0.26, n.s.]. The effect
of experience on the mean fixation duration approached
significance [F(1,16) 5 3.6, p 5 .076]. The mean fixation
durations on the three areas were significantly different
[F(2,16) 5 10.13, p , .005]. The planned paired t tests
revealed that, for experts, the overall mean fixation dura-
tion and the mean fixation durations over the code AOI
differed significantly between the RFV-on and RFV-off
conditions [t(7) 5 2.80; t(7) 5 2.66, respectively; all ps ,
.05]. The overall mean fixation durations of the experts
were 308.82 msec (SD 5 83.95) and 263.09 msec (SD 5
70.60) under the RFV-on and RFV-off conditions, respec-
tively. For the code panel, the mean fixation durations of
the expert group were 312.44 msec (SD 5 85.69) and
268.23 msec (SD 5 73.64) under the RFV-on and RFV-off
conditions, respectively. For the novice group, there was no
significant difference in the fixation durations between the
RFV-on and RFV-off conditions, according to the pairwise

Figure 3. The remote eyetracking device used in the experiment.

Figure 4. The average number of switches per minute as measured by the RFV and the eyetracker (ET)
under the two conditions for all six types of switches.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Code � Vis. Code � Output Output � Code Output � Vis.Vis. � Code Vis. � Output

Sw
it

ch
es

/m
in

RFV-on/RFV
RFV-on/ET
RFV-off/ET

Validating the Restricted Focus Viewer     279

tests. The overall mean fixation durations of the novices
were 396.90 msec (SD 5 112.29) and 381.44 msec (SD 5
112.62) under the RFV-on and RFV-off conditions, respec-
tively. No statistically significant difference between them
was found, and other measurements of novice mean fixa-
tion durations also did not differ significantly under the
RFV-on and RFV-off conditions.

Summaries of the interviews. All of the experimental
participants were informally interviewed after the debug-
ging session, to investigate their attitudes and opinions
about the display blurring. We discovered a general pat-
tern occurring in the statements of subjective attitudes:
Novice programmers greatly appreciated the fact that the
environment reduced the wealth of visual stimuli, allowing
them to concentrate better on extracting the information
from the display. Experts, on the other hand, universally
disliked the blurring feature of the environment. As an
extreme example of negative attitude toward the display
blurring, an expert—who declined to participate in the
experiment shortly after the warm-up program appeared
blurred on the screen—stated in the interview: “I do not
want to work with that.” Consequently, no data were re-
corded for this person.

DISCUSSION

This study addressed an important issue: whether track-
ing of visual attention through eye-movement technology
can be substituted by the tracking of a focused spot within
an otherwise blurred stimulus. The eyetracker records a
location of gaze direction, which is thought to be tightly
coupled with the direction of visual attention. The RFV as-
sumes that participants constantly look at the only focused

spot within otherwise blurred stimuli. We replicated one of
the previous experiments that employed RFV technology
(Romero, Lutz, et al., 2002), but we also recorded the gaze
data, with the help of a remote eyetracker. We compared
the data provided by these two tools and also analyzed the
changes in the behavior of participants when the stimu-
lus was presented in a blurred form. We presented several
findings related to the performance and behavior data.

The RFV has already been validated previously (Jansen
et al., 2003). However, the tasks used in the validation
were not very complex and involved only one graphical
representation of a problem, in contrast to the program
debugging, which involved participants’ reasoning with
multiple representations of the program. Moreover, the
previous validation did not consider the possible effects of
the blurring on the mental workload of the participants.

If participants’ performance is measured in terms of
the number of bugs discovered under the two conditions,
then no significant effect of display blurring was found
on either of the experimental groups. Overall, the more
experienced group performed better, but this was linked
with their experience and was an expected result that has
also been found by other empirical studies of novice and
expert programmers (e.g., Gugerty & Olson, 1986). The
performance of the more experienced participants, how-
ever, improved slightly under the blurring condition.

In comparison with the eyetracker, the RFV does not
seem to accurately track the switching of visual attention
of programmers while they are working with multiple rep-
resentations of a program. The frequencies of visual atten-
tion switching as measured by the RFV were always lower
in our experiment than were the frequencies measured by
the remote eyetracker, and the two streams of data were

Figure 5. Proportions of accumulated fixation times spent on three
areas of interest, as measured by the eyetracker.

0

10

20

30

40

50

60

70

80

90

100

Code Visualization Output

Pe
rc

en
ta

g
e

o
f F

ix
at

io
n

 T
im

e
M

ea
su

re
d

 b
y

Ey
et

ra
ck

er
 Novices–RFV-on

Novices–RFV-off
Experts–RFV-on
Experts–RFV-off

Table 1
Correlations of Number of Switches per Minute Between RFV-On and RFV-Off Conditions,

as Measured by the RFV and Eyetracker (ET), in the Format “Tool (Condition)”

Code Vis. Code Output Vis. Output
 Vis. Code Output Code Output Vis.

RFV (RFV-on) vs. ET (RFV-on) .1694 .1465 .1741 .4184 .3716 .0358
ET (RFV-on) vs. ET (RFV-off) .5578* .5467* .3027 .2508 2.3390 2.0690
RFV (RFV-on) vs. ET (RFV-off) .0588 .1579 .0391 2.0522 2.1610 2.1620

Note—Vis., visualization.  *p , .05, two-tailed t test.

280     Bednarik and Tukiainen

not correlated under the restrictive blurred-display condi-
tion. Moreover, we found that the blurring condition in-
terfered with the debugging strategies of the participants.
Therefore, the results from the present experiment do not
agree with the previous validation studies of RFV (Jansen
et al., 2003). This finding can be explained both from a
methodological view and from a theoretical perspective
provided by previous studies of programmers.

When targets are reasonably large, gaze has been shown
to provide faster ways of interaction than does mouse se-
lection (Sibert & Jacob, 2000; Ware & Mikaelian, 1987).
By observing the video recordings taken while the stimuli
were blurred (for an example screen shot, see Figure 8), we
revealed that it was often the case that participants gazed
at locations other than the focused region as defined by
the RFV position. Usually, the participants set the focused
spot to a certain location and then performed several quick
glances away and attention switches without moving the
RFV-focused spot. In this way, the focused region was not
used as the only location for extracting the information
from the environment, but served as a kind of bookmark
to the current representation. This behavior seemed to be
frequent and intentional, most probably providing partici-
pants a memory refresh of the previously visited locations.
In those situations, the costs of the required movements of
the hand-controlled focus window were not justified, in
comparison with the relatively effortless movement of the
eyes. The RFV-based measures therefore cannot be equiv-
alent to or estimates of the changes in visual attention, as
is also shown by their low correlations to the eyetracking
measures. When the display was not restricted, the cost

of a visual attention switch decreased further and was re-
warded with unblurred information, as is evidenced by the
significant increase in switching frequency.

To analyze where the differences between the RFV-on
and RFV-off conditions come from, and whether the effects
of the blurring interact with the levels of experience, we
conducted a more detailed analysis using eye-movement
data alone. The results reveal some effects of the blurring
condition on gaze behavior. These effects were found to be
more serious for more experienced participants, and they
materialized on the attention-switching behavior rather
than on the distribution of fixation times. Novice program-
mers used approximately the same strategy regardless of
the display blurring, as can be seen from the high correla-
tions in their switching frequency. Experts, on the other
hand, when the display was blurred, changed their natural
coordination strategies. When the information was easily
available, under the RFV-off condition, experts seemed to
integrate more information, as indicated by the increased
number of switches.

The differences between the fixation durations of ex-
pert and novice participants were caused by the differ-
ences in levels of experience, and this result supports find-
ings from other studies (e.g., Bednarik, Myller, Sutinen,
& Tukiainen, 2005). Although we did not find any effect
of the blurring on the fixation duration of novices, the
increase in the fixation duration of experts was surprising,
at first glance. However, as the experts changed their natu-
ral strategies and performed less information integration
from the representations when the display was blurred,
they had to spend more mental resources to complete the
task. As a result, the increased fixation duration reflects
the additional mental workload caused by the blurred dis-
play: Since experienced programmers are known to form
good hypotheses about the comprehended problem and to
be more able to remember specific parts of the code (and
presumably also of the visualization and output), they
had to decide at each moment exactly what information
needed to be extracted from the restricted environment.
This is in line with findings of Koenemann and Robert-
son (1991), who showed that experts concentrate only
on relevant information while comprehending program
code. Our results can be seen as extending this finding to
multirepresentational programming environments: When
restricted, experts conducted the coordination of the dif-

Figure 6. The average number of switches, as measured by the
eyetracker.

4

5

6

7

8

9

10

RFV-On RFV-Off

N
u

m
b

er
 o

f S
w

it
ch

es
/m

in

Novices
Experts

Figure 7. Mean fixation durations over three main areas and overall.

100
150
200
250
300
350
400
450
500
550
600

Code Visualization Output OverallM
ea

n
 F

ix
at

io
n

 D
u

ra
ti

o
n

 (m
se

c)

Novices–RFV-off

Experts–RFV-off

Novices–RFV-on

Experts–RFV-on

Validating the Restricted Focus Viewer     281

ferent representations mentally rather than visually, yet
with an equally good outcome.

We believe that the blurring of the display causes distur-
bances to the debugging behavior, and these disturbances
were more serious for experts than for novices. The re-
sults of the interviews can be seen as additional support
for this conclusion. Whereas the novices did not consider
debugging with a blurring display an unusual task, experts
complained about the unnaturalness of the task. However,
the performance of the two groups was not influenced,
suggesting that experts had to adopt some new, yet equally
successful strategies to cope with the restricted view.

The RFV technique is cheap and requires no new
equipment to record and analyze the experimental data,
although some software efforts are required. However, it
produces essentially the same stream of complex data as
does eye-movement recording, so it does not simplify the
analysis and interpretation of data. On the other hand, the
stream of eye-movement data is often highly noisy, and
is corrupted by the head movements of the participants
or by additional reflections from the eyeglasses. For in-
stance, for an accurate analysis of the switching frequency
and total gaze durations, it is necessary that the gaze be
constantly available. If the gaze is lost from the view of
the eyetracking camera for a certain period, the compu-
tation of the eye-movement metrics cannot be accurate.
Although eyetracking requires a calibration before the ex-
periment, Jones and Mewhort (2004) have shown that the
information filter (focus window) of the RFV (and similar
devices) also needs to be calibrated.

Another inherent issue related to RFV-based studies
concerns the question of experimental setting. For exam-
ple, in the study we replicated, one might ask how natural
the interaction and debugging strategies are when (1) the
stimuli are precomputed, (2) the environment does not

allow for modifications of the source code, and (3) the
participants have to use an unnatural interface. As seen
from the results of this experiment, the blurring does in-
deed interfere with the natural strategies of participants.
Jones and Mewhort (2004) suggested that the size and
characteristics of the view in focus affect the information
search strategies. In the present experiment, the size of
the focused window was equal to those used in previous
investigations using the RFV. If the size of the focused
window and the level of blurring of the periphery were
to be made more restrictive, to prevent the unwanted use
of peripheral information, it is highly probable that the
participants who rely on peripheral data would have to put
more energy into moving the mouse to get the information
they need. The resultant behavior would probably be even
more disrupted, and the results of such a study would di-
verge further from natural conditions. However, this ques-
tion will have to be answered in future studies.

Conclusions
Although the RFV is designed not to replace eyetrackers,

but to be an alternative to the expensive technology, the
results of this replication study show that some experi-
mental tasks and designs might not fit well for the RFV.
For those tasks, the visual attention data recorded using
the RFV and eyetracking differ significantly. Moreover,
the blurring of the stimuli changes the natural strategies
used, depending on experience levels. We provided pos-
sible methodological and theoretical explanations of the
differences found.

Although the RFV was introduced as a complementary
tool for visual attention tracking, these findings make the
use of the RFV, as well as the conclusions of the RFV-
based experiments on complex problem-solving tasks,
questionable.

Figure 8.  A screen shot from interaction, with 1 sec of gaze path and a fixa-
tion point superimposed. The focused region is on the top right.

282     Bednarik and Tukiainen

Author Note

This work was supported by a grant from the Faculty of Science, Uni-
versity of Joensuu. Correspondence concerning this article should be
addressed to R. Bednarik, Department of Computer Science, University
of Joensuu, P.O. Box 111, 80101 Joensuu, Finland (e-mail: bednarik@
cs.joensuu.fi).

REFERENCES

Bednarik, R., Myller, N., Sutinen, E., & Tukiainen, M. (2005).
Effects of experience on gaze behavior during program animation. In
P. Romero, J. Good, E. Acosta Chaparro, & S. Bryant (Eds.), Proceed-
ings of the 17th Annual Workshop of the Psychology of Programming
Interest Group (PPIG ’05) (pp. 49-61). Brighton, U.K.: University
of Sussex.

Bednarik, R., & Tukiainen, M. (2004). Visual attention and repre-
sentation switching in Java program debugging: A study using eye
movement tracking. In E. Dunican & T. R. G. Green (Eds.), Proceed-
ings of the 16th Annual Workshop of the Psychology of Programming
Interest Group (PPIG ’04) (pp. 159-169). Carlow, Ireland: Institute
of Technology.

Fix, V., Wiedenbeck, S., & Scholtz, J. (1993). Mental representations
of programs by novices and experts. Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems (CHI ’93) (pp. 74-
79). New York: ACM Press.

Futrelle, R. P., & Rumshisky, A. (2001). Discourse structure of text–
graphics documents. Proceedings of the 1st International Symposium
on Smart Graphics. Hawthorne, New York: ACM Press.

Goldberg, J. H., & Kotval, X. P. (1998). Eye movement–based evalua-
tion of the computer interface. In S. K. Kumar (Ed.), Advances in occu-
pational ergonomics and safety (pp. 529-532). Amsterdam: IOS Press.

Gugerty, L., & Olson, G. M. (1986). Comprehension differences
in debugging by skilled and novice programmers. In E. Soloway &
S. Iyengar (Eds.), Empirical studies of programmers: First workshop
(pp. 13-27). Norwood, NJ: Ablex.

Hyönä, J., Lorch, R. F., Jr., & Kaakinen, J. K. (2002). Individual dif-
ferences in reading to summarize expository text: Evidence from eye
fixation patterns. Journal of Educational Psychology, 94, 44-55.

Jansen, A. R., Blackwell, A. F., & Marriott, K. (2003). A tool for
tracking visual attention: The Restricted Focus Viewer. Behavior Re-
search Methods, Instruments, & Computers, 35, 57-69.

Jones, M. N., & Mewhort, D. J. K. (2004). Tracking attention with the
focus-window technique: The information filter must be calibrated. Be-
havior Research Methods, Instruments, & Computers, 36, 270-276.

Just, M. A., & Carpenter, P. A. (1976). Eye fixations and cognitive
processes. Cognitive Psychology, 8, 441-480.

Koenemann, J., & Robertson, S. P. (1991). Expert problem solving
strategies for program comprehension. In S. P. Robertson, G. M.

Olson, & J. S. Olson (Eds.), Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems: Reaching through technol-
ogy (pp. 125-130). New York: ACM Press.

Law, B., Atkins, M. S., Kirkpatrick, A. E., & Lomax, A. J. (2004).
Eye gaze patterns differentiate novice and experts in a virtual laparo-
scopic surgery training environment. Proceedings of the 2004 Sym-
posium on Eye Tracking Research and Applications (pp. 41-48). New
York: ACM Press.

Rayner, K. (1998). Eye movements in reading and information process-
ing: 20 years of research. Psychological Bulletin, 124, 372-422.

Romero, P., Cox, R., du Boulay, B., & Lutz, R. (2002). Visual atten-
tion and representation switching during Java program debugging:
A study using the Restricted Focus Viewer. In Diagrammatic Repre-
sentation and Inference: Second International Conference, Diagrams
2002, Callaway Gardens, GA, USA. April 18–20, 2002: Proceedings
(Lecture Notes in Computer Science, Vol. 2317, pp. 221-235). Berlin:
Springer.

Romero, P., du Boulay, B., Cox, R., & Lutz, R. (2003). Java debug-
ging strategies in multi-representational environments. In M. Petre
(Ed.), Proceedings of the 15th Annual Workshop of the Psychology of
Programming Interest Group (PPIG ’03) (pp. 421-434).

Romero, P., du Boulay, B., Lutz, R., & Cox, R. (2003). The effects
of graphical and textual visualisations in multi-representational de-
bugging environments. In J. Hosking & P. Cox (Eds.), Proceedings of
the 2003 IEEE Symposia on Human Centric Computing Languages
and Environments (pp. 236-238). Piscataway, NJ: IEEE Computer
Society.

Romero, P., Lutz, R., Cox, R., & du Boulay, B. (2002). Coordination
of multiple external representations during Java program debugging.
In S. Wiedenbeck & M. Petre (Eds.), Proceedings of the 2002 IEEE
Symposia on Human Centric Computing Languages and Environ-
ments (pp. 207-214). Piscataway, NJ: IEEE Computer Society.

Sibert, L. E., & Jacob, R. J. K. (2000). Evaluation of eye gaze interac-
tion. Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (pp. 281-288). New York: ACM Press.

Tarasewich, P., & Fillion, S. (2004). Discount eye tracking: The En-
hanced Restricted Focus Viewer. Proceedings of the 10th Americas
Conference on Information Systems (pp. 1-9). New York: AMCIS.

Vessey, I. (1985). Expertise in debugging computer programs: A pro-
cess analysis. International Journal of Man–Machine Studies, 23,
459-494.

Ware, C., & Mikaelian, H. H. (1987). An evaluation of an eye tracker
as a device for computer input. Proceedings of the SIGCHI/GI Confer-
ence on Human Factors in Computing Systems and Graphics Inter-
face (CHI ’87) (pp. 183-188). New York: ACM Press.

(Manuscript received June 16, 2005;	
revision accepted for publication January 21, 2006.)

P2.

Bednarik, R., Myller, N., Sutinen, E., Tukiainen, M.: Effects of Experience on Gaze
Behaviour during Program Animation. In Proceedings of the 17th Annual Psychology
of Programming Interest Group Workshop (PPIG'05), Brighton, UK, June 28 - July 1,
2005, pp. 49-61

2

Effects of Experience on Gaze Behavior during Program
Animation

Roman Bednarik, Niko Myller, Erkki Sutinen, and Markku Tukiainen

Department of Computer Science, University of Joensuu,
P.O. Box 111, FI-80101 Joensuu, FINLAND

firstname.lastname@cs.joensuu.fi

Abstract. The purpose of program visualization is to illustrate some aspects of
the execution of a program. A number of program visualization tools have been
developed to support teaching and learning of programming, but only few have
been empirically evaluated. Moreover, the dynamics of gaze behavior during pro-
gram visualization has not been investigated using eye movements and little is
known about how program animation is attended by learners with various lev-
els of experience. We report on an empirical study of the gaze behavior during a
dynamic program animation. A novice and an intermediate group, a total of 16
participants, used Jeliot 3, a program visualization tool, to comprehend two short
Java programs. Referring to previous literature, we hypothesized that the perfor-
mance as well as the gaze behavior of these two groups would differ. We found
statistically significant differences in performance measures and in fixation du-
rations. Other commonly used eye-tracking measures, the fixation count and the
number of attention switches per minute, seem to be insensitive to the level of
experience. Based on the results, we propose further directions of the research
into gaze behavior during program visualization.

1 Introduction

Program visualization is used to illustrate visually the run-time behavior of computer
programs. These systems can be utilized, for example, in programming courses to sup-
port teaching of programming concepts to novice programmers. Jeliot 3 is an interac-
tive program visualization system that automatically visualizes data and control flows
of Java programs. It has been successfully used in classroom settings to teach program-
ming to high school students [1].

Although several program visualization tools exist, only few have been evaluated
and little knowledge is available about the aspects of gaze behavior during a dynamic
program visualization. It is not clear how different users attend the animation and what
cognitive efforts they have to exercise in order to comprehend the dynamic visualiza-
tion. Therefore, in order to improve program visualization systems to fit their users best,
it is a crucial issue to investigate the visual attention paths of users while visualizing
a program. If a purpose of program visualization is to support the novices in their un-
derstanding, it is reasonable to study how their behaviors differ from the behaviors of
intermediates. In other domains, eye-movement tracking has been successfully applied
to investigate the gaze patterns of participants while performing their tasks. However,

In P. Romero, J. Good, E. Acosta Chaparro & S. Bryant (Eds). Proc. PPIG 17 Pages 49 - 61

17th Workshop of the Psychology of Programming Interest Group, Sussex University, June 2005 www.ppig.org

no eye-movement based analysis of the gaze behavior during a dynamic program visu-
alization has been conducted yet.

We report on an initial study in which we have employed a remote eye tracker to
measure the gaze behavior of programmers during program comprehension facilitated
by an animation tool, Jeliot 3.

The rest of the paper is arranged as follows. In Section 2, we review some related
work in eye tracking research and program visualization, and Jeliot 3 is introduced. The
experiment and results are described in Sections 3 and 4, respectively, and discussed in
Section 5. Conclusions and future work are presented in Section 6.

2 Related Work

2.1 Eye Tracking

Humans move their eyes in order to bring an inspected object or a portion of it onto
fovea, the high-resolution area of retina. This way the visual attention is closely linked
with the direction of the eye-gaze, and most of the time it is also diverted to the point
of visual inspection. Following this assumption, if we can track the movements of eyes,
we can also get insights into and investigate the path and focus of attention during a task
such as program comprehension. Furthermore, knowing which objects have been visu-
ally inspected and in which order and context, we can attempt to infer what cognitive
processes were involved to perform the task related to these objects.

Eye tracker is a device that records eye movements. Most of the current eye trackers
use infrared light emitters and video image analysis of the corneal reflections and pupil
center to relate them to the direction of gaze. Typically, the accuracy of current eye
trackers ranges around 1 degree, while the data is sampled at rates of 50–500Hz. Current
eye trackers are relatively cheap and able to reliably and unobtrusively collect gaze data.

From the signal obtained from an eye tracker, two most important types of eye
movements are usually identified: saccades and fixations [2].Saccadesare rapid bal-
listic movements of eyes that are executed to reposition the eyes from one location of
attention to another one. A single saccade can last between 30 and 120 ms, can span over
1 to 40 degrees of visual angle [2], with velocities ranging up to 500 degrees per second
[3]. No visual information is extracted during a saccade, a phenomena called saccadic
suppression [4].Fixationsare eye movements stabilizing the image of an object on the
retina. Typical fixation duration ranges between 200–300 ms [3]. It is assumed that dur-
ing the period of a single fixation the information is extracted, decoded, and interpreted.
The fixation duration can be therefore thought to be related with a required processing
to extract and interpret the information [5, 6]. An accurate measurement and analysis of
eye movements in terms of saccades and fixations provide researchers with the details
of cognitive processing and related visual attention allocation within a performed task.
For instance, the fixation count or sum of fixation durations on a certain element can be
related to the importance of the element. In the context of program visualization inter-
faces, the relative fixation count measure can correspond with the relative importance
of a representation (e.g. a code or a state diagram) of a program.

It is a well-known fact that eye movement patterns of experts and novices differ. Pre-
vious eye movement studies in other domains than program visualization have shown,

Bednarik, Myller, Sutinen and Tukiainen

PPIG 2005 Sussex University www.ppig.org

for instance, that (1) search strategies differ between novice and expert radiologists [7],
(2) expert-pilots’ eye movement patterns were better defined and the dwell times were
significantly shorter than those of novices [8]. A common denominator in these and
other reports is that domain knowledge and experience of participants seem to be the
main factors influencing not only the performance, but also the related gaze behavior.

Visual attention tracking during program comprehension has been previously stud-
ied by Crosby and Stelovsky [9]. They used an eye tracker to discover the relation-
ship between cognitive styles and individual differences, and code-reading patterns. In
their study, novices and experts were eye tracked during an algorithm comprehension.
However, only one representation of program was used (the code) and the focus of the
research was mainly on the critical, but surface features of code, not on the behavior
during a dynamic program visualization.

In the direction of investigating issues such as visual attention switching or a multiple-
representation use during program comprehension or debugging, previous studies in-
volved only a static precomputed stimuli and the analysis was based on a recording of
mouse movements over a blurred interface [10, 11]. The validity of such an approach
was shown to be questionable [12, 13]. To our knowledge, no eye movement based
analysis of behavior during program animation has been conducted yet. This is cer-
tainly surprising, considering the importance of knowledge how the visual attention
and cognitive processes involved in program comprehension are influenced by program
animation.

2.2 Program Visualization

A number of program visualization systems have been developed over the previous
years to teach programming or to visually debug programs. Here we will briefly review
those systems that in some aspects are similar to Jeliot, the program visualization tool
employed in the present experiment.

Javavis [14] is a tool that visualizes automatically the runtime behavior of the Java
programs. It shows changes in the state of the program during execution using animated
UML-like object and sequence diagrams. DDD [15], a debugging front-end, uses dia-
grams to illustrate the references between data structures during program execution.
The diagram can be seen as graphs where nodes are the separate data structures (e.g.
struct in C) and vertices are the references between them. The DDD does not explicitly
visualize the control flow of the program. Jive [16] uses a similar approach to Javavis
and DDD to visualize the program state using diagrams. The references, primitive val-
ues and variables are visualized similarly in Jeliot 3 and these systems. However, only
Javavis visualizes control flow, but in less detail compared to Jeliot 3.

PlanAni [17] is a program visualization system that illustrates the data flow of a
program during its execution. The use of variables in different purposes is illustrated
through the roles of variables. The expression evaluation and control flow are also vi-
sualized. Currently, the animations must be programmed beforehand by an instructor
and the visualization of object-oriented concepts is not supported. The organization of
the user interface in PlanAni is similar to Jeliot. However, Jeliot does not visualize the
roles of variables as PlanAni and PlanAni does not visualize the control flow.

