### Отзыв официального оппонента на диссертационную работу

Мельникова Алексея Юрьевича «Исследование торможения вязкого сверхзвукового потока с образованием псевдоскачка в цилиндрических каналах», представленную на соискание ученой степени кандидата физикоматематических наук по специальности 1.1.9 – Механика жидкости, газа и плазмы.

Диссертационная работа Мельникова А.Ю. представляет собой законченное исследование, в котором экспериментальным и расчетным путем определены свойства течений с псевдоскачком в протяженных каналах постоянного сечения.

В работе решается задача влияния газодинамических параметров течения на процесс торможения сверхзвукового потока газа в протяженных цилиндрических каналах.

Актуальность диссертации связана с задачами оптимизации процесса торможения потока в ВЗУ, организации запуска и работы аэродинамических установок с протяженными трактами. Несмотря на достаточно хорошо известные и описанные в литературе свойства псевдоскачка, а также предложенные Л. Крокко, Е.С. Щетинковым, П.К. Третьяковым физические модели, остаются открытыми вопросы возникновения волновых структур при отсутствии дросселирования на выходе или внутри протяженного канала. Обычно в расчетах течений с псевдоскачком в априори задается его наличие, и затем уже определяются его местоположение и структура.

Диссертация включает в себя: введение, 4 главы, заключение и список литературы (97 источников). Полный объем диссертации составляет 117 страниц, включая 59 рисунков и 5 таблиц.

Во введении обоснована актуальность темы диссертации; поставлены цели и задачи, показана научная новизна, теоретическая и практическая значимость; кратко описаны методы исследования; сформулированы

основные положения, выносимые на защиту; выделен личный вклад автора в работу; сжато изложено содержание диссертации.

В первой главе приведен обзор литературы по теме диссертации. Показано, что псевдоскачок является сложной трехмерной газодинамической структурой, имеющей значительную протяженность вдоль потока. На псевдоскачок оказывают влияние многие параметры: числа Маха и Рейнольдса, геометрия канала, наличие теплоотвода в стенку и пр. Характеристиками псевдоскачка являются: его протяженность, положение, интенсивность, распределение давления по его длине. Изучение свойств псевдоскачка проводилось многими исследователями, что отмечается в обзоре. В обзоре также рассмотрены различные ситуации, связанные с техническими устройствами, в которых наблюдается данное явление.

Как правило, для организации течения с псевдоскачком в экспериментах осуществляется дросселирование на выходе из канала. Автор предлагает схему эксперимента, в которой дросселирование на выходе заменяется торможением за счет трения на стенке.

Вторая глава посвящена экспериментальным исследованиям возникновения течения с псевдоскачком при дросселировании и за счет трения на стенке протяженного канала. Получены данные о положении псевдоскачка и распределения статического давления на стенке по длине канала. Для заданных чисел Маха на входе цилиндрического канала получены протяженности каналов, в которых может сохраняться сверхзвуковая скорость газа на всей длине. Выполнены оценки потерь на трение в канале, и сделано сравнение с потерями полного давления в псевдоскачке.

В **третьей главе** представлены результаты численного моделирования возникновения псевдоскачка в протяженном канале. В расчетах показано, что без дросселирования в каналах протяженностью менее 40 калибров не возникает отрыва пограничного слоя и образования псевдоскачка. Интересным является сам факт самостоятельного возникновения в расчете

течения с псевдоскачком. Численные исследования показали хорошее согласие с экспериментом. Автор не рассматривал вариантов с дросселированием и последующем открытием канала. В этом случае предельная длина канала, в котором возможно существование псевдоскачка, значительно сократится.

В четверной главе отображены результаты расчета течения в диффузоре с тепловым и механическим дросселированием. Рассмотрены два случая: внезапное расширение ( $\theta$ =90°) и под заданным углом ( $\theta$ =10°). В расчете наблюдаются типичные картины нерасчетного истечения в диффузор. При определенном дросселировании (механическом или тепловом) возникает запирание диффузора. Получено согласие с утверждением, выдвинутым Д. Руэзом, что в рамках теории малых возмущений источники теплоты и массы эквивалентны. Показана связь между механическим и тепловым дросселированием, выраженная в квадратической зависимости относительного теплоподвода к изменению сечения выхода.