Bednarik, Myller, Sutinen and Tukiainen

PPIG 2005 Sussex University www.ppig.org

2.3 Jeliot 3

Moreno at al. [18] have developed a program visualization system, called Jeliot 3. Its
predecessor, Jeliot 2000, has been successfully used to improve the teaching of intro-
ductory programming helping the novices to acquire vocabulary to explain program-
ming structures and concepts [1]. Jeliot 3 retains the novice-oriented GUI and anima-
tion display of Jeliot 2000. Jeliot 3 introduced a new design in order to make the system
extensible and to allow for adding new features into the visualization. It visualizes au-
tomatically the execution of user-written Java programs by illustrating the data and
control flow and object-oriented features of the program. Jeliot 3 can visualize a large
subset of novice-level Java programs (seehttp://cs.joensuu.fi/jeliot/).
The user interface of Jeliot 3 is shown in Figure 1.

The interface consists of four discrete areas. A code editor on the left hand side
shows the program code, and during program visualization, the currently executed state-
ment or expression is highlighted. A control panel in the bottom left corner is used to
control the animation with VCR-like buttons. The largest area of the user interface of
Jeliot is occupied by the visualization view showing the execution state of the pro-
gram on the right hand side of the window. Visualization consists of method frames,
local variables, expression evaluation, static variables, objects and arrays. Finally, an
output console lies in the bottom right corner of the window, showing the output of
the executed program. To sum it up, Jeliot provides four different areas of interest to
the user: code view, animation view, control panel, and output console. Moreover, ani-
mation view is further divided into four different areas of interest: method, expression
evaluation, constant, and object and array areas. Furthermore, there are separate spe-
cialized visualizations where only the call tree of the program or the execution history
are shown.

In a typical session with Jeliot, a user either writes or loads a previously stored
program. User can compile the program through the user interface of Jeliot. When the
program is compiled, a visualization view, where the user can see the animation of the
program execution, is opened. Jeliot shows the execution either step by step or contin-
uously. User can control the speed of the animation and stop or rewind the animation
at any point. User can select the current visualization with the tabs on top of the visual-
ization view.

3 Experiment

The present research investigates the differences in the gaze behavior during program
animation of participants with different levels of programming experience. Based on
the results from available literature, our hypothesis was that the performance and gaze
behavior of novices and intermediates differ during the program animation. In other
words, our aim was to answer the question, whether intermediates and novices pay at-
tention to the animation in a similar or different way. Our hypothesis is not surprising,
since we naturally assume that a different level of experience shall result into a dif-
ferent gaze behavior and performance, as it has been found in other domains. More
experienced programmers are expected to form better hypotheses about the problem
and this knowledge should guide them to use the available representations in a distinct

Bednarik, Myller, Sutinen and Tukiainen

PPIG 2005 Sussex University www.ppig.org

Fig. 1.User interface of Jeliot 3. Area 1 is code editor, area 2 is animation frame, area 3 is control
panel and area 4 is output console.

way, compared to novices. We had a further assumption that novices would rely more
on the visualization than code and the other way around for intermediates.

To validate these hypotheses, we conducted an empirical experiment where we used
a remote eye-tracker to record the gaze behavior of the participants during program
comprehension task aided by an animation. Two groups of participants with different
level of experience used Jeliot 3 to comprehend three short Java programs while their
eye movements were simultaneously tracked.

3.1 Method

We used a between-subject design with experience (novice or intermediates) as the
factor. The depended variables were: relative fixation count over the areas of interest,
number of switches per minute and mean fixation duration over the areas of interest and
in overall. The fixation count is a measure related to the level of participant’s interest in
an area. The number of switches per minute is a measure of attention allocation dynam-
ics. The mean fixation duration is associated with the depth of processing required to
understand an attended element. Only the gaze data during the program animation were
used in this analysis because that is the only time when all the representations were
available concurrently and the selection of the attended representation would make a
difference in understanding the program. Most of the analysis was carried out using
ANOVA and planned comparisons based on t-test.

Bednarik, Myller, Sutinen and Tukiainen

PPIG 2005 Sussex University www.ppig.org

3.2 Participants

Eighteen participants were recruited from high-school students attending a university-
level programming course, undergraduate and graduate computer science students from
local university. Due to technical problems with the eye tracking, data from two partic-
ipants had to be discarded. Therefore, the results are based on the data collected from
16 subjects (13 male, 3 female). Participants were divided into two groups according
to their level of programming experience. Participants with less than 24 months of pro-
gramming experience were regarded as novices and above 24 months as intermediates.
The characteristics of the two groups are presented in Table 1. Groups’ mean values for
programming experience (in months) and Java experience (in months) and counts for
previous experience with Jeliot 3 (yes=1, no=0) and previous experience as professional
programmer (yes=1, no=0) are shown. Standard deviations are shown in parentheses.

Table 1. Characteristics of the groups. * marks a significant difference between groups in two-
tailed t-test (interval values) orχ2-test (nominal values) withp < 0.05

Experience levelCount Prog. exp.* Java exp.* Jeliot exp.Prof. exp.
Novices 8 12.8 months6.4 months 3 1

(6.9) (4.6)
Intermediates 8 85.5 months19.8 months 2 1

(56.4) (15.0)

3.3 Materials and Apparatus

Three short Java programs, factorial computation, recursive binary search, and naı̈ve
string matching were presented to the participants. The lengths of the programs in lines
of code were 15, 34, and 38 respectively. Each of the programs generated only one line
of output and did not require any user input. The names of methods and variables were
altered so that the recognition of a program based on these surface features would be
difficult.

In our study, we used an adapted version of Jeliot 3 which logged all the user ac-
tions and all the changes in the visualization of the programs to be compared with the
eye tracking data. However, this material is not used in this analysis. The specialized
visualizations, the execution history and the call tree, were disabled to avoid problems
in interpreting the gaze behavior.

The remote Tobii ET-1750 (sampling rate 50Hz) eye tracker making no contact with
participants was used to track eye movements; the eye tracker is built into a TFT panel
so no moving part is visible and no sound can be heard during the recording. Only
a computer mouse was available during the experiment to interact with the tool. The
interaction protocols (such as mouse clicks) were collected for all the target programs,
and audio and video were recorded for a whole session. Fixations shorter than 100 ms
were disregarded from analysis. We have defined four main areas of interest matching

Bednarik, Myller, Sutinen and Tukiainen

PPIG 2005 Sussex University www.ppig.org

the four main areas in the Jeliot interface: the code, the animation, the control, and the
output area. Figure 2 illustrates the experimental settings used in the study.

Fig. 2.Experimental settings.

3.4 Procedure and Design

The experiment was conducted in a quiet usability lab. Participants were seated in an
ordinary office chair, near the experimenter, and facing a 17” TFT display. Every par-
ticipant then passed an automatic eye-tracking calibration. During the calibration pro-
cedure, a participant had to follow sixteen shrinking points appearing one by one across
the screen. If needed, the calibration was repeated in order to achieve the highest possi-
ble accuracy.

After a successful calibration, participants performed three sessions, each consist-
ing of a comprehension phase using Jeliot 3 and a program summary writing phase.
Participants were instructed to comprehend the program as well as possible and they
could interact with Jeliot as they found it necessary. The target programs contained no
errors and were always preloaded into Jeliot and compiled. The duration of a session
was not limited.

The first program was factorial computation and it was used as a warm-up and the
resulting data were discarded. The order of the two actual comprehension tasks was
randomized so that half of the participants started with the recursive binary search and
other half with näıve string matching.

Bednarik, Myller, Sutinen and Tukiainen

PPIG 2005 Sussex University www.ppig.org

4 Results

4.1 Completion and Animation Times

Mean completion times for the comprehension phase were 17.6 minutes (SD= 10.0)
for novices, and 9.8 minutes (SD=2.6) for intermediates; the difference was statistically
significant according to a two-tailed t-test(t(7) = 2.48, p < .05). From that time,
novices spent on average 85.4% (SD=9.6) animating the program whereas intermedi-
ates spent 52.9% (SD=20.0) of their time to animation; the difference was statistically
significant according to the two-tailed t-test(t(7) = 5.38, p < .01).

4.2 Fixation count distribution

Figure 3 shows a relative fixation count distribution over the areas of interest during
the animation. Both groups spent most of the viewing time fixating the animation area,
57.4% (SD=11.9) novices, and 54.8% (SD=15.2) intermediates, of all fixations during
the program animation. Next, 39.4% (SD=11.2) and 43.3% (SD=14.5), novices and in-
termediates, respectively, of all fixations was paid to the code area. No significant effect
of experience on the distribution of fixations was found, without any interaction be-
tween the area of interest and experience. The fixation count has significantly differed
between all four areas of interest,F (3, 42) = 105.75, p < .001. The planned compari-
son revealed a significant difference in the fixation count between the two most attended
areas, the code and the animation(t(15) = 2.29, p < .05).

4.3 Switching Behavior

Figure 4 illustrates the switching behavior as expressed by the number of switches per
minute between the different areas of interest. The average number of switches per
minute was 30.15 (SD=10.66) and 27.57 (SD=8.04) for novices and intermediates, re-
spectively. The analysis of the effect of experience on the switching behavior discovered
no significant change in the number of switches per minute,F (1, 14) = 0.004, ns. The
switch between the code and the animation areas was far most common,F (5, 70) =
145.25, p < .001. Finally, the interaction effect between type of switch and experience
was not significant,F (5, 70) = 0.421, ns.

4.4 Fixation Durations

Figure 5 shows the mean fixation durations during animation for the four main areas
of interest and the overall mean fixation duration. These have been computed as a sum
of durations of all fixations landing at an area of interest divided by number of the
fixations. Since the programs did not generate an extensive output, some of the partici-
pants were not gazing to this area of interest. For the analysis, the missing values were
replaced by the mean value of a group.

The overall mean fixation duration was 406.49 ms (SD=81.40) and 297.26 ms
(SD=80.52) for novice and intermediate group, respectively. The effect of area of inter-
est on the mean fixation duration was nearly significant,F (3, 42) = 2.79, p = .052.

Bednarik, Myller, Sutinen and Tukiainen

PPIG 2005 Sussex University www.ppig.org

Fig. 3.Relative fixation count distribution during animation.

We also found an interaction between the fixation durations on the areas of interest and
the level of experience,F (3, 42) = 2.87, p = .048. The effect of experience on the
mean fixation durations was significant,F (1, 14) = 8.98, p = .01. Moreover, the ef-
fect of experience on overall fixation duration,F (1, 14) = 7.16, p = .018, was also
significant.

5 Discussion

Intermediates completed the comprehension phase much faster than novices. Intermedi-
ates also spent significantly less time animating the programs which was in agreement
with the hypothesis that intermediates would concentrate more on the code reading.
This happened, however, only before they began and after they stopped visualizing the
program. Both times can be kept as measures of performance. The initial code-reading
episodes could have affected the behavior of the intermediates during the program ani-
mation compared to novices. Sajaniemi and Kuittinen [17] reported that during exercise
sessions, students using PlanAni did not pay attention to the program code as much as
to the visualization. Our results agree with this observation. Although both areas were
attended with high fixation counts, it was more common to use the visualization than
the code area during program animation, in our study, regardless the experience.

Analysis of the comprehension summaries have been done elsewhere in Bednarik et
al. [19] with the program summary analysis by Good and Brna [20]. In this analysis, the
summaries of intermediate subjects were found to be slightly better in the quality, but

Bednarik, Myller, Sutinen and Tukiainen

PPIG 2005 Sussex University www.ppig.org

Fig. 4.Number of switches per minute between the main areas of interest.

there were no statistically significant differences found. Intermediates used higher level
of abstraction than novices but again there were no statistically significant differences.

The results of this experiment related to the gaze behavior during program anima-
tion show that the relative fixation counts and the switching behavior between the areas
defined in this study are insensitive to the level of experience. The distribution of fix-
ations between code and animation was slightly more balanced for more experienced
participants, but did not significantly differ from the distribution of novice fixations.
With respect to these measures, we have to reject our hypothesis. Most of the animation
time was spent on viewing the visualization part of the Jeliot interface.

The switches between code and animation areas were the far most common during
the animation and therefore the sum of all switches is mostly composed by this type of
switch. The code-control and animation-control switches were higher for novices. This
is probably due to the fact that novices were interacting more with the tool during the
animation than intermediates and therefore attending the control panel more often [19].
In terms of the total number of switches per minute, the two groups exhibited about the
same behavior.

With respect to previous eye movement studies investigating the relationship be-
tween gaze behavior and expertise, these result are rather surprising. Several factors
could, however, explain the results. One explanation seems to be that the features of
animation attract equally novice and intermediate programmers to attend the animation
in similar patterns. The visualization environment restricts the access to the elements
of the graphical representation to only a short period of time, therefore the effects of

Bednarik, Myller, Sutinen and Tukiainen

PPIG 2005 Sussex University www.ppig.org

Fig. 5.Mean fixation duration during animation.

experience cannot materialize in the gaze measures used in this experiment. We also
believe that more accurate measures have to be developed to reveal the differences be-
tween these two groups. For example, we could measure the disassociation between the
current animation step and the gaze of the subject. Another possibility for not observing
differences in the gaze behavior could be the number of subjects involved in the study
and this will be taken into the consideration in the further studies. Finally, the gap be-
tween the skills of the two groups involved in this experiment might not be big enough
to yield statistically significant differences in gaze behavior during animation.

Despite not finding differences in fixation count distribution and switching behav-
ior, we did find a significant effect of experience on the mean fixation duration. For all
the main areas (except for the control area) of the display and in overall, the mean fixa-
tion duration of intermediates was shorter than that of novices. This supports the results
from previous studies and could be explained by at least two facts or a combination of
both. One possibility is that, during the animation, intermediates might have an advan-
tage of already formed hypothesis about the visualized problem. This hypothesis would
be formed during the initial code reading before animating the program. The second
explanation could be the available domain-knowledge and programming experience of
the intermediates which would enable them to interpret the animation faster. From the
mean fixation duration over the control panel, we can observe that novices and interme-
diates alike needed about the same time (300 ms) to decide what buttons they are going
to use in order to control the flow on the ongoing animation.

Altogether, these findings could indicate that a difference in the programming ex-
perience can be seen in the mental efforts paid while attending the animation, while it
does not affect the general patterns how the animation is attended. Both groups attend

Bednarik, Myller, Sutinen and Tukiainen

PPIG 2005 Sussex University www.ppig.org

the suggested attention loci in about same way, but the more experienced programmers
extract the information faster and, most probably, are therefore able to pay attention
to the surrounding context. When a consecutive attention switch is suggested by the
animation, both groups will follow it and thus exhibit similar switching behavior.

6 Conclusion and Further Work

We have conducted an empirical experiment to discover the aspects of gaze behavior
during the dynamic program visualization. We employed a non-intrusive remote eye
tracking equipment to record the eye movements of programmers with various level of
experience. Our results, in terms of the attention switches between different program
representations and the distribution of fixations, show no difference in the gaze behav-
ior between novice and intermediate group of programmers during program animation.
In other words, the focus of visual attention seems to be distributed in time and space
evenly regardless of the experience in programming. When the level of processing re-
quired to attend the animation is measured as a mean duration of fixations over the
main areas of interest and in overall, our results show that novice programmers spend
significantly more time on extracting the features of animated concepts. We propose this
difference to be linked to the experience level and with a pre-established model of the
algorithm being animated. The performance measures seem to support this hypothesis.

Our initial experiment provides a take-off mark for further studies investigating gaze
behavior related to the dynamic program visualizations. Several directions for future re-
search can be taken. Based on the general, macro-level patterns presented in this paper,
we aim to deconstruct the behavior into more micro-level sequences. Between our next
aims belong to investigate the effects of the discrete animation elements on the gaze
behavior as well as the changes in the behavior in a course of time. Among the ques-
tions raised by the present study belong, what kind of suggested switches are consumed
during the animation and whether the decision differs given the level of experience.

To answer the questions, we plan to develop a methodological framework for a re-
liable application of eye-movement tracking in the context of program visualization.
These studies shall provide us with a deeper understanding about the cognitive pro-
cesses involved in program comprehension during program visualization.

Acknowledgments

We would like to thank all participants for taking part in this study. We acknowledge
Andrés Moreno for a help with preparation of this study.

References

1. Ben-Bassat Levy, R., Ben-Ari, M., Uronen, P.A.: The Jeliot 2000 program animation system.
Computers & Education40 (2003) 15–21

2. Sibert, L.E., Jacob, R.J.K.: Evaluation of eye gaze interaction. In: CHI 2000, ACM Press
(2000) 281–288

Bednarik, Myller, Sutinen and Tukiainen

PPIG 2005 Sussex University www.ppig.org

3. Rayner, K.: Eye movements in reading and information processing: 20 years of research.
Psychological Bulletin124(1998) 372–422

4. Matin, E.: Saccadic suppression: a review and an analysis. Psychological Bulletin81 (1974)
889–917

5. Carpenter, P.A., Just, M.A.: Eye fixations during mental rotation. In Senders, J.W., Fisher,
D.E., Monty, R.A., eds.: Eye movements and the higher psychological functions. Erlbaum,
Hillsdale, NJ (1997) 115–133

6. Goldberg, J.H., Kotval, X.P.: Eye Movement-Based Evaluation of the Computer Interface. In
Kumar, S.K., ed.: Advances in Occupational Ergonomics and Safety. IOS Press, Amsterdam
(1998) 529–532

7. Nodine, C., Mello-Thoms, C.: The nature of expertise in radiology. In Beutel, J., Kundel,
H., Metter, R.V., eds.: Handbook of Medical Imaging. SPIE Press (2000)

8. Kasarskis, P., Stehwien, J., Hickox, J., Aretz, A., Wickens, C.: Comparison of expert and
novice scan behaviors during VFR flight. In: The 11th International Symposium on Aviation
Psychology. (2001)

9. Crosby, M., Stelovsky, J.: Subject Differences in the Reading of Computer Algorithms.
In Salvendy, G., Smith, M.J., eds.: Designing and Using Human-Computer Interfaces and
Knowledge-Based Systems. Elsevier (1989) 137–144

10. Romero, P., du Boulay, B., Cox, R., Lutz, R.: Java debugging strategies in multi-
representational environments. In: The 15th Annual Workshop of the Psychology of Pro-
gramming Interest Group (PPIG’03). (2003) 421–434

11. Romero, P., Lutz, R., Cox, R., du Boulay, B.: Co-ordination of multiple external represen-
tations during Java program debugging. In: Empirical Studies of Programmers symposium
of the IEEE Human Centric Computing Languages and Environments Symposia, Arlington,
VA (2002) 207–214

12. Bednarik, R., Tukiainen, M.: Visual attention tracking during program debugging. In:
NordiCHI’04, ACM Press (2004) 331–334

13. Bednarik, R., Tukiainen, M.: Effects of display blurring on the behavior of novices and
experts during program debugging. In: CHI ’05: CHI ’05 extended abstracts on Human
factors in computing systems, ACM Press (2005) 1204–1207

14. Oechsle, R., Schmitt, T.: JAVAVIS: Automatic Program Visualization with Object and Se-
quence Diagrams Using the Java Debug Interface (JDI). In Diehl, S., ed.: Software Vi-
sualization. Volume 2269 of Lecture Notes in Computer Science., Springer-Verlag (2002)
176–190

15. Zeller, A., L̈utkehaus, D.: DDD — A Free Graphical Front-End for UNIX Debuggers. ACM
SIGPLAN Notices31 (1996) 22–27

16. Gestwicki, P., Jayaraman, B.: Interactive visualization of Java programs. In: IEEE Symposia
on Human Centric Computing Languages and Environments. (2002) 226–235

17. Sajaniemi, J., Kuittinen, M.: Program animation based on the roles of variables. In: ACM
symposium on Software visualization, ACM Press (2003) 7–16

18. Moreno, A., Myller, N., Sutinen, E., Ben-Ari, M.: Visualizing Programs with Jeliot 3. In:
Advanced Visual Interfaces (AVI 2004). (2004) 373–376

19. Bednarik, R., Myller, N., Sutinen, E., Tukiainen, M.: Analyzing Individual Differences in
Program Comprehension with Rich-Data Capture. Submitted (2005)

20. Good, J., Brna, P.: Program comprehension and authentic measurement: a scheme for
analysing descriptions of programs. International Journal of Human-Computer Studies61
(2004) 169–185

Bednarik, Myller, Sutinen and Tukiainen

PPIG 2005 Sussex University www.ppig.org

P3.

Bednarik, R., Myller, N., Sutinen, E., Tukiainen, M.: Analyzing Individual Differences
in Program Comprehension. Technology, Instruction, Cognition and Learning (TICL),
3 (3-4), special issue on modeling and simulation, 2006, pp. 205-232

Reprinted with permission, Copyright 2006 Old City Publishing

3

Analyzing Individual Differences
in Program Comprehension

ROMAN BEDNARIK*, NIKO MYLLER, ERKKI SUTINEN

AND MARKKU TUKIAINEN

Department of Computer Science
University of Joensuu

Joensuu, Finland

Programming is a complex problem-solving domain often involving
many dependent entities which may be even hidden or latent. Novice
programmers have little knowledge about program execution and may
see it as an abstract and non-deterministic process. To support novices,
Jeliot was developed to visualize program execution, and thus help in
specifying viable program development models. This paper reports on an
empirical experiment in program comprehension where 16 subjects used
Jeliot to comprehend two Java programs. The experiment focused on
how the experience level and complexity of the program affected (a) the
patterns of interaction with the tool, (b) the gaze behavior, (c) the use of
visualization, and (d) the cognitive processes related to program com-
prehension. This was done by investigating the protocols obtained from
an eye-tracker, interaction logging, and comprehension summaries. An
interaction between experience and behavior was found. Experts read the
whole code first, constructed a hypothesis, and tested it against the ani-
mation. Novice programmers did not read the code first. They animated
the program directly, and replayed the animation several times focusing
on the difficult sections. The results reveal the potentials of gaze as an
additional modality in an adaptive tool for program visualization.

Keywords: Complex systems; Empirical programmer studies; Eye tracking;
Program comprehension; Program visualization.

205

*Corresponding author: Tel: +358 13 251 7977; Fax: +358 13 251 7955; Email: bednarik@cs.joensuu.fi

Tech., Inst., Cognition and Learning, Vol. 3, pp. 205-232 © 2006 Old City Publishing, Inc.
Reprints available directly from the publisher Published by license under the OCP Science imprint,
Photocopying permitted by license only a member of the Old City Publishing Group

INTRODUCTION

Programming is a complex and cognitively demanding task due to the
multiple interrelated components, tradeoff decisions, and performance
requirements that concern the whole process (Detienne, 2002; Hoc, 1990).
One of the central parts in the processes of programming, such as creating,
maintaining and modifying a software product, is program comprehension.
Therefore, the ability to comprehend computer programs is essential and
should be learned and supported with proper tools. In order to aid the
process of program comprehension and its learning, several tools have
already been developed. However, little is known about the user interaction
with the tools and about the effects of these systems on the program
comprehension and the underlying cognitive processing.

The present study addresses the questions of whether and how a dynamic
visualization of program is used during comprehension processes, and how
the experience of programmers and complexity of the target programs are
reflected in eye-movement patterns and in patterns of interaction.
Knowledge of these aspects may help us to create better and more
personalized tools and methods for aiding program comprehension.

The complexity of programming
A complex system consists of a large number of components whose

interrelations are difficult if not impossible to trace. We can call the
complexity of these systems substantial. A computer-aided system is
supposed to clarify these interrelations and help a human to understand the
dynamics of the system, most often by the means of simplifying the
interrelations and visualizing the system.

In a sequential program, the dependencies between its structures are –
unlike those of a typical complex system – well defined and need no
simplification or reduction. The value of a certain variable depends on the
predetermined sequence of statements, which make use of other data
structures of the program.

However, the complexity lies in the human process of comprehending a
program, especially at the novice level. The learner needs to take into account
diverse aspects of a program, such as its I/O, control flow, data management,
and memory allocation, and to grasp all this information simultaneously makes
understanding difficult. Individual preferences, like appropriate representation,
complicate things even further: if a learner is exposed to a visualization of, for
instance, a variable and its contents that s/he has difficulty to interpret, the

206 BEDNARIK et al.

representation may mislead her/him even more. Thus, we can characterize the
complexity of a sequential program as cognitive.

At the same time, depending on the values of the inputs, even a short
piece of code might have several different manifestations. This is
particularly apparent in the case of short string algorithms, like in the
variations of Knuth-Morris-Pratt or Boyer-Moore string searching
algorithms. The call tree of a simple recursive program, for example, one
operating on a binary search tree, might also result in complex-to-
understand structures.

To summarize, the complexity related to programming and its learning is
more cognitive than that in a conventional complex system where the
complexity is substantial. Therefore, the fundamental challenge of any
system that helps a learner to understand or, as a programmer, to control the
internal dynamics or operations of a sequential program, is to lessen the
cognitive load involved in elaborating the program. This means that the
learner should get closer to the actual, often relatively simple, idea of the
program. One approach to make the inherent simplicity of any program
understandable to a novice programmer is to clarify its operations by
visualization. Jeliot, a tool used in the present study, is one of several
solutions to this challenge.

Currently, there are many visualization engines or systems available.
Most of them have also been evaluated, at least partly; and there are even
meta-studies, like that of Hundhausen (2002). However, careful analyses of
how a user browses an animation are still mostly lacking. These analyses are
essential for developing the visualization environments further, so that they
can help the learner to focus on a program’s essentials as efficiently as
possible. In other words, future systems should uncover the cognitive
complexity and give way for the substantial simplicity of the program.

It is worth noting that there are also programs which behave like a
complex system and could hence be categorized as substantially complex
systems. For example, it is not possible to predict the next step of a
concurrent program; the same applies to randomized algorithms, as well as
to multithreaded or event-driven programs. However, tools for these kinds
of environments are not discussed in the current study.

Program comprehension
A number of studies have been carried out in the field of program

comprehension. The theories of program comprehension can be divided
roughly into three categories: bottom-up, top-down and mixed models.

ANALYZING INDIVIDUAL DIFFERENCES IN PROGRAM COMPREHENSION 207

The bottom-up model of program comprehension was proposed by
Shneiderman and Mayers (1979), and Basili and Mills (1982). Pennington
(1987) reported that programmers approached a comprehended program in a
bottom-up manner from the control structures to the functional structure of
the program. However, this model has not received strong support as a
comprehensive model for describing the comprehension process, but it is
often incorporated as a part of the model.

Brooks (1983) presented a model in which the program was
comprehended in a top-down manner. The central idea of the theory was that
programmers generate hypotheses about the code, using their programming
and domain knowledge, and try to verify them. Brooks treated the bottom-
up comprehension process as a degenerated special case of the top-down
strategy. Letovsky (1986) proposed a similar model and verified the model
in an empirical experiment. The conclusion was that the comprehension
process is guided by the hypotheses. However, Letovsky also recognized the
importance of the bottom-up approach in program comprehension.

The mixed model was supported by the findings of von Mayerhausen,
Vans and Somlo (1999), who studied professional programmers in
authentic software development projects. They proposed an integrated
code comprehension model that combines the results from previous
research. The top-down strategy is commonly used, but when the
program or the domain is unfamiliar, the comprehension is carried out in
a bottom-up manner to gather the program and domain knowledge. With
these strategies and using their knowledge base, the programmers build
and relate the domain, program and situational models to each other. The
proper combination of these three models determines how well the
programmer understands the program.

The methodology for studying and analyzing the program
comprehension process relies mostly on three approaches: comprehension
questions, comprehension summaries and think-aloud protocols.

Comprehension questions are used to determine how well the user has
comprehended the program and can remember some aspects of it
(Pennington, 1987). These can be used as a measure of comprehension
performance. Although program summaries can also be evaluated for
analysis of the performance, they are commonly used to investigate the
mental models of the program acquired by the programmers during the
comprehension task. Previously, comprehension summaries have been
analyzed from two different standpoints (Pennington, 1987; Good & Brna,
2004). One focus is on the information types that are used in the summaries,

208 BEDNARIK et al.

wherefore ten categories were discovered for different information given
from the program. The categories describe several dimensions of the
comprehension outcome. First of all, categories can be divided roughly into
four knowledge types, namely functional, state, data flow and control flow
knowledge. Furthermore, functional and state knowledge have different
abstraction levels. Functional knowledge has three abstraction levels:
function, for what the program is used, action, function of a part of the
program, and operation, a statement level description. State knowledge has
two levels state-high and state-low depending on how high is the abstraction
level in the description. In addition to the knowledge types, the information
types contain four categories for elaboration, meta-cognition, unclear and
incomplete statements and Byckling et al. (2004) proposed also an
irrelevant category. The other focus of the summary analysis scheme is on
object descriptions. They are classified according to their level of
description in the summary. For instance, the descriptions are classified in
different categories depending on if the objects are described in program or
domain specific terms.

The thought sequences and cognitive processing during problem solving
are often analyzed with think-aloud protocol analysis (Ericsson & Simon,
1984). Resting on an assumption that the sequence of thoughts is not altered
during verbalization, protocol analysis has been used successfully in several
domains as well as in analysis of the program comprehension processes.

Program Visualization
Many systems have been developed in the field of Software Visualization

(SV) in the last two decades. Algorithm Visualization (AV), a subset of SV
systems, has received the most attention and has been studied relatively
intensively. However, the results have been inconclusive (Hundhausen et
al., 2002). Program Visualization (PV) is another subfield of SV where
visualization is closely coupled with the program and some aspects of the
programs execution are visualized either during run-time or post-mortem.
These systems are used, for example, to analyze the performance of the
software, to debug programs visually or to teach programming concepts.
Here we will briefly review systems that are similar in some aspect to Jeliot,
the tool used in this experiment.

Javavis (Oechsle & Schmitt, 2002), Jive (Gestwicki & Jayaraman, 2002)
and DDD (Zeller & Lütkehaus, 1996) are tools that automatically visualize
the programs data flow and part of the control flow during program
execution. Javavis and Jive are educational tools whereas DDD is a visual

ANALYZING INDIVIDUAL DIFFERENCES IN PROGRAM COMPREHENSION 209

front end to a debugger. To visualize Java programs, Javavis uses UML-like
diagrams in their visualizations. It illustrates the run-time behavior of the
program through animated object and sequence diagrams. Jive uses a
modified contour diagrams and shows the different contexts (i.e. static or
dynamic) in which the program is executed together with the source code
and local variables. DDD uses its own graph-like format to lay out the data
structures and references between them on the screen. Jeliot combines this
work to show objects and their fields in a UML-like notation of class
diagram. References to the objects are treated as other variables to illustrate
the reference semantics of Java language.

The visualization in Dynalab (Boroni et al., 1996) and PlanAni (Sajaniemi
& Kuittinen, 2003) concentrates on variables. Dynalab shows the values of
variables in a textual format whereas PlanAni shows the variables as graphical
objects. Moreover, PlanAni visualizes the variables and operations on them
differently, depending on the role (Sajaniemi & Kuittinen, 2003) they are
assigned. Dynalab visualizes the programs automatically and can also animate
the programs backwards whereas the animations in PlanAni need to be written
manually beforehand. Both of these programs are currently developed to
visualize only procedural programs. Dynalab has full support for Pascal and
restricted support for C and Ada. PlanAni does not restrict the visualized
language as long as the animation scripts are described in Tcl/Tk. Jeliot
visualizes variables in different scopes separately. For example, method frames
contain the local variables of the method, objects contain the fields and static
variables are separated in their classes. Jeliot also does not make any difference
between the roles of variables. However, it can automatically visualize object-
oriented programs.

Jeliot 3
The Jeliot family is a collection of program visualization systems that

have been developed over the last ten years (Ben-Ari et al., 2002). The latest
version, Jeliot 3, which has been developed at University of Joensuu
(Moreno et al., 2004), is designed to help teach novices the programming
concepts and to aid in program comprehension and debugging. Its
predecessor, Jeliot 2000, has been successfully used to improve the teaching
of introductory programming courses, helping novices to acquire
vocabulary to explain programming structures and concepts (Ben-Bassat
Levy et al., 2003). This might be due to the fact that Jeliot can help the
learner to build a viable mental model of the computer executing the
program and use it to verbalize the execution.

210 BEDNARIK et al.

FIGURE 1
User interface of Jeliot 3. (1 = code editor; 2 = visualization view; 3 = control panel; 4 = out-
put console.)

Jeliot 3 retains the novice-oriented GUI and animation display of
Jeliot 2000 by only adding new menus to expose more functionality to
the user, especially when it is used during lectures. In order to make the
system extensible and to allow adding new features into the visualization,
Jeliot 3 introduced a new design. It automatically visualizes the execution
of user-written Java programs by illustrating the data and control flow
and object-oriented features of the program. Jeliot 3 can visualize a large
subset of novice-level Java programs and it is freely distributed under
GPL (see http://cs.joensuu.fi/jeliot/). The user interface of Jeliot 3 is
shown in Figure 1 (1 = code editor; 2 = visualization view; 3 = control
panel; 4 = output console).

The interface consists of four different areas. A code editor on the left
side shows the program code, and during program visualization, the
currently executed statement or expression is highlighted. A control panel in
the bottom left corner is used to control the animation with VCR-like
buttons. On the right side of the window, the largest area of the Jeliot’s

ANALYZING INDIVIDUAL DIFFERENCES IN PROGRAM COMPREHENSION 211

window is occupied by a visualization view showing the execution state of
the program. Moreover, the animation view is further divided into four
different areas:

• the method area showing the currently executed method and local
variables;

• the expression evaluation area where the expressions are evaluated
step-by-step and messages are shown to the user;

• the constant area containing classes together with their static variables
and the constant box from which the literal constants appear; and,

• the instance and array area showing the visualization of the arrays and
instances containing their fields.

Finally, an output console is located in the bottom right corner of the
window, showing the output of the executed program. Furthermore, there
are two specialized visualizations, where only the call tree or the execution
history of the program is shown, on separate tabs of the tabbed pane. These
views reduce the complexity and the amount of information shown to the
users and thus help them to concentrate on the relevant parts. In the call-tree
visualization, the previous method calls are shown and the currently active
methods are highlighted. This allows following the program execution in
the level of method calls and further reduces the complexity. In the history
view, users can analyze the previous stages of the execution in a step-by-
step manner and thus are able to reason about how the current execution
step was reached.

In a typical session with Jeliot, the user either writes or loads a program.
The user can then compile the program by using the user interface of Jeliot.
When the program is compiled, a visualization view, where the user can see
the animation of the program execution, is opened. Jeliot shows the
execution either step by step or continuously. The user can control the
animation with the buttons, for instance by stopping the animation and
continuing in a step-wise manner. Reverse execution is not possible; but the
user can view the execution history which is a stepwise recording of the
current execution.

Eye-movement tracking
We move our eyes in order to bring an image of the inspected object onto

the fovea, a small and high-resolution area of the retina. Once the image of
the object is stabilized on the retina, the information can be extracted. This

212 BEDNARIK et al.

way the visual attention is linked with the current direction of eye gaze and
most of the time it is also diverted to the point of visual inspection.
Following this eye-mind assumption, if we can track the movements of the
eyes, we can also obtain good insights into and investigate the path and
focus of visual attention during a task. Previous research has firmly
established this relation between eye movements, visual attention and
underlying cognitive processes (Just & Carpenter, 1976; 1980; Rayner,
1998). Knowing which objects have been visually inspected and in which
order and context, we can attempt to infer what cognitive processes were
involved in performing a task related to these objects.

An eye tracker is a device that records eye movements. To estimate the
direction of gaze, most of the current eye trackers use infrared light emitters
and video image analysis of the center of the pupil and reflections from the
cornea. Typically, the accuracy of the eye trackers currently available
commercially is around 1 degree, while the data are sampled at rates of
50–500Hz. Modern eye-trackers are relatively cheap and able to collect
gaze data reliably and unobtrusively. Two general classes of eye tracking
devices exist: a remote optics, table-mounted version and a head–mounted
optics with a see-through mirror. Regardless of the option, both types of eye
trackers must be calibrated for each user before the first experiment.

From the signal obtained from an eye tracker, the two most important
types of eye movements usually identified are saccades and fixations
(Salvucci & Goldberg, 2000; Sibert & Jacob, 2000). Saccades are rapid
ballistic movements of eyes that are executed to reposition the eyes from
one location of attention to another. A single saccade can last between 30
and 120 ms and can span over 1 to 40 degrees of visual angle (Sibert &
Jacob, 2000), with velocities ranging up to 500 degrees per second (Rayner,
1998). No visual information is extracted during a saccade; this is called
saccadic suppression (Matin, 1974). Fixations are the movements of eyes
stabilizing the image of an object on the retina, providing the human visual
system a possibility to extract the features of the object. Typically, the
fixation duration ranges from 200 ms to 300 ms (Rayner, 1998). It is
assumed that during the period of a single fixation the information is
extracted, decoded, and interpreted. The fixation duration can therefore be
thought to be related to the processing required to extract and interpret the
information (Just & Carpenter, 1976; Goldberg & Kotval, 1998; 1999).

Accurate measurement and analysis of eye movements in terms of
saccades and fixations therefore provide us with the details of cognitive
processing and related allocation of visual attention within a performed task.

ANALYZING INDIVIDUAL DIFFERENCES IN PROGRAM COMPREHENSION 213

For instance, the fixation count or the sum of fixation durations on a certain
element can be related to the importance of that element. The fixation
duration might also be seen as a measure of cognitive workload. As
Goldberg and Kotval (1999) reported, the fixation duration increased when
the task required difficult cognitive processing. In the context of program
visualization interfaces, the measure of relative fixation count can, for
instance, correspond with the relative importance of a representation (e.g. a
code or a state diagram) of a program to the current user of the tool.

Previous research of eye movement tracking
In many fields of HCI and in other domains, studies of eye-movement

tracking have significantly contributed to the body of available knowledge.
Eye-movement tracking has been successfully employed in studies of
reading (Just & Carpenter, 1980, 1984; Rayner, 1994), gaze-based
interaction (Jacob, 1993; Karn & Jacob, 2004), eye typing (Majaranta &
Räihä, 2002), menu selection (Crosby & Peterson, 1991; Aaltonen,
Hyrskykari & Räihä, 1998), usability (Goldberg & Kotval, 1998; 1999) or
in virtual reality (Duchowski et al., 2000, 2002).

Possible differences in the eye movement patterns of experts and
novices have been of great interest. Previous studies of eye movement
patterns in domains other than program visualization have shown that (a)
search strategies differ between novice and expert radiologists (Nodine
and Mello-Thons, 2000), and (b) the eye movement patterns of expert-
pilots were better defined and the dwell times were significantly shorter
than those of novices (Kasarskis et al., 2001). The common conclusion of
these and other reports is that the domain knowledge and experience of
participants seem to be the main factors influencing both the performance
and the related gaze behavior.

In the context of the psychology of programming, however, only a few
attempts to utilize eye-movement tracking have been made. Crosby and
Stelovsky (1989, 1990) studied aspects of visual attention during reading
the programs and program comprehension. In these studies, an eye tracker
was used to discover the relationship between cognitive styles and
individual differences, and code-reading patterns. In Crosby and Stelovsky’s
studies, novices and experts were eye tracked during algorithm
comprehension. With the help of eye tracking metrics, complex statements
in the source code of a variation of binary search algorithm have been found
and related to beacons (Crosby et al., 2002). Moreover, differences in the
programming experience of participants were reflected in the times they

214 BEDNARIK et al.

spent viewing different areas of particular complex statements. However,
only one representation of a program was used (the code), and the focus of
the research was mainly on the critical, but surface features of the code, not
on the behavior during dynamic visualization of the program.

Program visualization often involves simultaneous presentation of
several different representations of a program in adjacent views. Previous
studies, investigating issues such as visual attention switching or a
representation use during program comprehension aided by visualization,
involved only static pre-computed stimuli and the analysis was based on a
recording of mouse movements over a blurred interface (Romero et al,
2002; 2003). In comparison to the eye movement tracking, the validity of
such an approach was shown to be questionable (Bednarik & Tukiainen,
2004). Although there is an apparent need for a deeper investigation of gaze
behavior and the underlying cognitive processes during program
visualization (Chandler, 2004), no attempts were made to fill this gap.

EXPERIMENT

The present research investigates differences in gaze behavior of
participants with different levels of programming experience during
program animation. In a preliminary study (Bednarik et al., 2005) we
discovered that, in terms of global attention allocation between code and
visualization, novice and expert gaze patterns do not differ during
comprehension aided by program animation. This result was quite
surprising, since in other domains experts’ and novices’ gaze patterns
differ significantly. However, we found some differences in the mean
fixation durations. To further investigate these findings, we deconstructed
the interface of the visualization tool and compared the performance of
novice and expert participants in terms of their gaze behavior. This
provides us with specific knowledge of how explicit areas are used by
different programmers and whether their use interacts with performance
and cognitive models.

To examine this hypotheses, we conducted an empirical experiment
using a remote eye tracker to record the gaze behavior of participants
during a program-comprehension task aided by an animation. Two groups
of participants with different levels of experience used Jeliot to
comprehend three short Java programs while their eye movements were
simultaneously tracked.

ANALYZING INDIVIDUAL DIFFERENCES IN PROGRAM COMPREHENSION 215

METHOD

A mixed one-between-subject (experience) with two levels and one-
within-subject (program) with two levels design was used. The dependent
variables were relative fixation count over the areas of interest, number
of switches per minute, mean fixation durations over the areas of interest
and overall. The fixation count is a measure related to the level of the
participant’s interest in an area and therefore related to the importance of
that area. The number of switches per minute is a measure of attention
allocation dynamics. The mean fixation duration is associated with the
depth of processing required to understand an attended element. The
analysis of eye movement protocols used only data recorded during the
program animation because that was the only time when all the
representations were shown concurrently and selection of the attended-to
representation could make a difference in understanding the program.

The process of program comprehension was recorded with a video
camera and the interaction protocol with Jeliot was logged. Program
summaries were analyzed using the program summary analysis scheme of
Good and Brna (2004) and revised by Byckling et al. (2004). The
summaries were scored from 0-3 according to the completeness and
correctness criteria. Most of the statistical analysis was carried out using
repeated measures ANOVA and planned comparisons based on t-test.

Participants
Eighteen participants were recruited from high-school students

attending a university level programming course, undergraduate and
graduate computer science students from the local university; each
received a lunch ticket. Due to technical problems, data from two
participants was discarded. The results are based on data collected from
16 subjects (13 male, 3 female).

Participants were divided into two groups according to their level of
programming experience. Those with less than 24 months of programming
experience were regarded as novices and those with more than 24 months as
experts. The characteristics of the two groups are presented in Table 1.
Groups’ mean values for programming experience (in months) and Java
experience (in months) and counts for previous experience with Jeliot
(yes=1, no=0) and previous experience as a professional programmer
(yes=1, no=0) are shown. Standard deviations are in parentheses.

216 BEDNARIK et al.

TABLE 1
Characteristics of the groups. * marks significant difference between groups in two-tailed t-test
(interval values) or χ2-test (nominal values) with p<0.05.

Materials and apparatus
Three short Java programs - factorial computation (program 1), recursive

binary search program (program 2) and naïve string matching (program 3) -
were presented to participants. The lengths of the programs (lines of code)
were 15, 34, and 38, respectively. Each of the programs generated one line of
output and did not require user input. The names of the methods and variables
were altered so that recognition of a program based on surface features was
difficult. To allow for comparison with the eye tracking data, we used an
adapted version of Jeliot 3 that logged all the user actions and all the changes in
the visualization of the programs in this study.

The remote Tobii ET-1750 (50Hz) eye tracker, which made no contact with
participants, was used to track eye movements; the eye tracker is built into the
TFT panel so no moving part is visible and no sound can be heard during
recording. The interaction protocol (such as key-strokes and mouse clicks) was
collected for all target programs, and audio and video were recorded for a
whole session. The minimal duration of fixation for the algorithm processing
eye-data was set at 100ms. Seven static areas of interest (AOI), matching the
seven main areas in the Jeliot interface, were defined: the code, the expression
evaluation area, the method area, the instances area, the constants, the control,
and the output area.

Procedure and design
The experiment was conducted in a quiet usability laboratory. Participants

were seated in an ordinary office chair near the experimenter and facing a 17’’
TFT display. Every participant then passed an automatic eye-tracking
calibration. The calibration required the participants to follow sixteen shrinking
points that appeared one by one across the screen. If needed, the calibration
was repeated in order to achieve the highest possible accuracy. The settings of
the experiment are shown in Figure 2.

ANALYZING INDIVIDUAL DIFFERENCES IN PROGRAM COMPREHENSION 217

Experience level Count Prog. exp.* Java exp.* Jeliot exp. Prof. exp.

novices 8
12.75 months

(6.90)

6.38 months

(4.60)
3 1

intermediates/

experts
8

85.50 months

(56.44)

19.75 months

(15.00)
2 1

FIGURE 2
Experimental settings in the laboratory.

After successful calibration, participants performed three sessions, each
consisting of a comprehension phase using Jeliot 3 and a program summary
writing phase. Participants were instructed to comprehend the program as
well as possible, and they could interact with Jeliot as they found necessary.
The target programs contained no errors and were always preloaded into
Jeliot and compiled. The duration of a session was not limited.

The first program was a factorial computation that was used as a warm-
up; the resulting data were discarded. The order of the two comprehension
tasks (program 2 and program 3) was randomized so that half of the
participants started with the recursive binary search and the other half with
naïve string matching.

RESULTS

Completion and animation times
Mean completion times for the comprehension phase were 17.6 minutes

(SD = 10.0) for novices and 9.8 minutes (SD = 2.6) for experts; according to

218 BEDNARIK et al.

a two-tailed t-test, the differences were statistically significant (t(14) = 2.23,
p<.05). From that time, novices spent, on average, 85.4% (SD = 9.6) of their
time animating the program whereas experts spent 52.9% (SD = 20.0) of
their time animating the program; according to a two-tailed t-test, the
difference was statistically significant (t(14) = 4.13, p<.01).

Interaction patterns
The mean number of clicks on each of the buttons on the control panel

and the mean number of animation replays between groups are show in
Table 2. Novices interacted with the user interface more than experts did.
Novices played, rewound and replayed the animation significantly more.

TABLE 2
Mean values of interaction with the user interface (standard deviations in parentheses).

The interaction patterns of a typical comprehension session of
program 3 for a novice and expert (Figure 3) show the states of the
visualization tool when used by a typical novice and by a typical
experienced programmer. In both of the comprehension tasks, the experts
spent significantly more time on initial code reading (on average, 173
seconds) before they animated a program for a shorter time (on average,
340 seconds) and usually at high speed. On the other hand, the novices
paid little attention to the code (on average, 45 seconds) and it took them
significantly more time to view the animation than it took the experts (on
average, 857 seconds). In addition, behavior of a novice in our study was
characterized by frequent use of a pausing/stepping approach combined

ANALYZING INDIVIDUAL DIFFERENCES IN PROGRAM COMPREHENSION 219

Button Pause Play Rewind Step Overall # of replays

Novices 3.22

(3.55)
5.28 (3.69)

1.83

(1.09)

39.56

(57.20)

49.89

(63.42)
2.722 (0.939)

Experts 1.25

(1.00)
2.19 (1.19)

0.63

(0.69)

2.50

(7.07)
6.57 (7.55) 1.625 (0.694)

t-value

(df=14)

1.395

ns

2.144

p=.05

2.824

p=.01

1.761

p=.10

1.91

p=.09

2.71

p=.01

The interaction patterns of a typical comprehension session of program 3 for a

and expert (Figure 3) show the states of the visualization tool when used by a typical nov

with more replays of the animation. From the protocols and gaze-
recordings it is clear that the stepping and pausing occurred around the
central parts of the currently comprehended algorithm.

FIGURE 3
The phases of Jeliot animation engine during the comprehension of the binary search program.

Analysis of comprehension summaries
The comprehension summaries were graded in a scale from 0 to 3 and the

averages of the two groups are shown in Table 3. The results indicate that
experts received more points than novices did; however, the differences
were not statistically significant.

TABLE 3
Points received from the summary evaluation (standard deviations in parentheses).

220 BEDNARIK et al.

program 2 program 3

both groups 1.81 (0.75) 1.88 (0.96)

novices 1.63 (0.52) 1.50 (1.07)

experts 2.00 (0.93) 2.25 (0.71)

In order to understand the qualitative differences in the summaries
better, they were analyzed according to the scheme described by Good
and Brna (2004). We analyzed only the information types found in the
summaries (Table 4). The first eleven rows describe the standard
categories of the analysis scheme. The repeated measures analysis of
variance revealed no significant effect of program (F(1,14) = 2.32, ns)
or experience (F(1,14) = 2.32, ns) on the information types contained in
the summaries. The interaction between program and experience was
not s ignif icant (F(1,14) = 2.32, ns) . However, an effect of the
information type was discovered (F(9, 126) = 6.82, p<.001), but had no
interaction with the level of experience (F(9, 126) = 0.71, ns). The
interact ion effect between program and information type was
significant (F(9, 126) = 2.45, p=.013).

To investigate this difference, pairwise comparisons were run.
According to these comparisons, the action, and the irrelevant categories
were present significantly more in the summaries of program 3 (t(14) =
2.38, p<.05) and t(14) = 2.45, p<.05, respectively), while the control
related statements were present more in the summaries of program 2
(t(14) = 2.36, p<.05). No other significant difference was found,
however, the state-low statements were more often present in program 2
summaries, with probability approaching a significance level of 0.05,
(t(14) = 1.99, p=.066).

TABLE 4
Information type analysis (standard deviations in parentheses; unused categories omitted).

ANALYZING INDIVIDUAL DIFFERENCES IN PROGRAM COMPREHENSION 221

program 2 program 3

novices experts novices experts

function 5.68 % (5.71) 5.96 % (4.59) 5.23 % (4.86) 6.17 % (4.84)

action 6.71 % (6.27) 5.68 % (6.78) 13.61 % (13.71) 9.87 % (9.49)

operation 17.75 % (19.73) 10.63 % (17.17) 15.69 % (13.09) 16.28 % (14.37)

state-high 5.70 % (6.36) 8.13 % (7.47) 6.73 % (3.09) 15.91 % (10.10)

state-low 12.59 % (15.36) 12.83 % (11.80) 11.99 % (13.07) 6.78 % (5.90)

data 8.84 % (7.43) 22.90 % (8.11) 10.47 % (8.36) 9,91 % (8,67)

control 23.65 % (21.73) 21.00 % (5.11) 10.57 % (6.57) 12,33 % (10.25)

elaborate 16.45 % (12.41) 10.78 % (12.20) 16.22 % (13.13) 19,63 % (15.47)

meta 0.96 % (2.72) 0.83 % (2.36) 5.21 % (9.76) 0,00 % (0,00)

irrelevant 0.00 % (0.00) 1.25 % (2.48) 4.28 % (5.50) 3.11 % (4.58)

info-high 20.22 % (12.70) 36.99 % (13.50) 22.42 % (8.72) 32.00 % (12.94)

info-low 53.99 % (25.53) 44.46 % (16.46) 38.25 % (17.88) 35.38 % (22.14)

The last two rows of Table 4 contain two aggregate values that describe
the level of abstraction used in the summaries. The value info-high is a
measure of high abstraction and is a sum of function, state-high and data
statements. On the other hand, info-low is a sum of operation, state-low and
control and indicates a low level of abstraction in the summary. The
abstraction levels were used differently (F(1,14) = 5.37, p<.05). Experts
used more info-high statements and less info-low statements, but there was
no interaction between abstraction level and experience (F(1,14) = 2.21, ns).

Eye-gaze related data
Since the programs did not generate an extensive output, some of the

participants were not gazing at the output area. Therefore, only the data of
those participants who produced at least one fixation to each of the areas
were included in the analysis. As one experimental participant did not
perform any switching during comprehending the program 2, data for only
fifteen participants were used in this analysis of eye-gaze data.