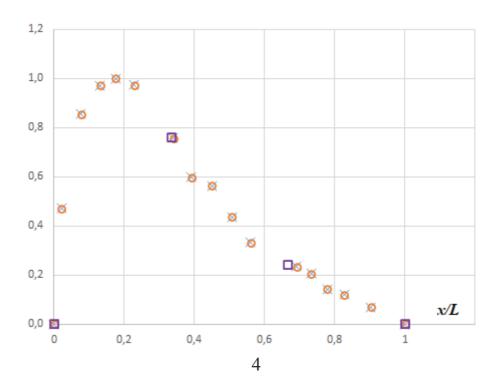
В заключении кратко приведены результаты работы по основным положениям, выносимым на защиту.

**Достоверность** представленных автором результатов подтверждена квалифицированным использованием экспериментальных методик и оборудования, применением сравнительного анализа данных, полученных в эксперименте и расчете, а также согласование с результатами исследований других авторов.

Отметим наиболее интересные результаты, полученные автором:

• В протяженном канале (*L/D>*40) возможна реализация течения с псевдоскачком без дополнительного дросселирования выхода, что было получено в экспериментальном и расчетно-теоретическом исследовании. При этом в расчете режим с псевдоскачком возникает самостоятельно без ввода дополнительных ограничений на поток.

- Продемонстрирована эквивалентность теплового и механического дросселирования. Показана связь между механическим и тепловым дросселированием, выраженная в квадратической зависимости относительного теплоподвода к изменению сечения выхода.
- Определены условия существования ударно-волновых структур в протяженных каналах и коротких диффузорах.


# По тексту диссертации имеются следующие замечания и вопросы:

1) В обзоре при описании свойств псевдоскачка не указана основная особенность течения в нем. А именно, что параметр неравновесности

$$\eta = \left[\frac{p}{p_{_{\scriptscriptstyle H}}} + \frac{\gamma - 1}{2\gamma}(1 + \gamma\,\mathrm{M}_{_{\scriptscriptstyle H}}^2 - \frac{p}{p_{_{\scriptscriptstyle H}}})\right] \frac{1 + \gamma\,\mathrm{M}_{_{\scriptscriptstyle H}}^2 - \frac{p}{p_{_{\scriptscriptstyle H}}}}{\gamma\,\mathrm{M}_{_{\scriptscriptstyle H}}^2(1 + \frac{1}{2}(\gamma - 1)\,\mathrm{M}_{_{\scriptscriptstyle H}}^2)} \quad \text{имеет следующую связь с}$$

распределением давления по длине псевдоскачка  $\frac{\eta-1}{\eta_{\max}-1} = 4\frac{p-p_{_H}}{p_{_K}-p_{_H}} \left[1-\frac{p-p_{_H}}{p_{_K}-p_{_H}}\right], \quad \text{где} \quad \eta_{\max} = \frac{(1+\gamma M_{_H}^2)^2}{(\gamma+1)M_{_H}^2[2+(\gamma-1)M_{_H}^2]}, \quad \text{индексы}$ 

«н» обозначают параметры в начале псевдоскачка, а «к» в его конце. Данные с рисунка 7 на стр.30 (источник [34]) в таком представлении приведены на рисунке ниже.



На рисунке 
$$\times -\frac{\eta-1}{\eta_{\max}-1}$$
,  $\bigcirc -f=4\frac{p-p_{_{\scriptscriptstyle H}}}{p_{_{\scriptscriptstyle K}}-p_{_{\scriptscriptstyle H}}}\Bigg[1-\frac{p-p_{_{\scriptscriptstyle H}}}{p_{_{\scriptscriptstyle K}}-p_{_{\scriptscriptstyle H}}}\Bigg]$ ,  $\square$  – эксперимент автора

(x/L=0) начало, x/L=1 конец псевдоскачка). На этот график лягут данные, полученные автором, если учесть, что в начале псевдоскачка число Маха отлично от расчетного на входе канала, так как торможение потока идет с самого начала, а не только в псевдоскачке. Так для данных графика 5 рис.23~d, при числе Маха на входе  $M_{\rm Bx}=3.95$ , псевдоскачок начинается с  $M_1\approx2.5$   $(\pi(\lambda)=P_{\rm cr}/P^*=0.016)$ , и для этой ситуации нанесены квадратные точки на приведенном рисунке.