Distribution of Fixations
The distribution of the fixations over different areas of interest (AOI)

during animation is illustrated in Figure 4, the value of the visualization
AOI is composed as a sum of the method, expression, instance, and
constants areas of interest. Only the data of those participants who produced
at least one fixation to each of the areas were included in the analysis.

FIGURE 4
Relative fixation-count distribution during animation. The value of Visualization column rep-
resents a sum of fixations on the method, expression, instance, and constants areas.

222 BEDNARIK et al.

0

10

20

30

40

50

60

70

80

Code Theater Output Control Method Expression Instance Constants

F
ix

.
c

o
u

n
t

(%
)

Novices

Experts

According to the repeated measures ANOVA, the use of areas of interest
was significantly different (F(5,65) = 62.89, p<.001). The effect of program
was not significant (F(1,13) = 0.001, ns) and the effect of experience to the
fixation count distribution was also not significant (F(1,13) = 0.46, ns).
However, the interaction between program and AOI was significant (F(5,65)
= 9.00, p<.001). Other interactions were not significant.

Distribution of the fixations over the user interface during
comprehension of program 3 is shown in Figure 5 as hotspot visualization,
where the areas with more fixations are in darker colors. The distributions
were similar for both groups. During both programs there were two areas
that got the highest attention from both groups. One of the areas was in the
code where the central idea of the program lay, and the other was in the
expression area of the visualization frame.

FIGURE 5
Visualization of the fixation distribution for the string matching program; the more attended
areas are shown in darker colors.

Switching behavior
Figure 6 shows the mean number of switches per minute during

animation. A switch was measured every time a gaze location changed

ANALYZING INDIVIDUAL DIFFERENCES IN PROGRAM COMPREHENSION 223

between any two of the seven areas of interest. As one experimental
participant did not perform any switch with the program 2, there were only
data for fifteen participants used in this analysis. For the data during the
animation, a 2 x 2 x 21 (experience x program x switch type) ANOVA
showed a significant main effect of switch type (F(20, 260) = 68.44,
p<.001), and no effect of program (F(1,13) = 1.04, ns) on the switching
frequency. The effect of experience was not significant, however,
approaching near significance (F(1, 13) = 3.37, p = .089). The interactions
between program and experience, and between switch type and experience
were not significant (F(1, 13) = 0.50, ns), and (F(20, 260) = 1.02, ns,
respectively). However, the interaction between program and switch type
was significant (F(20,260) = 11.38, p<.001).

FIGURE 6
Visual attention switching during animation; * indicates significant difference in the two-tailed
t-test (p<.05).

The pairwise comparisons revealed the sources of the differences: the
switches between the code and the method AOIs and the code and the
instances AOIs differed significantly between the programs (t(13) = 3.07,
p<.01), and (t(13) = 3.62, p<.005, respectively). Some switches within the
animation frame, particularly those between the expression and the method
areas, between the instances and method areas, and between the expression
and instances areas, differed significantly (t(13) = 2.24, p<.05), (t(13) =
2.63, p<.03), and (t(13) = 6.97, p<.001, respectively).
Fixation durations

Figure 7 shows the mean fixation durations during animation for the
seven main areas of interest (AOI) and the overall mean fixation duration.

224 BEDNARIK et al.

-2

0

2

4

6

8

10

12

14

16

18

20

OUTPUT CONTROL M ETHOD EXPR. INSTANCE CONST. CONTROL M ETHOD EXPR. INSTANCE CONST. M ETHOD EXPR. INSTANCE CONST. EXPR. INSTANCE* CONST. INSTANCE CONST. CONST.

CODE CODE CODE CODE CODE CODE OUTPUT OUTPUT OUTPUT OUTPUT OUTPUT CONTROL CONTROL CONTROL CONTROL M ETHOD M ETHOD * M ETHOD EXPR. EXPR. INSTANCE

S
w

it
c
h

e
s
/m

in
.

Novices Experts

These have been computed as the sum of durations of all fixations landing at
an area of interest divided by the number of fixations. Since the programs
did not generate an extensive output, some of the participants were not
gazing at the output. The data on the areas affected during the animation, the
method, the expression evaluation, the instance, and the constants areas,
were included into the analysis.

According to repeated measures ANOVA, the durations of fixations on
different AOIs were significantly different (F(4,52) = 16.66, p<.001). On
almost all areas, experts seemed to fixate significantly shorter (F(1,13) =
7.27, p=.018) and an interaction effect between experience and fixation
duration on the areas was significant (F(4,52) = 3.88, p<.01). No effect of
program on the mean fixation duration was found (F(1,13) = 0.495, ns), as
well as no interaction between program and AOI (F(4,52) = 1.59, ns).

FIGURE 7
Fixation duration during animation. * indicates significant difference between groups in the
two-tailed t-test (p<.05) and ** the two-tailed t-test (p<.01).

DISCUSSION

In our study, expert programmers completed the comprehension phase
faster than novices did. This can be kept as one measure of performance.
From the analysis of the summaries it can be seen that, although the
differences were not statistically significant, experts performed better
than novices. In the qualitative analysis of the summaries, it was found
that, compared to novices, experts used higher level of abstraction in their

ANALYZING INDIVIDUAL DIFFERENCES IN PROGRAM COMPREHENSION 225

0

100

200

300

400

500

600

Code * Output Control Method * Expression * Instance ** Constants Overall *

M
e
a
n

 f
ix

a
ti

o
n

 d
u

ra
ti

o
n
s
 (

m
s
)

Novices Experts

summaries, but also this difference was not statistically significant.
However, according to previous studies, the use of high level references is a
sign of expertise (Hoadley et al., 1996; Pennington, 1987). Together with
the finding that experts comprehended the programs faster, these indicate
better performance of the experts compared to the novices.

From the interaction protocols analysis we found that the experts usually
started their comprehension task by reading the code and spending
significantly larger proportion of the session on constructing hypotheses.
This finding is in agreement with results obtained in previous studies
(Romero, 2003; 2002). After these initial code-reading episodes, the experts
spent significantly less time than novices on animating the programs.
Novices interacted with the user interface more than the experts did. This is
due to the fact that novices spent more time on visualizing the program than
experts did, and novices also replayed the animation more, compared to
experts. The number of replays indicates that novices relied on visualization
whereas experts used it as an additional source of information. Experts spent
less time animating the programs which was in agreement with the
hypothesis that experts would concentrate more on code reading. This
happened only before and after they had been visualizing the program. The
code-reading episodes could have affected the gaze behavior of the experts
during the program animation compared to novices. However, we have not
found such projection into the fixation patterns in terms of fixation
distribution during the animation.

The results of this experiment related to gaze behavior during animation
show that the level of experience does not affect the distribution of fixation
counts, while the switching behavior is affected slightly. This result is
inconsistent with previous eye movement studies where the differences
between novice and expert gaze behavior were investigated. The animation
attracts novice and expert programmers almost equally to attend it in quite
similar patterns. Most of the animation time was spent on viewing the
visualization part of the Jeliot’s user interface. For more experienced
participants, the distribution of fixations between code and animation was
slightly more balanced, in other words, the novice programmers relied more
on visualization.

During animation, the attention switch between the code and the
expression evaluation areas was most common, followed by the switch
between the code and the method area. The switches to and from the control
area were higher for novices. We connect this difference to the fact that
during the animation novices were interacting with the tool more than

226 BEDNARIK et al.

experts were. According to the analysis, the effect of experience on the
switching behavior was only a nearly significant.

Unlike the fixation counts and attention switching, we found a significant
effect of experience on the fixation duration. For all the main areas and also
overall, the fixation duration of experts was shorter than that of novices. The
fixation duration when participants gazed at the control buttons was the
same regardless of experience. Altogether this means that novices needed to
devote significantly more time to comprehending a currently animated
feature, which is naturally linked to expertise. This difference was greatest
when participants were attending to the instance area and smallest for the
area where constants were appearing.

Considering the gaze behavior as related to a target program, we found
that the use of the discrete areas and therefore the type of the attention
switch differed as the comprehended program changed. In previous studies
on the coordination of multiple representations during a debugging task
(Romero et al., 2003; 2003) it has been suggested that the balanced use of
different representations of a program during comprehension might be
linked to superior programming experience. As seen from the fixation count
distribution and switching behavior, both groups used the provided
representations in about the same balanced way. Therefore, it could be,
provocatively, suggested that using the Jeliot also made the novice
programmers to behave in patterns similar to those of experts. This view
could be supported by the difference found in the mean fixation durations:
although the animation was attended in similar patterns, novices spent
significantly more time to process the animation. However, the
performance, as measured by the comprehension summaries, was different
but not significantly.

FUTURE WORK

The results obtained in this initial experiment need to be confirmed further
and extended. Future research can take several directions. Our aim is to
investigate the effects that a single animation element and the difficult sections
of code have on gaze behavior as well as the changes in gaze behavior over
time and with increasing experience. The ultimate goal is to support learning
with dynamic program visualizations that could adapt to the needs of the users.
We believe that using the eye-tracker to collect the actual gaze directions and
use it to adapt visualization is a way to get closer to our goal.

ANALYZING INDIVIDUAL DIFFERENCES IN PROGRAM COMPREHENSION 227

In addition, we plan to develop better methodological grounds for applying
the eye-tracking in the context of program visualization. As seen from the
present study, some of the widely used eye-tracking metrics are not sufficiently
able to discover the links between experience, produced mental models and
gaze behavior. Therefore, available measures need to be related to the cognitive
processes and outcomes and new measures have to be developed. For example,
we plan to examine, whether and how attending a certain element or area of
animation correlates with the produced mental models captured in program
summaries. Another direction could be taken, for instance, when eye tracking
is applied to program visualization in real time: the level of dissociation
between the attention focus of a programmer and the currently animated
location should be investigated. These studies will provide a deeper
understanding of the cognitive processes involved in program comprehension
during program visualization and will further stimulate the research on the
adaptivity of visualization tools.

Adapting program visualization
When visualizing a program, users of the visualization tools have different

needs and levels of knowledge. Currently, a user can change some aspects of
the visualization manually, but there are only few systems that would
automatically adapt to the user’s previous experience or needs. This would be
beneficial for the user because her cognitive load could be reduced by hiding
details that are not relevant to the current task of users or are already known to
the users.

There are several scenarios how Jeliot could be made more adaptive. First
of all, we could collect data from a learning environment for programming and
use user modeling to analyze which programming concept the user currently
does or does not understand. With the information on user knowledge, we
could change the granularity of the visualization to emphasize those concepts
that the users are currently struggling with and minimize the details of those
that they already understand (Brusilovsky & Su, 2002).

The visualization could be adaptive in real time, based on the data collected
from the user, for example, via an eye tracker. With an eye tracker, one can
track the gaze path during a comprehension task and therefore can obtain
insights into the user’s allocation of visual attention and attention switching
between different areas in an interface. Knowledge of gaze-related patterns
provides us with important aspects of the underlying cognitive processes and
could be a hint as to the needs of the users. As it has also been argued elsewhere
(Cross et al., 1999), supporting those cognitive processes that are beneficial to

228 BEDNARIK et al.

program visualization, and therefore also to comprehension, can yield better
effects on learning. Thus, one of the aims of the research presented in this paper
was to discover the basic patterns of eye movements during program
comprehension supported by dynamic visualization and thereby provide the
research community with a starting point and means of adapting and tailoring
the visualizations to personal needs. Till now, the eye- movement research has
mainly concentrated on utilization of voluntary eye movements as an
alternative gaze-based selection and pointing technique for HCI, but little has
been done to exploit the gaze direction during complex dynamic visualizations.

CONCLUSION

We conducted an empirical experiment to discover the similarities and
differences between experienced and novice programmers in interaction, in the
comprehension process, and in the gaze behavior during program
comprehension aided by a visualization tool. We employed non-intrusive
remote eye tracking equipment to record the eye movements of programmers.

Our results in terms of attention switches between representations and
distribution of fixations show no significant difference in behavior between
novice and expert groups of programmers during program animation. The
focus of visual attention seems to be distributed in space and also most of
the time evenly, regardless of previous experience with programming. When
the level of processing required to attend to the animation is measured as the
duration of fixations over the main areas of interest and overall, our results
show a significant difference.
Acknowledgements

We thank all participants for taking part in this study. We acknowledge
Andrés Moreno for help with preparation of this study. We thank the
reviewers for comments to improve the manuscript.

REFERENCES

Aaltonen A., Hyrskykari A., Räihä, K.-J. (1998). 101 Spots, or How Do Users Read Menus? In
Proceedings of the CHI'98 (pp.132–139), NY, ACM.

Basili, V. R., Mills, H. D. (1982). Understanding and Documenting Programs. IEEE
Transactions on Software Engineering, 8(3), (pp. 270–283).

Bednarik, R., Tukiainen, M. (2004). Visual attention tracking during program debugging. In
Proceedings of NordiCHI’04 (pp. 331–334), NY: ACM.

ANALYZING INDIVIDUAL DIFFERENCES IN PROGRAM COMPREHENSION 229

Bednarik, R., Myller, N., Sutinen, E., Tukiainen, M. (2005) Effects of Experience on Gaze
Behaviour during Program Animation. Proceedings of the 17th Annual Psychology of
Programming Interest Group Workshop (PPIG'05) (pp. 49-61), Brighton, UK, June 28 -
July 1, 2005.

Ben-Ari, M., Myller, N., Sutinen, E., Tarhio, J. (2002). Perspectives on Program Animation
with Jeliot. In S. Diehl (Ed.), Software Visualization (pp. 31–45), Berlin: Springer-Verlag.

Ben-Bassat Levy, R., Ben-Ari, M., Uronen, P.A. (2003). The Jeliot 2000 Program Animation
System. Computers & Education, 40(1), (pp. 1–15).

Boroni, C. M., Eneboe, T.J., Goosey, F.W., Ross J. A., Ross, R. J. (1996) Dancing with Dynalab
- Endearing the Science of Computing to Students. In Proceedings of the 27th SIGCSE
Technical Symposium on Computer Science Education (pp. 135–139), NY: ACM.

Brusilovsky, P. and Su, H.-D. (2002). Adaptive Visualization Component of a Distributed Web-
based Adaptive Educational System. In Proceedings of 6th International Conference on
Intelligent Tutoring Systems 2002 (pp. 229–238), Berlin: Springer-Verlag.

Byckling, P., Kuittinen, M., Nevalainen, S., Sajaniemi, J. (2004). An Inter-Rater Reliability
Analysis of Good's Program Summary Analysis Scheme. In Proceedings of the 16th
Annual Workshop of the Psychology of Programming Interest Group (pp. 170–184).

Crosby, M. and Peterson, W., (1991). Using eye movements to classify search strategies. In
Proceedings of the Human Factors Society 35th Annual Meeting (pp. 1476–1480).

Crosby, M. E., Scholtz, J., Wiedenbeck, S. (2002). The Roles Beacons Play in Comprehension
for Novice and Expert Programmers. In J. Kuljis, L. Baldwin, R. Scoble (Eds.),
Proceedings of the 14th Annual Workshop of the Psychology of Programming Interest
Group (pp. 58–73).

Crosby, M. and Stelovsky, J. (1989). The influence of user experience and presentation medium
on strategies of viewing algorithms. In Proceedings of 22nd Annual Hawaii International
Conference on System Sciences (pp. 438–446).

Crosby, M. and Stelovsky, J. (1990). How do we read algorithms? A case study. IEEE
Computer, 23(1), (pp. 24–35).

Cross, J. H., Hendrix, T. D., Mathias, K. S., Barowski, L. A. (1999). Software Visualization and
Measurement in Software Engineering Education: An Experience Report. In Frontiers in
Education Conference FIE '99 (vol. 2, pp. 12B1/5–12B110).

Detienne, F. (2002). Software Design – Cognitive Aspects. Springer-Verlag London.

Duchowski, A.T., Shivashankaraiah, V., Rawls, T., Gramopadhye, A. K., Melloy, B., Kanki, B.
(2000). Binocular eye tracking in virtual reality for inspection training. In Tracking
Research & Applications Symposium 2000 (pp. 89–96).

Duchowski, A. T., Medlin, E., Cournia, N., Gramopadhye, A. K., Melloy, B., Nair, S.
(2002). 3D eye movement analysis for VR visual inspection training. In Tracking
Research & Applications Symposium 2002 (pp. 103–110).

Ericsson, K. & Simon, H. (1984). Protocol Analysis. Cambridge, MA: MIT.

Gestwicki, P., Jayaraman, B. (2002). Interactive visualization of Java programs. In
Proceedings of IEEE Symposia on Human Centric Computing Languages and
Environments 2002 (pp. 226–235).

Goldberg, J. H., Kotval, X. P. (1998). Eye Movement-Based Evaluation of the Computer
Interface. In S. K. Kumar (Ed.), Advances in Occupational Ergonomics and Safety
(pp. 529–532), Amsterdam: IOS.

Goldberg, J. H., Kotval, X. P. (1999). Computer Interface Evaluation Using Eye
Movements: Methods and Constructs. International Journal of Industrial Ergonomics,
24(6), (pp. 631–45).

Good, J., Brna, P. (2004). Program comprehension and authentic measurement: a scheme

230 BEDNARIK et al.

for analysing descriptions of programs. International Journal of Human-Computer
Studies, 61, (pp. 169–185).

Hoadley, C. H., Linn, M. C., Mann, L. M., Clancy, M. J. (1996). When, Why and How Do
Novice Programmers Reuse Code? In W. D. Gray and D. A. Boehm-Davis (Eds.),
Empirical Studies of Programmers: Sixth Workshop (pp. 109–129), NJ: Ablex.

Hoc, J.-M., Green, T.R.G., Samurcay, R., Gilmore, D.J. (Eds.) (1990). Psychology of
programming. Academic Press.

Hundhausen, C. D., Douglas, S. A., Stasko, J. T. (2002). A Meta-Study of Algorithm
Visualization Effectiveness. Journal of Visual Languages & Computing 13(3), (pp.
259–290).

Jacob, R. J. K. (1993). Eye Movement-Based Human-Computer Interaction Techniques:
Toward Non-Command Interfaces. In H. R. Hartson, D. Hix (Eds.), Advances in
Human-Computer Interaction (Vol. 4, pp. 151–190).

Just, M. A. and Carpenter, P. A. (1976). Eye fixations and cognitive processes. Cognitive
Psychology, 8, (pp. 441–480).

Just, M. A. and Carpenter, P. A. (1980). A theory of reading: From eye fixations to
comprehension. Psychological Review, 87(4), (pp. 329–354).

Just, M. A. and Carpenter, P. A. (1984). Using Eye Fixations to Study Reading
Comprehension, in D. Kieras & M. Just (eds), New Methods in Reading
Comprehension Research, Lawrence Earlbaum Associates, Hillsdale, New Jersey, (pp.
151-182).

Kasarskis, P., Stehwien, J., Hickox, J., Aretz, A., and Wickens, C. (2001). Comparison of
expert and novice scan behaviors during VFR flight. In Proceedings of the 11th
International Symposium on Aviation Psychology.

Majaranta, P., Räihä, K-J. (2002). Twenty Years of Eye Typing: Systems and Design Issues.
In Eye Tracking Research & Applications Symposium 2002 (pp. 15–22).

Matin, E. (1974) Saccadic suppression: a review and an analysis. Psychological Bulletin,
81(12), (pp. 889–917).

Moreno, A., Myller, N., Sutinen, E., Ben-Ari, M. (2004). Visualizing Programs with Jeliot
3. In Proceedings of Advanced Visual Interfaces, AVI 2004 (pp. 373–376).

Nodine, C., Mello-Thoms, C. (2000). The nature of expertise in radiology. In J. Beutel, H. Kundel,
R. Van Metter (Eds.), Handbook of Medical Imaging, WA: SPIE.

Oechsle, R., Schmitt, T. (2002). JAVAVIS: Automatic Program Visualization with Object and
Sequence Diagrams Using the Java Debug Interface (JDI). In S. Diehl (Ed.), Software
Visualization, Vol. 2269 of LNCS, (pp. 176–190). Berlin: Springer-Verlag.

Pennington, N. (1987). Comprehension Strategies in Programming. In G. M. Olson, S. Sheppard,
E. Soloway (Eds.), Empirical Studies of Programmers: Second Workshop (pp. 100–113), NJ:
Ablex.

Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research.
Psychological Bulletin, 124(3), (pp. 372–422).

Romero, P., du Boulay, B., Cox, R., Lutz, R. (2003). Java debugging strategies in multi-
representational environments. In Proceedings of the 15th Annual Workshop of the
Psychology of Programming Interest Group (pp. 421–434).

Romero, P., Lutz, R., Cox, R., du Boulay, B. (2002). Co-ordination of multiple external
representations during Java program debugging. In Proceedings of the Empirical Studies of
Programmers symposium of the IEEE Human Centric Computing Languages and
Environments Symposia 2002 (pp. 207–214).

Sajaniemi, J., Kuittinen, M. (2003). Program animation based on the roles of variables. In
Proceedings of the 2003 ACM symposium on Software visualization (pp. 7–16), NY: ACM.

ANALYZING INDIVIDUAL DIFFERENCES IN PROGRAM COMPREHENSION 231

Shneiderman, B., and R. Mayer. (1979) Syntactic Semantic Interactions in Programmer Behavior:
A Model and Experimental Results. International Journal of Computer & Information
Sciences, 8(3), (pp. 219–238).

Sibert, L. E., Jacob, R. J. K. (2000). Evaluation of eye gaze interaction. In Proceedings of CHI
2000 (pp. 281–288), NY: ACM.

Zeller, A. and Lütkehaus, D. (1996). DDD, A Free Graphical Front-End for UNIX Debuggers.
ACM SIGPLAN Notices, 31(1), (pp. 22–27).

232 BEDNARIK et al.

P4.

Bednarik, R., Randolph, J.: Studying Cognitive Processes in Program
Comprehension: Levels of Analysis of Sparse Eye-Tracking Data. In Hammoud, R.
(ed): Passive Eye Monitoring: for Safety, Security, Communications, Medical and Web
Applications. 2008, Springer.

Reprinted with permission, Copyright 2008 Springer

4

1

Studying Cognitive Processes in Program

Comprehension: Levels of Analysis of Sparse

Eye-Tracking Data

Roman Bednarik and Justus Randolph

Department of Computer Science and Statistics, University of Joensuu, Finland.
roman.bednarik@joensuu.fi

Analysis of eye-tracking data and their relation to underlying cognitive pro-
cesses is one of the principal challenges of eye-tracking research. This chapter
addresses the problem in the domain of studies of programming where the
data can be sparse. In those situations, the traditional parametric methods
to analyze the data might fail. We review previous recent approaches to the
analysis, and we present solutions for the analysis of sparse data and illustrate
their benefits for eye-tracking research.

1.1 Introduction

Computer programming is a cognitively demanding task [15, 10]. Program-
mers have to constantly apply their knowledge and skills to acquire and main-
tain a mental representation of a program. Modern programming environ-
ments (sometimes called integrated development environments (IDE)) often
present, in several adjacent windows, the information related to the actual
program. These windows often contain a variety of representations of the pro-
gram (e.g. the program text or a visualization of program variables), all of
which need to be taken into consideration by the programmer. Investigating
a programmer’s visual attention to these different representations can lead to
insights about how programmers acquire the skill of program comprehension,
which is considered to be the crux of successful computer programming. Re-
search questions related to the role of visual attention during program com-
prehension might focus, for instance, on whether visual attention patterns
differentiate good and poor comprehenders, or what are the specific features
of a program text that skilled programmers attend while debugging a flawed
program.

Eye-movement tracking has been employed across a variety of domains to
capture patterns of visual attention [11]. Among the many domains, studies
of visual attention during reading is, probably, the domain that has benefited

2 Roman Bednarik and Justus Randolph

the most from eye-tracking technology (c.f. [23] for a review). In addition to
studies of reading, other domains have benefited substantially from adopt-
ing eye-tracking methods to investigate visual attention, including studies of
driving (e.g. [27, 24]) or studies of the usability of computer interfaces (e.g.
[13, 14, 8]).

Despite the many benefits of eye-tracking, there are also several disadvan-
tages and challenges to its application. Although the technical challenges to
eye-tracking research are rapidly being overcome, there are several method-
ological challenges that still stand in the way. For example, Jacob and Karn
[16] argue that the analysis of eye-tracking data is one of the principal chal-
lenges for eye-tracking studies. This indeed seems to be the case in the domain
of studying visual attention in programming visual attention in programming,
as we discuss in this chapter.

A typical course of eye-movements during a program comprehension ses-
sion is illustrated in Figure 1.1. The gaze-plot in Figure 1.1 displays approxi-
mately one minute from the beginning of a Java program comprehension task;
fixations, numbered consecutively, are displayed as circles and their diameter
corresponds with the duration. In this particular case, the programmers were
instructed to comprehend the program as best as they could with the pur-
pose of writing a comprehension summary. From the figure it can be observed
that the programmer first briefly overviewed the whole source code and then
carefully investigated the first part of the program.

In many laboratory eye-tracking program comprehension studies, partici-
pants are free to select which programming strategy and approach they engage
in, to emulate what happens in real life programming tasks. The result is that
if a certain programming activity is the phenomenon of interest, only the data
of participants who willfully chose to do that certain programming procedure
can be used for analysis. So for example if only 10% of participants tend to
do a certain programming task, and 30 cases are needed to ensure the proper
power for parametric tests, then 300 participants would be needed to get a
sufficient amount of data. However, given the time and expense involved in
eye-tracking studies, collecting data from this large of a number of cases is
simply not feasible. The consequence, along with the fact that portions of
data might be missing due to technical difficulties, is that eye-tracking data
sets in program comprehension tend to be sparse.

The sparseness of the data sets leads to serious problems in applying con-
ventional parametric statistical methods. In this paper we discuss two “back-
to-basics” approaches that we have found to have been helpful in analyzing
the sparse data sets generated from eye-tracking studies of program compre-
hension, especially those analyses dealing with the identification of trends.
Those approaches are conducting visual analyses of data (in the single-case
tradition) or conducting a binomial test. We admit that these methods are
just a few of many suitable ways to analyze sparse data sets. The utility of
the methods presented here is grounded in their parsimony and ease of con-
ceptual understanding. They constitute what we believe to be a “minimally

1 Analysis of Eye-Tracking Data in Program Comprehension 3

Fig. 1.1. Gaze-plot of one minute of eye-movement data during program compre-
hension.

sufficient analysis” [1] of the types of sparse data sets common to eye-tracking
studies of program comprehension. Although these approaches were applied
to eye-tracking program comprehension data sets, there is no reason that they
would not generalize to other domains where eye-tracking data sets tend to

4 Roman Bednarik and Justus Randolph

be sparse and have few cases. For example, studies of usability, as we also dis-
cuss later, are conducted using similar research settings and designs as studies
of program comprehension. In both cases, users work under minimal restric-
tions, their tasks are as natural as possible, and the number of participants is
similar.

This chapter is organized as follows. Before we explain the approaches to
analysis that we have taken, we first give an overview of the methods employed
in visual attention research in programming and then provide some examples.
Next we present information about the visual analysis of eye-tracking data
and about conducting a binomial test to identify trends.

1.2 Related work

1.2.1 Techniques to capture visual attention during programming

activities

At the moment, there are three types of techniques that have been employed
to estimate the current location of user’s focus of visual attention. The first
category includes systems based on tracking the direction of user’s gaze (i.e.
eye-tracking systems), the second category includes systems based on focus
windows (where all of the screen is blurred except for one unrestricted win-
dow), and the third category includes systems that record verbal protocols [12]
as users problem-solve. In this chapter, we focus on the analysis of data that
result from the eye-tracking and focus window systems, and do not further
consider the analysis of verbal protocols.

Most modern eye-tracking systems are based on video and image process-
ing of eye movements; those systems capture the reflections from infrared
emitters pointed at the eye. Typically, the vendors of eye-tracking systems
also provide a software package that facilitates the recording of gaze loca-
tion and the analysis of the resulting stream. An extensive treatment of the
technical issues involved in eye-tracking can be found in [11].

The Focus Window Technique (FWT) is an alternative method for track-
ing visual attention. The technique was designed to reduce the technical prob-
lems with eye-tracking. In this method, the screen is blurred except for a
certain section of the screen. The Restricted Focus Viewer (RFV) [17] is a
system based on the FWT. In the RFV technique, a user controls the loca-
tion of the only focused area with a computer mouse. The RFV produces a
stream of data that is similar to that of the eye-tracker: the resulting file con-
tains time-stamped data that contains the location of the focused spot, mouse
clicks, key presses, and other events. The RFV or systems based on it have
been applied in several studies (e.g. [26]); Bednarik and Tukiainen [7], how-
ever, showed that the focus window technique, when employed to track visual
attention during debugging, interferes with the natural strategies of program-
mers. Jones and Mewhort [18] also showed that the FWT has to be properly

1 Analysis of Eye-Tracking Data in Program Comprehension 5

calibrated to prevent the user from exploiting information that should have
been made inaccessible through blurring.

1.2.2 Studying visual attention in programming behavior using

eye-tracking

Normally, computer programmers work with graphical, highly interactive de-
velopment systems. These systems present program-related information in
multiple windows that provide different representations of the program and
its execution. While programming, programmers have to coordinate these win-
dows to build and maintain a coherent model of the program. It is not clear,
however, what the role of visual attention is in this process. Studies in the
domain of the psychology of programming therefore attempt to gain insights
into visual attention patterns during program maintenance tasks and during
interaction with multi-representational development environments.

In this section, we describe how studies of programming behavior and vi-
sual attention are usually conducted, including information about the number
of participants, the materials, eye-tracking apparatus used, and the research
designs that are typically involved. We came about this information by re-
viewing a purposive sample of previous studies that reported an empirical in-
vestigation of the role of visual attention in some programming-related task.
Although we did not conduct a systematic search of the literature, based on
our familiarity with the field and because the field is a small one, we are
confident that these studies, if not a comprehensive sample, are at least rep-
resentative of the situations and methods of analysis being currently applied
in visual attention studies of programming. One of the focuses of the review
was on how the analyses of the data had been performed.

Table 1.1 summarizes 11 studies of programming that had incorporated
a visual-attention-tracking technique. It presents the number of participants
involved, the type of experimental design, the type of analysis, and duration
of task(s) from which the eye-tracking data were aggregated into a measure
and analyzed. If the maximal duration of a single session was reported instead
of the actual mean duration, we used the maximal duration. The studies of
Romero and colleagues [26, 25] employed the RFV, while the other studies
used an eye-tracking device to record visual attention.

In terms of the number of experimental participants, in studies using an
eye-tracker there were 13 participants on average; however, in studies using
an RFV there were about 45 participants on average. The average number of
participants in the eye-tracking studies reviewed here was close to the number
that has been found in other reviews. For example, the average number of
participants in the review of 24 eye-tracking studies of usability reported by
Jacob and Karn [16] was 14.6. In our sample, the average duration of a session
from which the visual attention data were analyzed, if reported, was about
13.5 minutes.

6 Roman Bednarik and Justus Randolph

Table 1.1. Summary of 11 empirical studies of programming that employed eye-
tracking

Authors (year) Subjects Design Analysis
method

Duration of
condition
(min)

Crosby and Stelovsky
(1990)

19 between-subject difference in
means, visual

-

Romero et al. (2002) 49 mixed ANOVA 10.0

Romero et al. (2003) 42 within-subject ANOVA 10.0

Bednarik and Tukiainen
(2004)

10 within-subject difference in
means

10.0

Nevalainen and Sajaniemi
(2004)

12 within-subject difference in
means

8.3

Bednarik et al. (2005,
2006a)

16 between-subject ANOVA 9.8 - 17.6

Nevalainen and Sajaniemi
(2005)

12 within-subject ANOVA 26.3

Nevalainen and Sajaniemi
(2006)

16 between-subject ANOVA 12.5 - 19.2

Bednarik et al.
(2006b)

16 between-subject correlations -

Uwano et al. (2006) 5 between-subject visual -

As Table 1.1 shows, between-group or a within-group experimental designs
were common, mixed designs were rare, and no study used a single-case design.
We also found that parametric statistical methods were the norm. Very few
studies had taken a visual approach to the analysis of the visual attention.

In summary, based on our sample, a typical eye-tracking study of be-
havioral aspects of programming involves about ten to sixteen participants.
Participants are given a task, most frequently to comprehend or to debug a
relatively short program. The interface of the stimulus environment is divided
into several (usually large) nonoverlapping areas of interest, and eye-tracking
data is recorded and aggregated with respect to these areas. Researchers then
often conduct some type of parametric statistical procedure to compare the
means of the eye-tracking measures between the areas of interest.

We believe that although the parametric approaches to the analysis of
eye-tracking data are useful in certain cases, nonparametric procedures and
visual analyses are important as well. For example, only two studies in our
sample conducted a visual analysis of the resulting data. In the remaining
studies, typically, the eye-tracking data is aggregated into a single measure
across the duration of a session. For example, the measure of relative fixation
counts on a certain area is computed as a proportion of the number of fixations
anywhere on that area (e.g. on the code window) to the all fixations registered

1 Analysis of Eye-Tracking Data in Program Comprehension 7

during the session. In programming tasks, however, the changes in visual
attention can also be miniature, compared to the focus of the analyses of
data from the larger areas. Crosby and Stelovsky [9], for example, showed
differences in targeting visual attention on comments–therefore on the smaller
areas within the program text. When eye-tracking measures are aggregated as
described above, the miniature differences might disappear. An eye-tracking
researcher can, of course, decide to increase the number of areas and design
the matrix so that it still covers the screen but the areas are smaller (see for
example Bednarik et al. [4]). In the case of increasing the number of areas to
be analyzed, however, the resulting data become sparse, because even more
of the areas (and cells with measures) become empty.

To deal with the challenges described above, we suggest two alternative
solutions for the analysis of eye-tracking data: visually analyzing eye-tracking
data at two levels of detail, and conducting a binomial test to investigate
trends in sparse eye-tracking data.

1.3 Minimally sufficient analyses of eye tracking data

sets that are sparse and have few cases

As we mentioned before, one unfortunate characteristic of eye-tracking data
sets is that they are often sparse (i.e., missing a large amount of data) or
have few cases. The sparseness of the data often results from errors in eye
tracking measurements (such as loss of gaze due to the participant wearing
eye-glasses or contact lenses, or head movements during recording) or from
specialized types of research situations in which eye-tracking participants can
choose how many measurements they will participate in. The low number of
cases results from the intensity of eye-tracking measurements. For example,
in studies of programming or in usability research the duration of a condition
during which data is recorded is normally between ten minutes to a half
an hour per condition. Because it takes approximately ten times more time
to analyze and interpret the resulting data, it is no surprise that in most
situations it is not practical to collect a very large number of measurements
from a large number of participants.

Table 1.2 is a hypothetical example of an authentic eye-tracking data set
that is sparse and has few cases. (The data are hypothetical but are based on
an authentic data set. We chose to use a hypothetical data set because it better
illustrated the properties and methodology that we discuss here than the
authentic data set.) Table 1.2 shows the results of the ratio of fixation counts
on two areas of interest from 12 participants over four possible measurements.

In this hypothetical situation, participants in each measurement were
asked to do a programming task; each task was similar to the others. Partici-
pants were allowed to repeat similar tasks up to four times so that they could
master those programming tasks. Some participants, such as participants J,
K, and L decided that they only needed to do the task one or two times.

8 Roman Bednarik and Justus Randolph

Table 1.2. Hypothetical eye-tracking data set

Fixation Ratio
Participant Measurement

1
Measurement
2

Measurement
3

Measurement
4

A 1.3 1.5 1.6 1.7

B 2.3 2.4 - -

C 2.5 2.6 2.7 -

D 1.6 1.7 - -

E 1.9 2.0 2.1 -

F 1.5 1.6 1.7 1.8

G 2.0 2.1 1.9 -

H 1.8 1.5 1.6 1.7

I 1.9 2.0 - -

J 3.0 - - -

K 2.7 - - -

L 2.8 - - -

Other participants, like participants A, C, and E, decided that they needed to
do three or four programming tasks to achieve mastery. The optional repeti-
tion of programming tasks was an inherent attribute of the research question:
Do the fixation ratio times show an increase as optional programming tasks
are repeated? The optional aspect in that research question is what causes
the sparseness of the data; some participants will only complete one measure-
ment, other participants will complete two or more measurements. The low
number of measurements has to do with the fact that it took so much time
and resources to complete a single measurement.

The question, then, is how does one analyze data sets such as the one
presented in Table 1.2. Traditionally, a repeated-measures analysis (i.e., an
all-within-design) would be used for this type of design. But when using that
approach on this particular data set, because it is sparse, the power would
be very low after excluding cases with missing data. In this case, the statis-
tical power would have been only 0.12. Replacing the missing data would be
questionable in this case because there are missing data in about 38% of the
cells.

Instead of treating the data as repeated measures, one might argue that
the data for each attempt could be treated as independent and means for
each measure could be compared as if one were doing a one-way ANOVA
analysis (i.e., an all between analysis) with four groups. The groups would be
Measurement 1 (n=12), Measurement 2 (n=9), Measurement 3 (n=6), and
Measurement 4 (n=3). However, this would seriously undermine the statistical
assumptions involved in this kind of parametric analysis (especially, treating
dependent measures as independent measures.) Even if one were still able to

1 Analysis of Eye-Tracking Data in Program Comprehension 9

conclude that the assumption violation were acceptable, the statistical power
would still be poor–in this case it would be 0.17.

Also, the choice between a repeated-measures analysis (all-within design)
with three full cases (i.e., participants A, F, and G) and a one-way ANOVA
type analysis with four groups and 30 total data points makes a striking dif-
ference in what the data show. In Figure 1.2 the means across each measure-
ment for the four full cases are taken, as would happen in a repeated-measures
analysis without the replacement of data. Figure 1.2 shows that there is an
upward trend over time. In Figure 1.3, the means within each measurement
of all the cases are taken, as would happen if a one way ANOVA type analysis
were used. Contrary to Figure 1.1, Figure 1.3 shows that there is a downward
trend.

Fig. 1.2. Plot of measurement means of the four complete cases.

Because of the low power and violation of statistical assumptions when
using parametric types of analyses for the analysis of sparse data sets with

10 Roman Bednarik and Justus Randolph

Fig. 1.3. Plot of measurement means of all cases.

few cases, we have found that the most reasonable solution is to get back
to the basics and do minimally sufficient analyses. The minimally sufficient
analytic solutions we have found for these types of data sets are visually
inspecting the data and using a binomial test. (Using the Page test [22] is
another parsimonious solution, but since it is much more complex than using
the binomial distribution or visual analyses, we do not present it here.) How
one would use those two approaches (i.e., visual analysis and the binomial
test) in terms of the data set presented in Table 1.2 is presented below.

1.3.1 Visual analysis of the eye-tracking data

Simply visually inspecting a graph of the data can provide a wealth of infor-
mation that would be overlooked by looking at the raw numbers in a data set.
Figure 1.4 shows the data when they are arranged in a series and plotted by
attempt and fixation ratio. First it appears that there is an upward trend–the
fixation ratio increases each subsequent trial. Also, Figure 1.4 shows that par-

1 Analysis of Eye-Tracking Data in Program Comprehension 11

ticipants who only did one trial were those with the highest fixation ratios to
begin with and that the participants who did the most optional programming
tasks were the ones with the lowest fixation ratios. The visual analysis of sin-
gle cases approach presented here could also be extended to include types of
research studies other than trend studies. For example, one could use an ABA
design where the A phase is a control condition and the B phase is the treat-
ment condition, or any of the other designs successfully used in single-case
research (see [2] for more information on the variety of single-case designs).

Fig. 1.4. Line graph of fixation ratios by measurement.

While the previous approach operates with the eye-tracking data on the
measure level, there is, however, yet another, finer level of detail that a re-
searcher can use in order to analyze the eye-tracking data. Single fixations can
be plotted against a time line, to discover the subtle differences and patterns in
visual attention. Figure 1.5 shows about fifteen seconds of fixation data from
two participants during comprehension of a program, where the vertical axis
displays the Y-coordinate (the vertical coordinate of the gaze point). Thus,
when aligned side-by-side with the window containing the source code, the
graph represents the approximate lines of code and order in which the partic-
ipants visually attended to them. The horizontal dashed line shown in Figure

12 Roman Bednarik and Justus Randolph

1.5 (with the Y-coordinate of 238) represents the long-term average of both of
the participants’ visual attention on the Y-coordinate. It is worth mentioning
that parametric statistical analyses would use these same averages to compare
the participants. From the course of the visual attention lines, however, we
can observe that the two participants markedly differed in their comprehen-
sion strategies and their actual visual attention focus had only rarely been
found near the average line.

Fig. 1.5. A 15-second segment of the Y-coordinate of the visual attention focus of
two participants comprehending a program.

1.3.2 Analyzing trends of the sparse eye-tracking data

If the visual inspection of single-case data were not convincing enough, the
binomial distribution can be used to easily determine the probability of getting
a certain number of increases between measures given chance. If there were no
trends in the data set, one would expect about the same number of increases
and decreases to occur, if there were an increasing trend one would see a
greater number of increases than decreases, and if there were a decreasing
trend one would see a smaller number of increases than decreases. When the

1 Analysis of Eye-Tracking Data in Program Comprehension 13

outcomes are only either a success or failure, the binomial distribution can
be used to determine the probability that out of a given number of trials a
certain number of successes (or failures) will occur. For example, the binomial
distribution can be used to determine the probability that, given a fair coin,
heads will come up 5 out of 5 times that the coin is tossed (the probability
is a little bit over 3/100). The binomial distribution is given in Equation 1.1.
In Equation 1.1, p is the probability of success, N is the number trials, and
x is the number of successful trials out of N trials. probability, such as online
calculators or built-in procedures in tools such as Matlab or SPSS, that can
be used to automatically determine a binomial probability.

P (X ≥ x) =

N∑

i=x

P (X = i) =

N∑

i=x

N !

i!(N − i)!
(p)i(1 − p)(N−i) (1.1)

To use the binomial distribution to find the probability of getting the
number of increases that were observed, one must convert the data set into
binomial trials. Table 1.3 shows what the data set in Table 1.2 would look like
if it were converted into binomial trials, where i indicates that there was an
increase between earlier and later measurement and where d indicates that
there was a decrease between earlier and later measurements. The data in
Table 1.3 show that there were 30 trials (N = 30), 22 increases (i = 22), and
we assume that the probability of success is .50 (p = .50). Using Equation
1.1, the cumulative probability of getting 22 successes or more out of 30 trials
where the probability of success is .50 is .008. (To find the cumulative prob-
ability of 22 or more successes out of thirty one has to add the probabilities
of getting 22 of 30, 23 of 30, . . . , 30 out 30.) Figure 1.6 shows the binomial
distribution for getting 22 out of 30 successful trials when the probability of
success is .50 and the standard deviation is 2.74. As shown in Figure 1.6, the
expected number of successful trials given chance is 15. The standard devia-
tion is 2.74. The observed number of trials, 22, was much greater; it was 2.56
standard deviations greater than the expected number of successes. In short,
the probability of getting 22 out of 30 increases by chance in this case was
very small; therefore, one can conclude that there was an increasing trend in
the data set.

There are, however, also variations to the presented approach of transform-
ing measures to trials, each of those having a set of advantages and disadvan-
tages. For instance, one approach to transforming the data set into trials is to
use differences only between consecutive measures (e.g. 1-2, 2-3, 3-4). In that
case the method can discover a prevailing number of increases or decreases,
but not an overall trend in the measures across all possible combinations. Our
method of transformation of measures into trials takes each possible pair of
measures within a subject and transforms those into trials. That is, for ex-
ample the pair 1-4 is also included as an increase if the fourth trial had been
greater than the first trial, or as a decrease, otherwise.

14 Roman Bednarik and Justus Randolph

Table 1.3. Hypothetical data set converted to binary trials, i = increase, d =
decrease

Case 1-2 1-3 1-4 2-3 2-4 3-4 Total
increases

Possible
increases

A i i i i i i 6 6

B i - - - - - 1 1

C i i - i - - 3 3

D i - - - - - 1 1

E i i - i - - 3 3

F i i i i i i 6 6

G i d - d - - 1 3

H d d d d d d 0 6

I i - - - - - 1 1

J - - - - - - 0 0

K - - - - - - 0 0

L - - - - - - 0 0

Totals 22 30

Fig. 1.6. Binomial distribution for 30 trials when probability of success is .50. The
expected value is 15 and the standard deviation is 2.74. The cumulative probability
of getting 22 or more increases out of thirty is 0.008.

As a result, while identifying the overall trends, our method leads to a
greater number of trials than the consecutive measure transformation method.

1 Analysis of Eye-Tracking Data in Program Comprehension 15

Therefore, the p-value using the all possible combinations method will also
differ from the p-value using the consecutive measure method discussed above.
Our method has the disadvantage of not having mathematically independent
trials. For example, if there is an increase between Measures 1 and 2 and
an increase between Measures 2 and 3, then, by definition, there will be an
increase between Measures 1 and 3.

We admit that there are also many general disadvantages to using the bi-
nomial distribution to analyze these types of data. Namely, the conversion of
continuous values into binary values loses a significant amount of information.
Using the binomial approach for example, one cannot comment on how great
the increases were, but only one on the probability that a certain amount
of increases would have occurred given chance. We also admit that there are
other, more-complicated nonparametric procedures that could be used in this
case to identify trends (like the Page test [22]). However, we agree with the
American Psychological Association [1] and the American Psychological As-
sociation’s Task Force on Statistical Inference Testing [29] on the importance
of conducting a minimally sufficient analysis. In the case of data sets that are
sparse and have few cases, we propose that at least two of the candidates for
a minimally sufficient analysis is through the visual inspection of data and
using basic nonparametric tools, such as the binomial distribution.

1.4 Conclusions

While eye-tracking data have some properties that make them difficult to
analyze using conventional techniques, they also have qualities that enable
a researcher to easily create a chronological narrative from the data. Our
review showed, however, that researchers employing eye-tracking in studies of
programming tend to analyze eye-tracking data at the most aggregated levels
of analysis and seem to ignore analyzing the data through visual inspection.

In summary, we have shown one method for statistically identifying trends
in eye-tracking datasets that are sparse. In addition, we have also proposed
to visually inspect eye-tracking data either by examining each participant’s
aggregated scores across measures or by visually inspecting a graph of an
individual’s data over time and plotted against given areas of the screen. The
visual analysis methods presented here can reveal intricate and subtle patterns
of individual visual attention behavior that, when woven together, can provide
a more detailed narrative than when parametric procedures are used alone.

References

1. American Psychological Association. Publication manual of the American Psy-

chological Association (5th Ed.). Washington, D.C, USA, 2002.

16 Roman Bednarik and Justus Randolph

2. D. H. Barlow and M. Hersen. Single Case Experimental Designs (2nd Ed.).
Pergamon, New York, USA, 1992.

3. R. Bednarik, N. Myller, E. Sutinen, and M. Tukiainen. Effects of experience on
gaze behaviour during program animation. In Proceedings of the 17th Annual

Psychology of Programming Interest Group Workshop (PPIG’05), pages 49–61,
Brighton, UK, 2005.

4. R. Bednarik, N. Myller, E. Sutinen, and M. Tukiainen. Analyzing Individual
Differences in Program Comprehension with Rich Data. Technology, Instruction,

Cognition and Learning, 3(3-4):205–232, 2006.
5. R. Bednarik, N. Myller, E. Sutinen, and M. Tukiainen. Program visualization:

Comparing eye-tracking patterns with comprehension summaries and perfor-
mance. In Proceedings of the 18th Annual Psychology of Programming Interest

Group Workshop (PPIG’06), pages 68–82, Brighton, UK, 2006.
6. R. Bednarik and M. Tukiainen. Visual attention and representation switching

in java program debugging: A study using eye movement tracking. In Proceed-

ings of the 16th Annual Psychology of Programming Interest Group Workshop

(PPIG’04), pages 159–169, Carlow, Ireland, 2004.
7. R. Bednarik and M. Tukiainen. Validating the Restricted Focus Viewer: A Study

Using Eye-Movement Tracking. Behavior Research Methods, to appear.
8. L. Cowen, L. J. Ball, and J. Delin. An eye-movement analysis of web-page

usability. In X. Faulkner, J. Finlay, and F. Détienne, editors, People and Com-

puters XVI: Memorable yet Invisible: Proceedings of HCI 2002. Springer-Verlag
Ltd, 2002.

9. M. E. Crosby and J. Stelovsky. How Do We Read Algorithms? A Case Study.
IEEE Computer, 23(1):24–35, 1990.

10. F. Détienne. Software Design: Cognitive Aspects. Springer, November 2001.
11. A. T. Duchowski. Eye Tracking Methodology: Theory & Practice. Springer-

Verlag, Inc., London, UK, 2003.
12. K. Anders Ericsson and Herbert A. Simon. Protocol analysis: Verbal reports as

data. MIT Press, Cambridge, MA, 1984.
13. J. Goldberg and X. P. Kotval. Computer Interface Evaluation Using Eye

Movements: Methods and Constructs. International Journal of Industrial Er-

gonomics, 24:631–645, 1999.
14. J. Goldberg and A. Wichansky. Eye Tracking in Usability Evaluation: A Practi-

tioner’s Guide. In J. Hyn, R. Radach, and H. Deubel, editors, The Mind’s Eye:

Cognitive and Applied Aspects of Eye Movement Research, pages pp. 493–516.
Elsevier Science, 2003.

15. J. M. Hoc, T. R. G. Green, R. Samurcay, and D. J. Gilmore. The Psychology

of Programming. Academic Press, 1990.
16. R. J. K. Jacob and K. S. Karn. Eye Tracking in Human-Computer Interaction

and Usability Research: Ready to Deliver the Promises (Section Commentary).
In J. Hyn, R. Radach, and H. Deubel, editors, The Mind’s Eye: Cognitive and

Applied Aspects of Eye Movement Research, pages pp. 573–605. Elsevier Science,
2003.

17. A. R. Jansen, A. F. Blackwell, and K. Marriott. A tool for tracking visual atten-
tion: The Restricted Focus Viewer. Behavior Research Methods, Instruments,

and Computers, 35(1):57–69, 2003.
18. M. N. Jones and D. J. K. Mewhort. Tracking attention with the focus-window

technique; the information filter must be calibrated. Behavior Research Methods,

Instruments, and Computers, 36(2):270–276, 2004.

1 Analysis of Eye-Tracking Data in Program Comprehension 17

19. S. Nevalainen and J. Sajaniemi. Comparison of three eye tracking devices in
psychology of programming research. In Proceedings of the 16th Annual Psy-

chology of Programming Interest Group Workshop (PPIG’04), pages 151–158,
Carlow, Ireland, 2004.

20. S. Nevalainen and J. Sajaniemi. Short-Term Effects of Graphical versus Textual
Visualisation of Variables on Program Perception. In Proceedings of the 17th

Annual Psychology of Programming Interest Group Workshop (PPIG’05), pages
77–91, Brighton, UK, 2005.

21. S. Nevalainen and J. Sajaniemi. An experiment on short-term effects of animated
versus static visualization of operations on program perception. In ICER ’06:

Proceedings of the 2006 international workshop on computing education research,
pages 7–16, New York, NY, USA, 2006. ACM Press.

22. E. B. Page. Ordered hypotheses for multiple treatments: A significance test for
linear ranks. Journal of the American Statistical Association, 58:206–230, 1963.

23. K. Rayner. Eye movements in reading and information processing: 20 years of
research. Psychological Bulletin, 124:372–422, 1998.

24. S. D. Rogers, E. E. Kadar, and A. Costall. Drivers’ gaze patterns in braking from
three different approaches to a crash barrier. Ecological Psychology, 17(1):39–53,
2005.

25. P. Romero, B. du Boulay, R. Lutz, and R. Cox. The effects of graphical and tex-
tual visualisations in multi-representational debugging environments. In HCC

’03: Proceedings of the IEEE 2003 Symposia on Human Centric Computing

Languages and Environments, Washington, DC, USA, 2003. IEEE Computer
Society.

26. P. Romero, R. Lutz, R. Cox, and B. du Boulay. Co-ordination of multiple exter-
nal representations during Java program debugging. In HCC ’02: Proceedings

of the IEEE 2002 Symposia on Human Centric Computing Languages and En-

vironments (HCC’02), page 207, Washington, DC, USA, 2002. IEEE Computer
Society.

27. G. Underwood, P. Chapman, N. Brocklehurst, J. Underwood, and D. Crundall.
Visual attention while driving: Sequences of eye fixations made by experienced
and novice drivers. Ergonomics, 46(6):629–646, 2003.

28. H. Uwano, M. Nakamura, A. Monden, and K. Matsumoto. Analyzing individual
performance of source code review using reviewers’ eye movement. In ETRA

’06: Proceedings of the 2006 symposium on Eye tracking research & applications,
pages 133–140, New York, NY, USA, 2006. ACM Press.

29. L. Wilkinson and the Task Force on Statistical Inference. Statistical methods in
psychology journals: Guidelines and explanations [Electronic version]. American

Psychologist, 54:594–604, 1999.

P5.

Bednarik, R., Tukiainen, M.: An Eye-tracking Methodology for Characterizing
Program Comprehension. In Proceedings the 2006 Symposium on Eye Tracking
Research and Applications, ETRA 2006, March 27-29, San Diego, CA, USA, ACM
Press, pp. 125 - 132.

Reprinted with permission, Copyright 2006 ACM

5

Copyright © 2006 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for commercial advantage and that copies bear this notice and the full citation on the

first page. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on

servers, or to redistribute to lists, requires prior specific permission and/or a fee.

Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail

permissions@acm.org.

ETRA 2006, San Diego, California, 27–29 March 2006.

© 2006 ACM 1-59593-305-0/06/0003 $5.00

An eye-tracking methodology for characterizing program comprehension

processes

Roman Bednarik∗

Department of Computer Science

University of Joensuu

PO Box 111, FI-80101, Finland

Markku Tukiainen†

Department of Computer Science

University of Joensuu

PO Box 111, FI-80101, Finland

Abstract

Program comprehension processes have previously been studied
using methodologies such as think-aloud or comprehension sum-
mary analysis. Eye-tracking, however, has not been previously
widely applied to studies of behavioral aspects of programming.
We present a study in which program comprehension was investi-
gated with a help of a remote eye-tracker. Novice and intermediate
programmers used a program visualization tool to aid their com-
prehension while the location of fixations, fixation durations and
attention switching between the areas of interest were recorded.

In this paper 1) we propose an approach how to investigate trends
in repeated-measures sparse-data of few cases captured by an eye-
tracker and 2) using this technique, we characterize the develop-
ment of program comprehension strategies during dynamic pro-
gram visualization with help of eye-movement data.

CR Categories: H.5.2 [Information Interfaces and Presenta-
tion]: User Interfaces Evaluation/methodology—Input devices and
strategies;

Keywords: eye-movement tracking methodology, psychology of
programming, program comprehension, program visualization

1 Introduction

Program comprehension, the ability to understand programs writ-
ten by others, is widely recognized as central to programming. Be-
ing also a cognitively complex skill of acquiring mental models of
structure and function of a program, program comprehension has
been for many years a field of need to develop and apply methods
and techniques to effectively capture and analyze the involved men-
tal processes. Although originally centered around (professional)
computer-programmers developing computer programs, studies of
programming strategies nowadays extend far beyond these borders
[Blackwell 2002], both in terms of users and application domains.

Previous research in the domain has established a solid body of
knowledge about the comprehension models and strategies em-
ployed in comprehension, expert and novice differences or com-
prehension outcome analysis [Good and Brna 2004]. Other stud-
ies concentrated on developing tools to aid program understand-

∗e-mail: bednarik@cs.joensuu.fi
†e-mail: mtuki@cs.joensuu.fi

ing, especially by means of visual representations of program ex-
ecution, e.g. [Moreno et al. 2004; Sajaniemi and Kuittinen 2003].
Surprisingly, given the importance of identifying the cognitive pro-
cesses involved in program comprehension, little has been done by
applying visual attention tracking systems such as eye-movement
tracking. Instead, investigations have been mostly based on verbal-
protocols, a well established - and probably the most popular -
method used to capture the thought-processing.

To safely apply eye-movement tracking to study the behavioral as-
pects of programming, however, requires to develop a methodolog-
ical framework. This study starts to build such a framework. As
eye-tracking has not been previously applied in the domains of pro-
gram comprehension and visualization, despite clearly presenting a
strong potential, our motivation is to create a methodological frame-
work that would allow to apply the eye-tracking and provide a way
to analyze the data. An obvious solution to the latter problem would
be to use some variation of repeated measures designs and analy-
sis. However, as seen from previous studies (e.g. [Bednarik et al.
2005]), treating the data as average values over a longer period -
without considering the actual underlying task- might blur individ-
ual differences in between-participant and within-participant trials.
In addition, the comprehension process with program visualization
is dynamic and gradual in its nature and cannot be effectively ex-
amined by studying long-term averages.

In this paper, we apply eye-movement tracking to a study of com-
prehension processes of programmers using a program visualiza-
tion tool. To allow for as natural conditions as possible, the partic-
ipants were not limited in the ways they used and interacted with
the tool, particularly in replaying the visualizations. Therefore, al-
though designed as a repeated-measures experiment, the resulting
data have often a sparse structure. We present an approach to ana-
lyze the data and apply the method to characterize the strategies and
behavior of programmers to coordinate multiple representations of
a program during program comprehension.

2 Related Work

2.1 Capturing Mental Processing during Program-

ming

Studies of cognitive processes involved in program comprehension
tasks are central to our understanding of software maintenance and
development [von Mayrhauser and Vans 1996]. Particularly pop-
ular techniques to capture the thought-processes are different vari-
ations and derivations of the think-aloud methodology, either con-
current or retrospective, since the seminal work of Ericsson and Si-
mon [1984]. In the empirical studies of programmers and psychol-
ogy of programming, the think-aloud methodology was applied in
the pioneering experiments conducted by Soloway and others dur-
ing 1980’s and 1990’s (e.g. [Letovsky 1986; Soloway et al. 1988;
Littman et al. 1986; von Mayrhauser and Vans 1996] or recently

125

[Burkhardt et al. 2002; Ko and Uttl 2003] and many others). By an-
alyzing verbal protocols, these and other studies attempted to get an
access to cognitive processes and provide insights into what strate-
gies programmers of various expertise take while undergoing the
tasks of program comprehension.

To increase the validity of verbal reports, research practitioners of-
ten complement them with other concurrent behavioral data, such
as direct observations, video or interaction protocols, as for exam-
ple [von Mayrhauser and Vans 1996] or [Ko and Uttl 2003]. The
approaches based on verbal reports, however, have been criticized
widely, e.g. [Branch 2000; Nielsen et al. 2002; van den Haak et al.
2003], especially when used with complex tasks involving high
cognitive load and requiring verbalizing visual information.

2.2 Previous Studies Using Visual Attention Track-

ing

Normally, programmers work within a computer-based (graphical)
environments, such as program debugging or visualization tools.
These environments often present some of the program represen-
tations in several adjacent windows and programmers have to co-
ordinate these representations in order to construct a viable mental
model. In these situations, when the problem-solving and forma-
tion of mental model is driven by visual information, such as during
dynamic program visualization, it would be beneficial to capture
and analyze the patterns of visual attention. As eye-movement data
provide insight into attention allocation, it is also possible to infer
underlying cognitive processes [Rayner 1998].

Understanding that opportunity, Romero et al. [2002] conducted
a series of experiments that involved the Restricted Focus Viewer
(RFV) [Jansen et al. 2003], a tool that links visual attention to
a small fully-focused spot within an otherwise blurred stimulus.
When an experimenter employs the RFV to track the visual atten-
tion, participants move the focused spot using a computer mouse to
explore the visual representations in task. This approach, however,
was shown to be questionable. Using a remote eye-tracker, Bed-
narik and Tukiainen [2004; 2005] replicated one of the experiments
in which the RFV was employed. They suggested that the technique
interferes with natural strategies involved in program debugging.
Similarly as in the influential studies of Petre [1995], the visual rep-
resentations in experiments of Romero et al. were static. Modern
program visualization tools, however, often present the concepts in
form of dynamic animations. The ecological validity of these ex-
periments could be, therefore, questioned too.

Eye-tracking as a research methodology in studies of programmers
has been previously applied to investigate how programmers read
the code [Crosby and Stelovsky 1990]. Using an eye-tracker, pat-
terns of programmers’ visual attention were recorded while reading
a binary search algorithm written in Pascal. Authors analyzed fixa-
tion times and number of fixations to reveal the strategies involved
in reading source code. Crosby and Stelovsky shown, beside other
findings, that while the subjects with greater experience paid atten-
tion to meaningful areas of source code and to complex statements,
novice participants, on the other hand, visually attended comments
and comparisons. Both groups paid least attention to the keywords
and did not exhibit any difference in reading strategies.

Other studies using eye-movement tracking during program com-
prehension or debugging, such the one of Crosby and Stelovsky
above, are infrequent and appeared only recently, e.g. [Bednarik
and Tukiainen 2004; Bednarik and Tukiainen 2005; Nevalainen and
Sajaniemi 2005]. Bednarik et al. [2006; 2005] reported that in terms
of fixation counts and attention switching between main representa-
tions (code and graphical representation of execution) of a program

during its animation, patterns of novice and expert programmers did
not differ. An effect of experience was found, however, on overall
strategies adopted to comprehend programs and on fixation dura-
tions.

Bednarik et al. [2005], however, approached the analysis of eye-
movement data only from a long-term, global point of view: the
data were treated as means over a whole comprehension session.
To characterize the comprehension processes more completely, an-
other, more detailed procedure has to be taken. In the present paper,
we subdivide the comprehension process aided by a program visu-
alization into meaningful pieces and study gradual changes in the
related eye-movement patterns. By doing so, we believe to capture
the changes in the role each of the representations take during the
comprehension and to characterize the construction of the mental
model of the comprehended program.

3 Experiment

The present experiment was conducted to discover whether there is
any development in the way programmers visually attend the repre-
sentations provided by a program visualization tool during program
comprehension. In particular, we were interested in whether the
role of different representations of a program changes in the course
of time, as reflected in the gaze data. Ratios of fixation counts,
attention switching, and fixation durations between the main repre-
sentations of a program were analyzed. Since the present analysis
reports the data recorded from an experiment previously described
and reported elsewhere, the following sections might share some
parts with the previous reports [Bednarik et al. 2006; Bednarik et al.
2005].

3.1 Participants

A total of eighteen participants were recruited from high-school stu-
dents attending a university level programming course, undergrad-
uate and graduate computer science students from the local uni-
versity; each received a lunch ticket as an incentive. Data from
two participants had to be discarded due to technical problems with
eye-tracking. Therefore the eye-tracking results are based on data
collected from 16 subjects (13 male, 3 female). The participants,
according to their report, can be characterized as having, on av-
erage, 49.3 (SD = 54.1) months of experience with programming,
13.1 (SD = 12.8) months of experience with Java, 19.3 (SD = 29.5)
months of experience with other programming language. Five par-
ticipants had a previous experience with the program visualization
tool used in this experiment, other two participants had a previous
industrial experience. All participants had normal or corrected-to-
normal vision, according to their own report.

For some parts of the analysis, participants were divided into two
groups according to the number of animation runs they initiated
during the experiment. The number of animation runs can be
considered as a measure of experience and comprehension perfor-
mance: those who animated the program once did not need the sup-
port of the visualization tool further but to confirm their hypothesis,
while those running the visualization more times were in need of its
help.

3.2 Materials

Three short Java programs, a factorial computation, recursive
binary-search program and naı̈ve string matching, were presented

126

to the participants. The lengths of the programs (in lines of code)
were 15, 34, and 38, respectively. Each of the programs generated
only one line of output and did not require any user input. To make
recognition of a program based on these surface features difficult,
the names of the methods and variables were altered. In practice,
method and variable names were made random and neural.

To visualize the Java programs, Jeliot 3 [Moreno et al. 2004], a
novice-oriented program visualization tool, was used. The user in-
terface of Jeliot 3 (Figure 1) consists of four separate areas: the
Code is on the top left, the visualization is shown in the top right
area (called Theater), the Control panel with VCR-like buttons to
control the animation is on the bottom left, and the Output of the
program is displayed in the bottom right panel. Moreover, the The-
ater area is further split into four discrete sections that detail a) the
method calls, b) expression evaluation, c) constants and static ob-
jects, and d) instantiation of objects and arrays. In the present ex-
periment, the specialized views of method-call-tree and history of
execution provided by regular Jeliot 3 were disabled.

Jeliot 3 automatically visualizes execution of Java programs by
demonstrating graphically the data and control flows, using an
object-oriented approach. In a typical session, a user loads or write
a program, compiles it and then selects Play or Step button to start
the animation in a continuous or step-wise fashion, respectively.
An animation step consists of highlighting a block of instructions,
statement, assignment or expression in the Code and displaying
their respective graphical visualization in the Theater area.

Figure 1: Program visualization tool used in the experiment with a
representative scan-path superimposed.

3.3 Apparatus

As one of our requirements was to use a minimally invasive ex-
perimental setting, we used the remote Tobii ET-1750 (sampling at
50Hz) eye tracker that made no contact with participants (for setting
see Figure 2). We used a single computer setup, in which operator’s
and participant’s displays share same computer. The eye tracker is
built into a TFT panel so no moving part is visible and no sound
can be heard during recording. Interaction protocols (such as key-
strokes and mouse clicks) were collected for all target programs,
and audio and video streams were recorded for a whole session. To
avoid involuntary fixations, a minimal duration of fixation for the
algorithm processing the eye-data was set at 100ms. Seven static
areas of interest (AOI) that matched with the seven main panels in

the Jeliot 3 interface were defined: the code, the expression eval-
uation area, the method area, the instances area, the constants, the
control, and the output area.

Figure 2: Experimental settings.

3.4 Procedure and Design

The experiment was conducted in a quiet usability laboratory. Af-
ter becoming acquainted with the experiment and signing a con-
sent form, participants were seated in an ordinary office chair
near the experimenter and facing a 17” TFT display (resolution
of 1024x768). Every participant then passed an automatic eye-
tracking calibration. The calibration required the participants to
follow sixteen shrinking points that appeared one by one across the
display. If needed, the calibration was repeated in order to achieve
the highest possible accuracy.

The window with program visualization tool was resized to occupy
full-screen. Participants performed three sessions, each consisting
of a comprehension phase using Jeliot 3 and a program summary
writing phase. The target programs contained no errors, were al-
ways preloaded into Jeliot and compiled to demonstrate the absence
of errors. Participants were instructed to comprehend the program
as well as possible, and they could interact with Jeliot as they found
necessary. The duration of a session was not limited and partici-
pants were told about it.

The first target program was a factorial computation that was used
as a warm-up and the resulting data were discarded. The order of
the two actual comprehension tasks was randomized so that half of
the participants started with the recursive binary search and other
half with naı̈ve string matching.

4 Data Analysis Methodology

In the present experiment, the participants were not limited in the
ways they used and interacted with the visualization tool nor in the
time they needed to spend on the comprehension. Some of the par-
ticipants performed only one animation run, while others, in order
to comprehend the program as best as they could, needed the help
of the dynamic animation more. Since we are interested in com-
monalities during the comprehension process and to allow for a fair
comparison, the whole stream of eye-movement data for a single
participant was segmented into the sections where the animation

127

was on and off. The results are therefore in a form of sparse ma-
trix (see a hypothetical example in Table 1 below), depending on
the number of animation runs (the columns marked Run 1 ... 4)
each participant performed. The columns then contain a measure-
ment obtained during first, second, and following animations of a
program.

Let’s consider now the situation in which a participant C (Table 1,
for fixation count ration between two areas of interest) used the vi-
sualization tool to animate the program execution four times, while
participant D only two times. Not only the analysis of variance
would suffer from a low degree of freedom as the number of an-
imation runs decreases, but potentially, such an approach would
align two measures (e.g. in column Run 2) that reflect different
cognitive tasks. While participant C was, supposedly, still attempt-
ing to create a hypothesis of the visualized problem, the participant
D was most probably confirming the hypothesis she created during
the Run 1. Therefore, a research question whether the ratio of fix-
ations between two areas is different during Run 1 and Run 2, so
that it reflects a shift in the relative importance of the two areas,
would be not only ill-defined but also hard to answer using tradi-
tional ANOVA.

Participant Run 1 Run 2 Run 3 Run 4

A 1.162
B 1.170 1.288 1.978
C 1.234 1.562 1.619 1.432
D 2.106 2.670
E 1.953 1.321 2.342

Table 1: Example of sparse data: ratio of fixation counts on two
areas of interest

Typically, repeated measures designs are analyzed using analysis
of variance (ANOVA) procedures. However, in the situations when
the result matrix is sparse, of few cases, and matching up of corre-
sponding trials between participants is not explicit, as found also in
the present experiment, the ANOVA is ruled out. We suggest a pos-
sible solution to this problem by reframing the data set as binomial
trials and using nonparametric statistical methods to analyze the
outcome. This approach allows for answering the research ques-
tions related to trends over time and solves the problem with sparse
data.

The original data set is considered as whether the scores on succes-
sive trials in respect to all previous trials of a participant were higher
(an observed increase) or lower (a decrease). While reframing the
original data into binomial trials, the research hypothesis needs to
be also restated. The claims of null-hypothesis and alternative hy-
potheses are then stated as:

• H0: ”There is no trend in the trials and same number of in-
creases and decreases will occur.”

• HA: ”There is a trend in the trials and the number of in-
creases and decreases will differ significantly.”

Table 2 shows the result of applying such a transformation from
original data contained in Table 1. For example of the Participant
E, the first ”0” represents no increase in the measurement between
Run 1 and Run2, while the consecutive ”1” signals an increase in
the measurement between Run 1 and Run 3. As for participant A
who performed only one Run, no trend it the measurement could be
analyzed.

Having the original problem reframed into binomial distribution,
the statistical analysis of the newly formed data consists of: 1)
counting the total number of trials N, 2) counting the cases in which

Participant 1-2 1-3 1-4 2-3 2-4 3-4

A - - - - - -
B 1 1 - 1 - -
C 1 1 1 1 0 0
D 1 - - - - -
E 0 1 - 1 - -

Table 2: Data from Table 1 in binomial form.

the trend was increasing x, 3) setting the probability of null hypoth-
esis to p = .5 since the variable is binary, 4) computing the cumula-
tive probability by using binomial formula (1) for all i = x..N, and 5)
finding the mean value and standard deviation of this distribution.

P(X ≥ x) =
N

∑
i=x

P(X = i) =
N!

i!(N − i)!
(p)i(1− p)(N−i) (1)

Following the example given in Table 2, N = 13, x = 10, p = .5, then
P(X≥10) = .0461, with mean value of 6.5 and standard deviation
of 1.8. That means, that the probability of getting greater than or
equal to 10 increases out of 13 trials, given the probability of having
no trend is .5 (null hypothesis), is .0461. Shall the null hypothesis
hold (no trend) the mean number of increases would have to be
6.5 (SD = 1.8). However, as the number of successive increases
was 10, we can conclude that we have found an increasing trend
with proportion of 10 increases to 3 decreases (76.9%), with an
exact probability of getting the same or greater number of increases,
assuming the null hypothesis was p = .5, of .0461. Therefore, the
null-hypothesis is rejected.

5 Results

In this paper, we study coordination of multiple program represen-
tations during program comprehension. We report results related to
the time spent on animating the program execution, rather than re-
porting mean values for a whole comprehension session. We do so
because the task was complex and participants were allowed to se-
lect their own strategy. Some of the more experienced participants
first did not use the animation but instead studied the source code
only. Therefore, they did not perform any coordination of multiple
representations; these were available during animation only. To al-
low for a fair comparison, we split the whole stream of data into
distinct phases of code-reading and animation and analyze the data
during animation.

A detailed analysis of comprehension summaries and interaction
patterns is reported and discussed in [Bednarik et al. 2006]. The
effects of experience levels on gaze patterns during program com-
prehension have been reported in [Bednarik et al. 2005].

We analyzed several measures related to the gaze behavior. First,
a ratio between the code and visualization in terms of total fixa-
tion times was measured. This ratio shall reveal the importance of
the two representations during the comprehension process. Next,
the number of attention switches per minute between any of the
areas of interest shall reflect the dynamics of attention allocation.
Finally, we analyzed fixation durations in overall, on the code rep-
resentation of the program and on graphical visualizations. Fixation
durations are believed to reflect relative importance and complexity
of information during problem-solving[Just and Carpenter 1976].
The longer the durations are, the more mental efforts a participant
has to exert.

Although being an important representation during program com-
prehension, the output area of Jeliot interface was excluded from

128

the analysis due to the low amount of output of the programs. Since
the purpose of this experiment was to explore how the roles of dif-
ferent representations of a program develop during program com-
prehension, the control area of Jeliot interface was also excluded,
as it does not contain any information about the program being vi-
sualized.

Because of the experimental design, commonly used ANOVA could
not be applied for some part of the results. The results were there-
fore analyzed in part using the method described in section 4,
ANOVA and using t-tests for pre-planned comparisons.

5.1 Interaction with the Tool

In overall, the grand mean number of program animation replays
was 2.21 (SD = 0.98), with a minimum of no animation, and a
maximum of 5. On average, there were 2.06 (SD = 1.2) and 2.25
(SD = 1.2) animations of binary-search program and naı̈ve string-
matching program initiated, respectively. There was no difference
in the number of animations between the two target programs, pair-
wise t(15) = .64, ns. For the recursive binary-search program, five
participants animated the program only once and one did not an-
imate at all, while for the naive string matching, six participants
replayed the animation only once. Therefore, the analysis of eye-
movement patterns in the following subsections is based on data
of remaining ten participants that could be considered as binomial
trials.

Two groups were formed post-hoc from all participants, depending
whether a participant animated the programs on average more or
less than two times. Table 3 details the distribution of expertise in
the resulting groups and resulting statistical differences.

Group # Replays Progr. Java Other Jeliot Prof.

≤ 2 9
1.25 73.5 16.9 29.6 2 2

(0.38) (69.92) (16.4) (38.1)

> 2 7
3.21 18.0 7.3 5.1 3 0

(0.49) (19.4) (4.1) (4.9)

p < .001 .014 .044 .034 ns ns

Table 3: Characteristics and differences (means, standard devia-
tions in parentheses) of the two groups (≤ 2 animations, > 2 anima-
tions) in months (Programming, Java, Other experience), analyzed
by one-tailed t-test, and number of participants (Jeliot experience,
Professional experience), by χ2 test.

5.2 Animation Replays as Binomial Trials

For the purposes of the eye-movement analysis using binomial dis-
tribution, the replays of the animations were transformed into bino-
mial trials. Thus, during the animations of binary-search program,
28 trials were performed. The resulting binomial distribution for
null hypothesis (p = 0.5, i.e. no trend with same number of in-
creases and decreases) have a mean of 14 with a standard deviation
of 2.65. During the animations of naı̈ve string matching program
37 trials were performed, that formed a binomial distribution with
a mean of 18.5 and a standard deviation equal to 3.04.

5.3 Fixation Time

To estimate the importance of the available representations, we
computed the total fixation time as a sum of all fixation durations

on the two main areas of interest during each of the animation runs.
Then, for each of the animations a participant initiated, we calcu-
lated the ratio of the fixation time spent on code to the time spent
fixating the graphical representation. For those participants who
animated at least twice, these ratios were then transformed into bi-
nomial trials as described in Section 4.

The mean ratio of total fixation times on code/visualization of re-
maining participants that animated the programs only once was
0.86 (SD = 0.5) and 0.65 (SD = 0.32) for recursive binary search
and for naı̈ve string-matching, respectively. There was no statisti-
cal difference in the mean ratios between the two programs of this
group, independent-sample t(8) = 0.77, ns.

Twenty-two increasing trials and six decreases were found during
the replays of recursive binary search. Therefore, the ratio of fixa-
tion time spent on code/visualization had an increasing tendency, p
= .0019. Twenty-one increases and 16 decreases were found during
the replays of naı̈ve string matching animation. Thus, the ratio of
fixation time spent on code/visualization had a slightly increasing
trend, p = .26, also in this program.

5.4 Attention Switching Behavior

The dynamics of attention allocation was measured as a number of
switches per minute between any of the areas of interest during the
animation. We define a switch as any change of the focus of visual
attention between any of the pre-defined areas of interest.

Those participants that animated the program execution only
once, performed 40.6 (SD = 22.7) and 48.8 (SD = 9.8) atten-
tion switches per minute, while comprehending binary-search and
string-matching programs, respectively. There was no difference
in the number of switches per minute between the programs,
independent-sample t(8) = 0.74, ns, of this group.

Attention switching behavior of the group that animated program
execution more than once can be characterized as 10 increases in
the number of switches per minute and 18 decreases, p = .96, in
binary-search program, and as 11 increases and 26 decreases, p
= .99, in naı̈ve-string matching. Therefore, in both of the target
comprehension tasks, the number of attention switches per minute
performed by the participants shown a strongly decreasing trend.

5.5 Fixation Duration

The interface of the program visualization tool consisted of two
main areas of interest, the code and the visualization panel (The-
ater). Besides for the code as a main representation, we measured
fixation durations also for the four discrete areas of the Theater that
show certain aspects of the program execution (described in section
3.2).

Mean fixation durations of the group that animated the programs
only once (Table 4) were analyzed using ANOVA (program(2) x
area (5)); missing values were replaced by the means of the group
for that particular area and program. No effect of program on fixa-
tion duration was found, F(1,8) = 1.28, ns, together with no interac-
tion with area, F(4,32) = .51, ns. However, there was a major effect
of area on fixation duration, F(4,32) = 3.22, p = .025. In both pro-
grams, the longest durations were measured on the area containing
visualization of expression evaluation, while the shortest durations
fell on the area displaying constants.

Fixation durations of the group that animated the programs more
than once were analyzed using the binomial trials (Table 5). Several

129

Program Code Methods Expressions Instances Constants Overall

binary-search 301.7 285.5 387.3 293.9 249.5 312.8
(137.4) (80.6) (159.6) (189.5) (53.4) (120.1)

string-matching 273.7 249.2 317.9 276.6 214.2 284.3
(26.7) (16.7) (93.3) (13.5) (32.2) (38.1)

Table 4: Mean fixation durations and standard deviations (in parentheses) over the main areas of interest and in overall for the group that
animated one time.

general trends can be observed, regardless of the program. Most
importantly, the steepest increasing trend is related the fixation du-
rations on the code area. On the other hand, the fixations that fell on
the area containing instances of objects and arrays were decreasing
with following animation runs. No trends were observed in areas vi-
sualizing expression evaluations. Altogether, participant’s fixation
durations on the areas of the Theater were decreasing or remained
about same while those on the code area, on the other hand, were
showing an increasing trend. Finally, the overall fixation duration
in both of the programs seemed to stay same during consecutive
animations.

6 Discussion

Unlike many previous studies that involved some variation of think-
aloud protocol to trace the subjects thought processes, we have con-
ducted an exploratory study of program comprehension on unfa-
miliar code using eye-movement tracking. Our aims were to in-
troduce eye-tracking as a valid source of data about behavioral as-
pects of programming and to develop an approach to analyze this
data. Although the study was designed as a repeated measures,
traditional statistical methods for analyzing the data could not be
applied. Therefore, we reframed the results and considered the data
as binomial trials.

6.1 Eye-movement Data as Binomial Trials

In comparison with other more traditional approaches to statistical
analysis of eye-movement data of repeated measures designs, the
methodology introduced in this paper provides researchers with a
possibility to investigate trends over time. Using average values
of collapsed measurements and some methods of analysis of vari-
ance might not provide enough information about how strategies
of experimental participants develop during problem solving and
learning.

However, also practical considerations have to be taken into account
when applying this approach. First, the valuable data from those
participants that performed only one trial are not considered and
this dissipates the efforts spent on recruiting the participants. In
the present experiment, fortunately, these participants belonged to
the group whose behavior was different from the rest of sample
population. Second, the reframing of the original data represents
an additional step in the analysis. However, the computations do
not require any special techniques and, in our opinion, are justified
by the possibility to interpret eye-movement data as trends.

6.2 Limitations of the Data Analysis

The proposed methodology of analyzing sparse data that originated
from unequal number of trials in a repeated measure design seems
to be practical when the research questions do not concern the exact

values of the measures, but rather investigate trends in a time. Al-
though the proposed approach provides many advantages in these
situations, several limitations can be identified. Most importantly,
by converting the data sets to binomial trials the nominal values of
original data are not part of the results any more. This makes the
results hard to compare to other studies that used parametric meth-
ods to analyze their results and reported means of their measures.
However, as the resulting probabilities are reported and exact, these
can be used for a comparison. Second problem, that will be ad-
dressed in future studies, is that the binomial distribution requires
all trials to be independent. While this condition holds for between-
participant trials, within-participants trials can hardly be considered
independent.

6.3 Comprehension process analysis

With the exception of one experienced participant during one pro-
gram comprehension session, all participants animated the program
execution at least once. Mean number of animation runs turned out
to be a good indicator of previous programming experience. Those,
who on average run the animation at most twice belonged to a more
experienced group, especially in terms of general experience in pro-
gramming. This finding is not surprising and can be explained by at
least two reasons. First, although we provided all participants with
a short introduction to Jeliot and we tried to equalize the previous
experience with the tool by having a warm-up session, most of the
experts in our study were not previously familiar with the tool and
with the visualization. As it has been argued, to benefit from pro-
gram visualization, users have to be explicitly taught to use it [Ben-
Ari 2001]. Therefore, experts’ low number of animation runs could
be explained by their unfamiliarity with the tool. However, the pre-
vious experience with Jeliot was balanced between the groups and
still those participants in the less experienced group who have ani-
mated the program several times were lacking the previous training
with the tool.

Second reason of the low number of animations of experts can stem
from a difference in the strategies to comprehend the program us-
ing the visualization tool [Bednarik et al. 2006]. According to
Brooks [1983], once a hypothesis of the program is formed, the
programmer tries to verify it against the program text. In our ex-
periment, more experienced participants read the code first, created
a model and hypotheses, and then confirmed their hypotheses by
(usually) only one run of the animation.

On the other hand, less experienced programmers did not read the
code at the beginning, but instead animated the program several
times and let the tool to visually explain the execution. They en-
gaged in doing so, until they have collected enough information
to form a hypothesis and then, during the last run, coordinated the
representations in the way that favored code more than at the begin-
ning, to confirm their hypotheses.

The results obtained by capturing and analyzing the eye-movement
data can be seen as supporting the discussion above. At the begin-
ning of the comprehension, less experienced participants targeted

130

Program/Trials Code Methods Expressions Instances Constants Overall

binary-search/28
Increases 17 9 11 4 12 12

p 0.17 0.98 0.91 1.0 0.83 0.83

string-matching/37
Increases 21 18 19 17 20 18

p 0.25 0.63 0.50 0.74 0.37 0.63

Table 5: Fixation durations over the main areas of interest and in overall, as binomial trials with associated probabilities.

their attention toward the visualization of the target program, as
indicated by the total fixation time. However, with increasing iter-
ations, the less experienced participants focused more on the code
representation.

Considering the dynamics of the coordination strategies, partici-
pants gradually decreased the attention switches between the code
and the visualization, and concentrated on the code representation.
In other words, the attention allocation and related eye-movements
reflect what information and what representation is relevant to the
programmers during the comprehension task. It turned out that at
the early phases of comprehension, visualization provides more im-
portant information and plays more important role than at the later
stages.

More experienced programmers exhibited different behavior. Dur-
ing their single animation run, they spent more time focusing on vi-
sualization than on the code. Based on the mean fixation durations
over the discrete areas of visualization, we believe that the more
experienced programmers faced highest difficultness with the ex-
pression evaluations, while following the visualization of constants
did not introduce similar depth of cognitive processing.

As discussed before, expert programmers, in this experiment, stud-
ied the code of the program first before they initiated the visual-
ization. The visualization then provided them with an additional
information, most probably needed to confirm and fine-tune their
previously established mental model and hypotheses.

6.4 Limitations of the Experiment

Some limitations can be identified considering the experimental
part of this study. The number of participants was relatively low
and further decreased by technical problems with eye-movement
tracking. This issue will be addressed in future studies to ensure
higher validity of data and drawn conclusions.

Another limitation is related to the generalizability of the findings,
concerning the gaze behavior during comprehension. Although the
current program visualization systems that are in use share many
external features, such as design of interface (e.g. the horizontal
split of main area, code on left, visualization on right), their inner
mechanism and interaction with the tools might differ. For exam-
ple, the visualization of Jeliot 3 is based on representing a virtual
machine on which a program is executed, while visualizations of
PlanAni [Sajaniemi and Kuittinen 2003] are based on a cognitive
concept. In addition, some of the previous experiments in pro-
gram comprehension and debugging with multiple representations
involved only precomputed static or semi-dynamic visualizations
[Romero et al. 2002]. Therefore, the eventual behavior recorded
during comprehension with other tools might be different for any
of the involved experience groups.

7 Conclusions and Further Work

Eye-movement based analysis can contribute to our understanding
of cognitive processes involved in program comprehension, debug-
ging, and visualization. Unlike verbal reports used in numerous
previous studies of program comprehension, eye-movement-based
analysis does not require any training of experimental participants
to verbalize their thoughts neither interferes with their mental pro-
cessing.

This paper demonstrated, that in incorporation with other experi-
mental protocols, eye-tracking data can reveal important informa-
tion about behavior of computer programmers, that can be hard
to access using only a single methodology. Reframing of origi-
nal repeated-measures eye-movement data as the sets of binomial
trials allowed to characterize the development of program compre-
hension behavior in terms of representation use and coordination.

However, as the applications of eye-movement tracking to program
comprehension are rare up to date, more studies have to be con-
ducted and the methodological framework needs to be further de-
veloped. The framework shall provide researchers with a tool to
capture, analyze, and explain the cognitive processing during pro-
gram comprehension using eye-movement data.

8 Acknowledgement

We would like to thank all participants for taking part in the ex-
periments. Help of Niko Myller before, during, and after the ex-
periment has been greatly appreciated, as well as that of Justus
Randolph whose idea initiated this work. Several anonymous re-
viewers provided valuable comments on an earlier version of the
manuscript.

References

BEDNARIK, R., AND TUKIAINEN, M. 2004. Visual atten-
tion tracking during program debugging. In Proceedings of
The Third Nordic Conference on Human-Computer Interaction
(NordiCHI’04), ACM Press, New York, NY, USA, 331–334.

BEDNARIK, R., AND TUKIAINEN, M. 2005. Effects of display
blurring on the behavior of novices and experts during program
debugging. In Proceedings of (CHI’05), ACM Press, Portland,
OR, USA, Extended abstracts of the ACM Conference on Hu-
man Factors in Computing Systems, 1204–1207.

BEDNARIK, R., MYLLER, N., SUTINEN, E., AND TUKIAINEN,
M. 2005. Effects of experience on gaze behaviour during pro-
gram animation. In Proceedings of the 17th Annual Psychology
of Programming Interest Group Workshop (PPIG’05), 49–61.

BEDNARIK, R., MYLLER, N., SUTINEN, E., AND TUKIAINEN,
M. 2006. Analyzing individual differences in program compre-

131

hension with rich data. To appear in Technology, Instruction,
Cognition and Learning.

BEN-ARI, M. 2001. Program visualization in theory and practice.
Informatik/Informatique 2, 8–11.

BLACKWELL, A. F. 2002. First steps in programming: A ratio-
nale for attention investment models. In HCC ’02: Proceedings
of the IEEE 2002 Symposia on Human Centric Computing Lan-
guages and Environments (HCC’02), IEEE Computer Society,
Washington, DC, USA, 2.

BRANCH, J. L. 2000. Investigating the information-seeking pro-
cesses of adolescents: The value of using think alouds and think
afters. Library and Information Science Research 22, 4, 371–
392.

BROOKS, R. 1983. Towards a theory of the comprehension of com-
puter programs. International Journal of Man-Machine Studies
18, 543–554.

BURKHARDT, J., DÉTIENNE, F., AND WIEDENBECK, S. 2002.
Object-oriented program comprehension: Effect of expertise,
task and phase. Empirical Software Engineering 7, 2, 115–156.

CROSBY, M. E., AND STELOVSKY, J. 1990. How do we read
algorithms? A case study. IEEE Computer 23, 1, 24–35.

ERICSSON, K. A., AND SIMON, H. A. 1984. Protocol analysis:
Verbal reports as data. Braford Books/MIT Press, Cambridge,
MA.

GOOD, J., AND BRNA, P. 2004. Program comprehension and
authentic measurement: : a scheme for analysing descriptions
of programs. International Journal of Human Computer Studies
61, 2, 169–185.

JANSEN, A. R., BLACKWELL, A. F., AND MARRIOTT, K. 2003.
A tool for tracking visual attention: The Restricted Focus
Viewer. Behavior Research Methods, Instruments, and Com-
puters 35, 1, 57–69.

JUST, M. A., AND CARPENTER, P. A. 1976. Eye fixations and
cognitive processes. Cognitive Psychology 8, 441–480.

KO, A. J., AND UTTL, B. 2003. Individual differences in pro-
gram comprehension strategies in unfamiliar programming sys-
tems. In IWPC ’03: Proceedings of the 11th IEEE International
Workshop on Program Comprehension, IEEE Computer Society,
Washington, DC, USA, 175.

LETOVSKY, S. 1986. Cognitive processes in program compre-
hension. In Papers presented at the first workshop on empirical
studies of programmers on Empirical studies of programmers,
Ablex Publishing Corp., Norwood, NJ, USA, 58–79.

LITTMAN, D. C., PINTO, J., LETOVSKY, S., AND SOLOWAY, E.
1986. Mental models and software maintenance. In Papers pre-
sented at the first workshop on empirical studies of programmers
on Empirical studies of programmers, Ablex Publishing Corp.,
Norwood, NJ, USA, 80–98.

MORENO, A., MYLLER, N., SUTINEN, E., AND BEN-ARI, M.
2004. Visualizing programs with Jeliot 3. In Proceedings of the
Working Conference on Advance Visual Interfaces (AVI 2004),
ACM, 373–376.

NEVALAINEN, S., AND SAJANIEMI, J. 2005. Short-term effects
of graphical versus textual visualisation of variables on program
perception. In Proceedings of the 17th Annual Psychology of
Programming Interest Group Workshop (PPIG’05), 77–91.

NIELSEN, J., CLEMMENSEN, T., AND YSSING, C. 2002. Getting
access to what goes on in peoples heads? reflections on the think-
aloud technique. In Proceedings of The Second Nordic Con-
ference on Human-Computer Interaction (NordiCHI’02), ACM
Press, New York, NY, USA, 101–110.

PETRE, M. 1995. Why looking isn’t always seeing: readership
skills and graphical programming. Communications of ACM 38,
6, 33–44.

RAYNER, K. 1998. Eye movements in reading and information
processing: 20 years of research. Psychological Bulletin 124,
372–422.

ROMERO, P., LUTZ, R., COX, R., AND DU BOULAY, B. 2002.
Co-ordination of multiple external representations during Java
program debugging. In HCC ’02: Proceedings of the IEEE 2002
Symposia on Human Centric Computing Languages and Envi-
ronments (HCC’02), IEEE Computer Society, Washington, DC,
USA, 207.

SAJANIEMI, J., AND KUITTINEN, M. 2003. Program animation
based on the roles of variables. In SoftVis ’03: Proceedings of the
2003 ACM symposium on Software visualization, ACM Press,
New York, NY, USA, 7–16.

SOLOWAY, E., LAMPERT, R., LETOVSKY, S., LITTMAN, D., AND

PINTO, J. 1988. Designing documentation to compensate for
delocalized plans. Communications of ACM 31, 11, 1259–1267.

VAN DEN HAAK, M., JONG, M. D., AND SCHELLENS, P. J. 2003.
Retrospective vs. concurrent think-aloud protocols: testing the
usability of an online library catalogue. Behaviour and Informa-
tion Technology 22, 5, 339–351.

VON MAYRHAUSER, A., AND VANS, A. M. 1996. Identification
of dynamic comprehension processes during large scale mainte-
nance. IEEE Transactions on Software Engineering 22, 6, 424–
437.

132

P6.

Bednarik, R., Tukiainen, M.: Analysing and Interpreting Quantitative Eye-Tracking
Data in Studies of Programming: Phases of Debugging with Multiple
Representations. In Proceedings of the 19th Annual Workshop of the Psychology of
Programming Interest Group (PPIG'07), Joensuu, Finland, July 2-6, 2007, pp. 158-172

6

Analysing and Interpreting Quantitative

Eye-Tracking Data in Studies of Programming:

Phases of Debugging with Multiple

Representations

Roman Bednarik and Markku Tukiainen

Department of Computer Science and Statistics,
University of Joensuu, PO Box 111, Joensuu, Finland

firstname.surname@cs.joensuu.fi

Abstract. While eye-tracking systems become gradually improved and
easier to apply, the methodological challenges of how to analyze, inter-
pret and relate the eye-tracking data to user processing remain. Studies
of programming behavior are not an exception. We have conducted a
reanalysis of eye-tracking data from a previous study that involved pro-
grammers of two experience groups debugging a program with the help of
graphical representation. Proportional fixation time on each representa-
tion, frequency of visual attention switches between the representations
and type of switch were investigated in relation to five consequential
phases of ten minutes of debugging. Therefore, we have increased the
granularity of focus on debugging process.

We found some repetitive patterns of visual strategies that were asso-
ciated with less experienced programmers finding fewer errors. We also
discovered that at the beginning of the process programmers make use of
both the code- and graphical representations while frequently switching
between them. During the process, more experienced programmers be-
gan to integrate also the output of the program and finish the debugging
with frequent switching between the three representations. We discuss
benefits and limitations of this approach to analyzing and interpreting
the quantitative eye-tracking data. As part of future research we propose
to investigate the symmetries of representation switching behavior.

1 Introduction

While the technological problems of eye-tracking systems are being continually
resolved, granting the increasing usability of the technique, the methodological
issues prevent the technology from yet spreading wider. Most challenging – apart
from the somewhat remaining technical problems – [1] list two methodological
problems with eye-tracking: labor-intensive data extraction and difficulties in
their interpretation. Modern eye-tracking systems are easy to operate, make no
interference with participants, and can capture up to 90% of population. Com-
mercially available eye-tracking systems are often supplied with recording and

analysis software, attempting to reduce the manual data extraction in fixation
identification. While this automation can facilitate the analysis for simple tasks,
studies of complex processing with interactive systems present a new challenge
to eye-tracking researchers.

In many cases the dynamics of the scenes being presented to participants –
such as modern computer programming interfaces – makes it hard to link the
eye-tracking data to the stimuli. Often, the only solution to this problem is to
manually annotate the video-recordings frame-by-frame. Clearly, this approach,
besides being uneffective, may bring about several unwanted outcomes. For ex-
ample, the manual extraction of the fixations might pose a threat to the accuracy
of the data analysis. To simplify the process and make it more efficient, auto-
matic quantitative methods of extracting and analysing eye-tracking data have
been employed in many studies.

A problem related to automatic eye-tracking data extraction in evaluating
interfaces is that of relating the extracted data to the underlying human pro-
cessing. Typically, the analysis process starts from selecting the eye-tracking
measures, continues through delimiting the scene into the areas of interest and
aggregating the measures with respect to the areas, to linking the observations
to the phenomena in question. In multimedia interfaces that present informa-
tion both in text and graphics – often by using animation – the analysis phase of
an eye-tracking experiment might become the most daunting task of the whole
research. To preserve the experimental validity of the eye-tracking experiment,
the researcher might not wish to impose constrains on the participants’ behavior
or employ artificial tasks and environments. Balancing the user freedom at the
costs of the constraints of interaction imposed by the study settings can further
increase the complexity of the analysis; these factors include, for example, the
presentation of several linked representations of the content in adjacent win-
dows, the freedom of users to select when and what representations they want
to see, or the possibility of the system to present dialogues such as questions.
As the complexity of the interaction increases, however, the link between the
eye-tracking data and underlying processing becomes harder to study.

Many studies in programming make use of the hypothesis testing frame-
work [2]. In studies that employ eye-tracking, one or more groups of participants
receive a treatment while their ocular behavior is recorded; researcher then com-
pares the respective aggregate eye-tracking measures between the treatments or
groups to confirm or reject the hypothesis. While this approach can be functional
with short tasks in range of tens of seconds, such as in the usability studies of
[3] and [4], in eye-tracking studies of learning or problem-solving the task par-
ticipants perform is severalfold longer and, arguably also more complex. The
analysis of such eye-tracking data, interpretation of the measures, and relation
to the underlying processes cannot be approached as has been done with the
short tasks; complex tasks are composed by hierarchies of several simpler tasks
and stages, and therefore the conventional methods do not accurately uncover
the detailed processes. Instead, using the conventional approaches, an indistin-
guishable mixture of processes is described using a single eye-tracking measure.

In other words, an averaged measurement is supposed to inform on a complex
and long comprehension process.

There clearly is a need for advancing the methodological aspects of eye-
tracking research to complex domains. In this paper we discuss one of the
challenges for eye-tracking in the studies of program development interfaces,
in particular in the studies that present several concurrent representations to
investigate problem-solving strategies. The contribution presented here expands
on experiences with eye-tracking in studies with multimedia displays evaluation
and focuses on methodological issues of automatic eye-tracking data analysis
and interpretation.

We begin the discussion by reviewing previous work that considered these
aspects in evaluations of computer displays. We then present a case eye-tracking
study of debugging strategies with a static program visualization. By segmenting
the whole stream of visual attention data into shorter sequences, we increase the
granularity of focus on debugging process and we tackle the problem of too
coarse analysis. Finally, we also discuss the methodological issues and inherent
limitations of this approach to automatic eye-tracking data analysis, as applied
in studies of visual attention in programming with multimedia displays.

2 Previous Work

Linking eye-tracking data to underlying cognitive processes have become the
primary challenge in eye-tracking studies. For instance, in the eye-tracking stud-
ies of usability, [1] argue that this challenge has been ”probably the single most
significant barrier to the greater inclusion of eye tracking”. There are several
methodological reasons contributing to the challenge, such as the dynamic na-
ture of modern computer interfaces, the volumes of eye-tracking data, human
factors and the concerns of the researchers to retain high validity of the studies.

One domain where eye-tracking has successfully been applied is, undoubtedly,
reading research [5]. In studies of reading, eye-tracking made it possible to gain
understanding about how visual attention is deployed, how text is processed,
or what processes are responsible for guiding the eye during reading. Several
models of eye-movement control during reading have been proposed, such as the
E-Z reader [6], based on the information obtained from eye-tracking.

In other domains with not as controllable research situation as in reading,
such as in studies of usability or driving behavior, the methodological prob-
lems of relating the eye-tracking data to the processing have been probably the
single most important challenge and barrier to progress. Practical and some
methodological aspects of eye-tracking in usability research and studies have
been previously discussed in the inspiring works of [7] and [1]. [3] proposed a
set of eye-tracking measures that allow for automation of the evaluation process.
Thus, the large quantities of raw eye-tracking data can be significantly reduced
to make the analysis of the data efficient. However, how to interpret the data
and relate them to the underlying processing or to the usability aspects are tasks
yet not very well understood.

The experimental interface employed in [3] was artificially made and the
task given to the participant consisted of only searching for targets with focus
on the speed. The interaction with modern computer interfaces, such as with
multimedia learning systems, can hardly be considered as simple searching for
targets without more elaborate goals. Some studies, such as the web-page us-
ability evaluation of [4], recognize this problem and employ a more realistic task
and context. Finding no significant effects of task and page interaction on eye-
movement measures, the authors argue for establishing benchmark measures and
investigating the relation between underlying processing and eye-movement pat-
terns. They also suggest that visibility of a target might influence the patterns
and that more tasks shall be studied to uncover the factors affecting the usability
and therefore eye-movement patterns.

Analysis of behavior based on visual attention data becomes popular also in
studies of programming. During programming, the programmer has to build an
understanding of what the program does and how does it do it to be able to debug
and modify the program. Previous studies in programming that employed visual
attention tracking focused, for example, on how programmers read the source
code [8], how programmers make use of and coordinate multiple representations
[9] or on the effects a graphical visualization of a program has on the visual
attention patterns of novice programmers [10].

To investigate the link between the underlying processing and overt visual
attention patterns eye-tracking researchers often make use of the hypothesis
testing framework. For example, [10] presented twelve participants with a pro-
gram comprehension task and two environments, and compared the resulting
visual attention patterns. In another program comprehension study, [11] em-
ployed a between-subject design to study differences between expert and novice
programmers in comprehension. Similarly as in previous studies, they compared
the resulting long-term eye-tracking measures between two groups. [12] however
argued that ”the comprehension process ... cannot be effectively examined by
studying long-term averages [of eye-tracking measures]”. In this paper we fur-
ther investigate this problem of studying the complex mental processes using
automatic methods to eye-tracking analysis by examining the temporal changes
in eye-tracking measures during a complex problem-solving task with multiple
available representations.

In summary, little has been done in past to investigate the link between
the eye-tracking data and underlying processing in natural and dynamic com-
puter environments. Researchers have often been left with manual extraction
and annotation of the fixation data. Attempts to automatize the analysis of eye-
tracking data and to gain understanding of how to relate the resulting measures
to the tasks have not arrived to a coherent understanding of the link. Similarly,
previous research into the role of visual attention during programming seems to
confirm the challenges. This gap motivates our efforts to expand the knowledge
available about the connection.

3 Case Study

To prepare the context of the methodological discussion, we first introduce an
investigation in which eye-tracking has been applied. We then extend the analysis
of eye-tracking data by segmenting the process into a series of several phases and
we include the temporal aspect into the analysis.

In the study we investigated the visual strategies of programmers during
debugging. The research settings were similar to those of usability evaluations:
participants were provided with a familiarization task, were not restricted in
the way they wanted to interact with the environment, and the tasks resembled
those that the participants would be engaged in under natural conditions.

Integrated development environments (IDE) used by computer programmers
often present different views on the program or project in several windows. Pro-
grammers normally need to coordinate these representations [13] in order to
build a coherent mental model of the program. The representations usually in-
clude the source code of the program, output of the program, a visualization of
some aspect of the execution or source code, or specifications of the program.

Thus, the goals of the studies related to the cognitive aspects of programming
with multiple representations are: 1) to investigate how programmers visually
coordinate the representations, 2) whether and how the role of the representa-
tions is changing as programmer builds the mental model, and 3) what are the
effects of experience on the visual patterns during these programming activities.
Ultimately, the answers to these questions can help to better understand the
processes involved in learning and problem-solving with multi-representational
visualizations.

Relating the eye-tracking data to the underlying processes in programming is
not, however, an easy task. This is due to the fact that programming is a complex
domain involving many cognitive processes, knowledge and skills that need to be
applied to understand multiple and often hidden components and dependencies.
In fields where eye-tracking has been previously applied, such as in usability
studies, eye-tracking researchers often took a quantitative approach to analyze
the eye-tracking data. [4], for instance, collected total fixation duration, number
of fixations, average fixation duration, and spatial density and investigated their
relation to the relative usability differences between different Web-pages.

Similarly as in the usability studies, we have also approached the analysis of
the eye-tracking data in a quantitative way. For example, average fixation du-
ration has been suggested in previous research as related to the difficulties with
extracting and processing information from a display [3]. Number of fixations,
another eye-tracking measure previously employed in studies of programming
[14], shall reflect the relative importance of an area of a display. The most essen-
tial difference between our studies and the studies of usability, however, is that
during learning, problem-solving, or program comprehension the users engage
in a variety of complex and relatively lengthy sub-tasks, rather than completing
relatively simple short tasks such as search for a target. It is an open question
into which extent the quantitative approach to eye-tracking data can be assumed

to expose the relations of eye-tracking data and measures to the complexity of
the processes involved during problem-solving.

3.1 Case study: Visual attention during debugging with static

environment

As a part of a replication study that investigated the effects of the Focus Window
Technique (FWT) on the visual strategies during debugging, we have compared
the eye-movement patterns of less experienced and highly experienced users.
An alternative method to eye-tracking, the FWT was designed to reduce the
technical problems with eye-tracking. Whole FWT screen is blurred except for a
small section. The study compared the visual strategies of programmers working
under the FWT mode to the strategies with unrestricted environment. Research
settings of the study, materials, and procedures were kept identical to those of
the original study [13], and can also be found from e.g. [14]. The investigation
did show an effect of the blurring condition on the behavior of users, and the
results have been reported elsewhere [15].

Method Figure 1 presents a screenshot of the IDE during the non-restrictive
condition. The environment presented the source code of a Java program (left
pane in Figure 1) that contained four non-syntactic errors. Participants – af-
ter reading specifications of the desired behavior of the program – were given
ten minutes to debug the program. Eighteen participants have taken part in
the study. Missing, corrupt or incomplete data were removed from the sample,
leaving fourteen quality eye-tracking recordings. Two groups of users, highly ex-
perienced (hereafter experts) (N = 8) and less experienced (hereafter novices)
(N = 6), were formed from the remaining data. Table 1 presents an overview of
the two groups, showing significant differences in experience and performance in
terms of bugs found.

Participants were not allowed to modify the source code. Additional repre-
sentations provided by the IDE were a visualization of the program (shown top
right in Figure 1) and the current output of the program (bottom right in Figure
1).

N Age Progr. experience Bugs found

Experts 8 25.88 (3.94) 108.00 (22.22) 2.75 (1.04)
Novices 6 26.17 (6.08) 42.00 (14.70) 1.50 (0.55)

t (12) .109 (p=.915) 6.29 (p=.00004) 2.67 (p=.020)
Table 1. Number of participants in each group, their age (SD), programming experi-
ence in months (SD), and bugs found (SD) max=4. Differences in groups on indepen-
dent sample t-test (p-value).

While some previous analyses of visual attention patterns approached similar
situation with a long-term perspective, the main difference between the present

Fig. 1. A screenshot of IDE employed in the study, with 1 second of gaze overlaid.

study and previous analyses is the level of detail. To deal with the complexity
of the programming process, the whole ten minute debugging sessions were di-
vided into five two-minute segments. Our motivation for doing so was to explore
the temporal properties of the eye-tracking data with a hope to better capture
the underlying processing. Proportional fixation time (PFT) for each area was
computed as a ratio of fixation time on an area to the overall fixation time on
all areas. Number of switches per minute was computed as sum of all changes in
visual attention focus between any of the three main areas during each segment
per minute.

Results and discussion Table 2 and Figure 2 present the distribution of
proportional fixation times. For the subsequent analyses of this measure, only
data from code and output were used, because the proportional fixation times
for code and visualization were almost perfectly negatively correlated (r (5) =
-.971, p = .006). Thus, a 5 x 2 x 2 (segment, area, experience) ANOVA was
conducted and revealed the main effect of segment (F(4,48) = 4.53, p = .003, η

2

= .274), area (F(1,12) = 765.14, p < .001, η
2 = .985), and experience (F(1,12)

= 6.36, p =.027, η
2 = .346).

While there was no significant interaction found between segment and experi-
ence (F(4,48) = .242, ns), the analysis revealed a significant interaction between
segment and area (F(4,48) = 3.57, p =.012, η

2 = .229). Other two and three-way
interactions were not significant.

The main effect of segment was analyzed using Bonferroni adjustment pro-
cedure for multiple comparisons. This showed that while proportional fixation

times during the last two phases were almost equal, the PFT during first two
minutes was significantly different than during second segment (p = .037) and
nearly significantly different than during fourth segment (p = .053). Although
noticeable, the difference between second and third segment was not significant.

Novices Experts
Segment (min.) Code Visualization Output Code Visualization Output

0-1 64.17 32.49 3.34 74.73 22.88 2.39
2-3 91.13 6.61 2.25 97.29 1.64 1.07
4-5 63.27 27.61 9.12 85.11 10.75 4.14
6-7 87.14 9.87 2.99 88.41 2.67 8.93
8-9 81.53 16.91 1.56 83.80 6.28 9.91

Table 2. Proportional fixation times (%) of Novices and Experts during the five seg-
ments of debugging.

Fig. 2. Plot of proportional fixation times during five phases of debugging.

While previous quantitative investigations of eye-movement patterns of less
experienced and expert programmers showed no differences between the visual
behavior of the two groups [11], this finding seems to contradict the past results.
Our analysis revealed an effect of experience on proportional fixation times.

Overall, throughout the whole debugging session expert programmers – who
also found more bugs – relied more on the textual representation of the program
than the less experienced programmers did. Output of the program became
more important than visualization at later phases of the debugging strategies of
experts, while novice programmers tended to rely on the visualization.

Table 3 and Figure 3 present the switching behavior in terms of overall num-
ber of switches per minute during the five segments of debugging. A 5 x 2 (seg-
ment, experience) ANOVA revealed main effect of segment (F(4,48) = 3.99, p =
.007, η

2 = .250). Experience had no effect on the number of switches (F(1,12) =
0.11, p =.745, η

2 = .009) and there was no interaction between experience and
segment (F(4,48) = 0.477, p =.753, η

2 = .038).
Similarly as with the analysis of PFT, the significant main effect of seg-

ment on the switching frequency was analyzed using Bonferroni adjustment for
multiple comparisons. First and second, second and third, and second and fifth
segments differed significantly (p = .024, p = .014, p = .005, respectively). Other
pairwise differences were not significant.

Novices Experts
Segment (min.) sw/m SD sw/m SD

0-1 8.00 4.57 8.63 7.95
2-3 2.42 1.66 1.19 1.19
4-5 8.03 4.30 6.75 5.88
6-7 5.58 3.40 7.50 7.51
8-9 6.42 4.47 9.18 6.18

Table 3. Switches per minute between any of the three main representations during
the five segments of debugging.

Fig. 3. Plots of switching behavior ((a) mean, (b) standard deviation) during five
phases of debugging.

Finally, similarly as in [13] we have examined the type of switch programmers
exhibit during debugging. Three types of switch were possible to perform during

debugging: a switch between code and visualization (or back), a switch between
code and output (or back), and a switch between visualization and output (or
back).1Table 4 provides an overview of a breakdown of the switching frequency
from Table 3 into the tree types of switches.

A 5 x 3 x 2 (segment, switch type, experience) ANOVA revealed significant
main effect of segment (F(4,48) = 3.75, p = .01, η

2 = .238) and type of switch
(F(2,24) = 9.23, p < .001, η

2 = .435) on switching frequency. Effect of experience
was not significant (F(1,12) = 0.18, ns).

Interactions of segment and experience and type of switch and experience
were not significant. However, interactions of segment and type of switch (F(8,96)
= 4.75, p < .001, η

2 = .284) and segment, type of switch and experience (F(8,96)
= 4.82, p < .001, η

2 = .286) were significant.

Pairwise comparisons using Bonferroni corrections showed that the main ef-
fect of switch type was due to the switch between code and visualization being
significantly most frequent than the switch type between visualization and out-
put (p = .001). The two other comparisons were not significant, although the
switch between code and visualization was notably more frequent than the switch
between code and output (p = .19) and the switch between code and output was
more frequent than the switch between visualization and output (p = .18).

Novices Experts
Code - Code - Visualization - Code - Code - Visualization -

Segment Visualization Output Output Visualization Output Output

0-1 5.83 0.58 1.58 6.31 1.00 1.31
2-3 1.92 0.42 0.08 1.06 0.06 0.06
4-5 2.25 3.17 1.83 3.75 1.88 1.13
6-7 3.67 1.00 0.92 1.75 5.00 0.75
8-9 5.22 0.43 0.77 2.06 5.39 1.73

Table 4. Switches per minute for each of the three main types of switches during the
five segments of debugging.

Segmentation of the eye-tracking data allowed us to analyze how the fixation
patterns of programmers developed during the debugging. Visual analysis of Fig-
ure 2 and Figure 3 show saw-like patterns of visual attention in time, especially
for the novice group throughout the whole process. Therefore, it can be assumed
that the use of each representation of the program is not constant during the
process, but oscillates between 64% of time to up to 97% of time (see Table
2. Number of switches and proportional fixation time on code were negatively
correlated (r(5) = -.814, p = .093). Therefore, at times when the textual rep-
resentation is being used the most, programmers tended to not to switch often
between different representations.

1 There are, in fact, six types of switches. However, to simplify the current analysis we
have considered any switch between two representations as belonging to one type.

Both novice and expert programmers made most use of the visualization
at the beginning of the process. In the next phase of debugging, both groups
concentrated on the textual representation of the program, while decreasing
the visual coordination activity. In the middle of the debugging process, novice
programmers again paid much more attention to visualization and to output,
and switched more frequently than in previous phase. Experts began to attend
also to the output of the program and switch their visual attention between the
three representations.

From the fourth phase, the expert group changed behavior so that we have ob-
served frequent switches between output and program code. The plots of novices’
PFT and switching behavior, on the other hand, continued in the saw-like pat-
tern until the end of the debugging. At the final stage of debugging, expert
programmers coordinated the three representations with the highest frequency
of switches.

In summary, the high variance presented in the eye-tracking data of expert
programmers indicates their diverging strategies, especially toward the end of
the session. What the visual attention tracking data seem show, however, is that
novice programmers engage in and alternate between two distinct approaches to
coordinate the code and graphical representation. They begin by high frequency
of switching between code and visualization. After this phase, they attend mostly
the code, while exhibiting low number of attention switching to other represen-
tations. Once the code reading is finished, again, novice programmers change
their strategy to the high-frequency attention switching.

4 General Discussion

Programming alone is a complex task to study. When these tasks take place
within a rich and dynamic context, the analysis and interpretation of the result-
ing eye-tracking data present a serious challenge. Experimentation in software
engineering is difficult and carrying out empirical work is complex and often time
consuming [16]. This seems to be especially true in conducting and analysing of
experiments employing eye-tracking to study software comprehension.

Program debugging and comprehension involve a variety of strategies that
a programmer has to exercise to create a coherent mental model of a program.
Modern programming environments present program-related information in mul-
tiple windows, and use graphics and animation to visualize some aspect of the
program. This presents a challenge to the users who have to coordinate the rep-
resentations by active selection of what information they want attend to. To
get deeper insights into the processes as they are carried out in the presence
of multiple linked representations, we have employed an eye-movement tracking
technique to study visual attention patterns of expert and novice programmers.

To avoid manual extraction of eye-tracking data we made use of automatic
techniques to reduce the data into eye-tracking measures. The relation of the
eye-tracking measures to the comprehension processes, however, is not a straight-
forward process. In our previous studies in programming that employed visual

attention tracking, we began to approach the task by studying effects of expertise
on the eye-tracking patterns.

In contrast with some previous similar investigations, however, we further
segmented the whole process into shorter sections to obtain finer level of de-
tail about the process. The resulting eye-tracking metrics were analyzed using
quantitative statistical methods, and plotted against time.

Using the proposed approach to eye-tracking data analysis, our results show
how eye-movement patterns develop during debugging with multiple represen-
tations. Not surprisingly, programmers mostly visually attended source code, a
confirmation of findings of some previous studies [13]. Our results extend on
these findings and show how the representation use developed in time during
debugging.

While we have not found any prevailing trends in the visual attention pat-
terns that would reflect increasing or decreasing changes in use of the main
representation, by segmenting the process into shorter intervals, we discovered
temporal sensitivity of the visual attention patterns. In particular, we have dis-
covered a saw-like pattern of use. We found that although there was a variance
in the strategies, more experienced programmers change their strategies during
debugging and focus their attention to output of a program at later stages of
the process. While the results related to switching frequency show that for most
of the debugging process the switching was not sensitive to expertise, toward
the end of the ten minutes session more experienced programmers gradually ex-
hibit higher frequency of switching. Based on these findings, we tend to believe
that the changes in eye-tracking measures reflect both the importance of differ-
ent representations during programming processes and differences in debugging
strategies.

Some of the most intriguing aspects of visual attention behavior, however,
cannot be discovered only using pure quantitative reductionist approaches to
eye-tracking data analysis. We have illustrated that the temporal aspects of
eye-tracking data during programming can provide valuable insights about the
representation use. There are, however, also issues that limit the potentials of
automatic methods to analyze the gaze patterns and relate them to the underly-
ing processing. In particular, arranging participants into groups – whether based
on experience or time – smooths away the individual differences. In [8] the two
most similar scanning patterns while reading an algorithm belonged to subjects
from opposite experience groups. Also in our study the individual differences
sometimes seemed to predominate over a stereotypical group behavior. This
caused the variability within a group, for example, in eye-tracking data related
to switching behavior; while the measure-means of the two groups were similar,
the behavior of more experienced group contained greater amount of variance.
These variances, in turn, seem to impair the traditional quantitative approaches
to variance analysis in their assumptions of homogeneity of variances.

Therefore, in parallel to automatic quantitative methods, we are investigating
the potentials of qualitative approaches to eye-tracking data analysis in dynamic
programming environments. These approaches to visual attention data during

programming are indeed required to complement the quantitative view on the
process. While quantitative methods can help us to discover interesting events in
visual behavior, we suggest that more qualitative approaches shall be employed
to provide detailed explanations.

Our study also raises several issues that need to be addressed by future re-
search into the link of eye-tracking data and processes involved in programming.
In the present study, the segments of the data were delimited based on fixed
time-interval. Although the time-based approach allows for clearly defined seg-
mentation, different participants seem to proceed with debugging at their own
pace. For example, some expert programmers found bugs faster, and therefore
might have changed their strategies sooner than programmers who have not
found bugs. Therefore, aggregating and regarding individual behaviors at cer-
tain fixed interval as representing a group behavior might be problematic.

To study individual behavior, however, boundaries based on better defined
subtasks and events shall be determined as references to behavioral units. For
example, one class of such delimitations can be related to a programmer finding a
bug, or changing a strategy. It can be then possible to examine, for instance, how
users modify their strategy after a bug has been found. We plan to investigate
this idea in future.

Another interesting observation that fuels our future research of aspects of
visual attention in programming is related to switching behavior. While most
of the visual attention switches performed during debugging were balanced and
between two representations, we have observed that more experienced program-
mers during certain phases of debugging tend to exhibit switches that coordinate
three representations. The transition matrix representing the switching behavior
then becomes asymmetrical (e.g. there are more switches from code to visualiza-
tion than from visualization to code). We propose that a degree of asymmetry
of the transition matrix could be a new higher-level eye-tracking metric.

5 Limitations and Conclusions

The main limitation of this study can be seen in the low number of participants.
However, the main focus of this study was on the methods to analyze the eye-
tracking data during programming rather than on testing the hypotheses related
to the use of visualization in programming. As there are no automatic tools to
perform the proposed analysis, we began with a reasonable yet illustrative sam-
ple size. Any further quantitative investigations shall consider recruiting more
participants to exhaustively test the hypotheses set by the present study.

In summary, our exploratory study shows that segmentation of eye-tracking
data in general seems promising. We have attempted to segment the data set
according to time into shorter segments of equal duration, one of many potential
approaches to segmentation. Consequently, both the proportional fixation time
and switching frequency showed sensitivity to the effect of different phases of a
debugging session.

Contrary to previous findings that approached the eye-tracking measures
from a long-term reductionist perspective, our analysis also revealed differences
in representation use during debugging. Our findings indicate that experts ex-
erted more efforts to integrate the information available and changed their visual
strategies during the process, in particular to relate code and output informa-
tion at the later stages of debugging. Novice programmers, on the other hand,
seemed to alternate between two strategies without being able to modify their
approach.

Acknowledgment

The feedback from three anonymous reviewers was valuable and has materialized
as improvements of this paper.

References

[1] Jacob, R.J.K., Karn, K.S.: Eye Tracking in Human-Computer Interaction and
Usability Research: Ready to Deliver the Promises (Section Commentary). In
Hyönä, J., Radach, R., Deubel, H., eds.: The Mind’s Eye: Cognitive and Applied
Aspects of Eye Movement Research, Elsevier Science (2003) pp. 573–605

[2] Blackwell, A.F., Whitley, K.N., Good, J., Petre, M.: Cognitive factors in pro-
gramming with diagrams. Artif. Intell. Rev. 15 (2001) 95–114

[3] Goldberg, J., Kotval, X.P.: Computer Interface Evaluation Using Eye Move-
ments: Methods and Constructs. International Journal of Industrial Ergonomics
24 (1999) 631–645

[4] Cowen, L., Ball, L.J., Delin, J.: An eye-movement analysis of web-page usabil-
ity. In Faulkner, X., Finlay, J., Détienne, F., eds.: People and Computers XVI:
Memorable yet Invisible: Proceedings of HCI 2002, Springer-Verlag Ltd (2002)

[5] Rayner, K.: Eye movements in reading and information processing: 20 years of
research. Psychological Bulletin 124 (1998) 372–422

[6] Reichle, E.D., Pollatsek, A., Rayner, K.: E-Z Reader: A cognitive-control, serial-
attention model of eye-movement behavior during reading. Cognitive Systems
Research 7 (2006) 4–22

[7] Goldberg, J., Wichansky, A.: Eye Tracking in Usability Evaluation: A Practi-
tioner’s Guide. In Hyönä, J., Radach, R., Deubel, H., eds.: The Mind’s Eye: Cog-
nitive and Applied Aspects of Eye Movement Research, Elsevier Science (2003)
pp. 493–516

[8] Crosby, M.E., Stelovsky, J.: How Do We Read Algorithms? A Case Study. IEEE
Computer 23 (1990) 24–35

[9] Romero, P., du Boulay, B., Lutz, R., Cox, R.: The effects of graphical and textual
visualisations in multi-representational debugging environments. In: HCC ’03:
Proceedings of the IEEE 2003 Symposia on Human Centric Computing Languages
and Environments, Washington, DC, USA, IEEE Computer Society (2003)

[10] Nevalainen, S., Sajaniemi, J.: Short-Term Effects of Graphical versus Textual Vi-
sualisation of Variables on Program Perception. In: Proceedings of the 17th An-
nual Psychology of Programming Interest Group Workshop (PPIG’05), Brighton,
UK (2005) 77–91

[11] Bednarik, R., Myller, N., Sutinen, E., Tukiainen, M.: Analyzing Individual Dif-
ferences in Program Comprehension with Rich Data. Technology, Instruction,
Cognition and Learning 3 (2006) 205–232

[12] Bednarik, R., Tukiainen, M.: An eye-tracking methodology for characterizing pro-
gram comprehension processes. In: ETRA ’06: Proceedings of the 2006 symposium
on Eye tracking research & applications, New York, NY, USA, ACM Press (2006)
125–132

[13] Romero, P., Lutz, R., Cox, R., du Boulay, B.: Co-ordination of multiple external
representations during java program debugging. In: HCC ’02: Proceedings of the
IEEE 2002 Symposia on Human Centric Computing Languages and Environments
(HCC’02), Washington, DC, USA, IEEE Computer Society (2002) 207

[14] Bednarik, R., Tukiainen, M.: Visual attention tracking during program debugging.
In: NordiCHI ’04: Proceedings of the third Nordic conference on Human-computer
interaction, New York, NY, USA, ACM Press (2004) 331–334

[15] Bednarik, R., Tukiainen, M.: Validating the restricted focus viewer: A study using
eye-movement tracking. Behavior Research Methods (in press)

[16] Basili, V.R., Shull, F., Lanubile, F.: Building knowledge through families of ex-
periments. IEEE Transactions on Software Engineering 25 (1999) 456–473

Dissertations at the Department of Computer Science and Statistics

Rask, Raimo. Automatic Estimation of Software Size during the Requirements
Specification Phase - Application of Albrecth‘s Function Point Analysis Within
Structured Methods. Joensuun yliopiston luonnontieteellisiä julkaisuja, 28 - Uni-
versity of Joensuu. Publications in Sciences, 28. 128 p. Joensuu, 1992.

Ahonen, Jarmo. Modeling Physical Domains for Knowledge Based Systems. Joen-
suun yliopiston luonnontieteellisiä julkaisuja, 33. 127 p. Joensuu, 1995.

Kopponen, Marja. CAI in CS. University of Joensuu, Computer Science, Disser-
tations 1. 97 p. Joensuu 1997.

Forsell, Martti. Implementation of Instruction-Level and Thread-Level Paral-
lelism in Computers. University of Joensuu, Computer Science, Dissertations 2.
121 p. Joensuu 1997.

Juvaste, Simo. Modeling Parallel Shared Memory Computations.U niversity of
Joensuu, Computer Science, Dissertations 3. 190 p. Joensuu 1998.

Ageenko, Eugene. Contex-based Compression of Binary Images. University of
Joensuu, Computer Science, Dissertations 4. 111 p. Joensuu 2000.

Tukiainen, Markku. Developing a New Model of Spreadsheet Calculations: A
Goals and Plans Approach. University of Joensuu, Computer Science, Dissertations
5. 151 p. Joensuu 2001.

Eriksson-Bique, Stephen. An Algebraic Theory of Multidimensional Arrays.
University of Joensuu, Computer Science, Dissertations 6. 278 p. Joensuu 2002.

Kolesnikov, Alexander. Efficient Algorithms for Vectorization and Polygonal
Approximation. University of Joensuu, Computer Science, Dissertations 7. 204 p.
Joensuu 2003.

Kopylov, Pavel. Processing and Compression of Raster Map Images. University
of Joensuu, Computer Science, Dissertations 8. 132 p. Joensuu 2004.

Virmajoki, Olli. Pairwise Nearest Neighbor Method Revisited. University of
Joensuu, Computer Science, Dissertations 9. 164 p. Joensuu 2004.

Suhonen, Jarkko A Formative Development Method for Digital Learning Environ-
ments in Sparse Learning Communities. University of Joensuu, Computer Science,
Dissertations 10. 154 p. Joensuu 2005.

Xu, Mantao K-means Based Clustering and Context Quantization. University of
Joensuu, Computer Science, Dissertations 11. 162 p. Joensuu 2005.

Kinnunen, Tomi Optimizing Spectral Feature Based Text-Independent Speaker
Recognition. University of Joensuu, Computer Science, Dissertations 12. 156 p.
Joensuu 2005.

Kärkkäinen, Ismo Methods for Fast and Reliable Clustering. University of Joen-
suu, Computer Science, Dissertations 13. 108 p. Joensuu 2006.

Tedre, Matti The Development of Computer Science: A Sociocultural Perspective.
University of Joensuu, Computer Science, Dissertations 14. 502 p. Joensuu 2006.

Akimov, Alexander Compression of digital Maps. University of Joensuu, Com-
puter Science, Dissertations 15. 116 p. Joensuu 2006.

Vesisenaho, Mikko Developing University-level Introductory ICT Education in
Tanzania: A Contextualized Approach. University of Joensuu, Computer Science,
Dissertations 16. 200 p. Joensuu 2007.

Huang, Haibin Lossless Audio Coding for MPEG-4. University of Joensuu, Com-
puter Science, Dissertations 17. 86 p. Joensuu 2007.

Mozgovoy, Maxim Enhancing Computer-aided Plagiarism Detection. University
of Joensuu, Computer Science, Dissertations 18. 131 p. Joensuu 2007.

Kakkonen, Tuomo Framework and Resources for Natural Language Parser Eval-
uation. University of Joensuu, Computer Science and Statistics, Dissertations 19.
264 p. Joensuu, 2007.

Podlasov, Alexey Processing of Map Images for Improving Quality and Compres-
sion. University of Joensuu, Computer Science and Statistics, Dissertations 20. 93
p. Joensuu, 2007.

Bednarik, Roman Methods to Analyze Visual Attention Strategies: Applications
in the Studies of Programming. University of Joensuu, Computer Science and Statis-
tics, Dissertations 21. 188 p. Joensuu, 2007.

Julkaisija Joensuun yliopisto
 Tietojenkäsittelytieteen ja tilastotieteen laitos

Publisher University of Joensuu
 Department of Computer Science and Statistics

Sarjan toimittaja Erkki Sutinen
Series Editor

Vaihdot Joensuun yliopiston kirjasto/Vaihdot
 PL 107, 80101 Joensuu
 Puh. 013-251 2677, fax 013-251 2691
 email: vaihdot@joensuu.fi

Exchanges Joensuu University Library/Exchanges
 P.O. Box 107, FI-80101 Joensuu, FINLAND
 Tel. +358-13-251 2677, fax +358-13-251 2691
 email: vaihdot@joensuu.fi

Myynti Joensuun yliopiston kirjasto/Julkaisujen myynti
 PL 107, 80101 Joensuu
 Puh. 013-251 4509, fax 013-251 2691
 email: joepub@joensuu.fi

Sales Joensuu University Library/Sales of publications
 P.O. Box 107, FI-80101 Joensuu, FINLAND
 Tel. +358-13-251 4509, fax +358-13-251 2691
 email: joepub@joensuu.fi