- 2) При анализе распределений статического давления отсутствуют данные по восстановлению (либо оценке) распределения чисел Маха вдоль канала, том числе в отсутствии псевдоскачка, что вызывает трудности в определении значимости полученных результатов. Хотя, используя, например, модель Третьякова П.К., в которой теплоподвод принимается равным нулю, можно восстановить распределения параметров по длине псевдоскачка (число Маха, полное давление). Кроме того, 4-х точек измерения на длине псевдоскачка мало, чтобы делать выводы об изменениях в газодинамике течения при создании волновых структур за счет трения на стенке. В эксперименте от стенок в поток подводится тепло (тепловые потоки никак не оценивались в работе), увеличивая торможение. При использовании модели Третьякова П.К. это надо будет учитывать в отличии от случаев горячих потоков, когда эффекты трения и теплоотвода противоположно направлены и нивелируют друг друга, упрощая анализ.
- 3) На рис. 34 неверный масштаб по ординате. В канале не может происходить увеличение полного давления без подвода энергии.
- 4) Как согласовать между собой два утверждения в §4.1 главы 4: «Полное давление при подводе тепла к дозвуковому потоку уменьшается не более чем на 15%, поэтому на этом участке можно считать, что полное давление здесь остается постоянным ( $P_{05} = P_{06}$ )» и ниже «Видно, что при максимально

возможных значениях температуры  $T_{06}$  (до 3000 K) полное давление в камере повышения давления может увеличиться примерно в 2,5 раза [95] по сравнению с давлением при  $T_{06} = 600$  K»?

Приведенные замечания не являются критичными при общей оценке диссертации. Работа выполнена на высоком научном уровне, обладает научной новизной и значимостью.

# Личный вклад автора

Все результаты расчётов и опытов, выносимые на защиту, получены лично автором. Автор принимал активное участие в планировании и проведении экспериментальных исследований, самостоятельно выполнял расчет и анализ данных.

Результаты, представленные в диссертации, опубликованы в 4 статьях рецензируемых периодических изданий рекомендованных ВАК., входящих в базы данных Web of Science, Scopus и РИНЦ, докладывались и обсуждались на международных и Российских научных мероприятиях различного уровня.

Автореферат в полной степени отражает основные положения и выводы диссертации.

Результаты диссертационной работы Мельникова А.Ю. могут быть использованы для определения параметров запуска и выхода на режим газодинамических установок имеющих протяженный тракт.

Таким образом, диссертация Мельникова А.Ю. является научноквалификационной работой, в которой на основании выполненных автором исследований экспериментальным и расчетным путем определены свойства течений с псевдоскачком в протяженных цилиндрических каналах постоянного сечения.

Диссертационная работа Мельникова А.Ю. удовлетворяет требованиям, предъявляемым ВАК РФ к диссертациям на соискание ученой степени кандидата физико-математических наук и соответствует требованиям пункта 9

Положения о порядке присуждения ученых степеней № 842 от 24.09.2013 г., а Мельников А.Ю. заслуживает присуждения ученой степени кандидата физико-математических наук по специальности 1.1.9 - Механика жидкости, газа и плазмы.

## Официальный оппонент:

Тупикин Андрей Викторович,

д.ф.-м.н. (специальность 01.02.05 – механика жидкости, газа и плазмы), старший научный сотрудник лаборатории №7.4 «Лаборатория физических основ энергетических технологий» ИТ СО РАН.

Телефон: +7 (913) 462-88-63

E-mail: tupikin@itp.nsc.ru

Институт теплофизики СО РАН,

Пр. Ак. Лаврентьева, д.1, Новосибирск, Россия, 630090,

сайт: http://itp.nsc.ru/, E-mail: director@itp.nsc.ru

тел.: +7 (383) 330-90-40, факс: +7(383) 330-84-80

Я, Тупикин Андрей Викторович, даю согласие на включение своих персональных данных в документы, связанные с защитой диссертации Мельникова Алексея Юрьевича, и их дальнейшую обработку.

26.02.2024 г.

А.В. Тупикин

Подпись Тупикина Андр Учёный секретарь ИТ СС

к.ф.-м.н.

М.С. Макаров

0.00

#### ЛИЧНОЕ СОГЛАСИЕ ОППОНЕНТА

Я, Тупикин Андрей Викторович, даю свое согласие выступить в качестве оппонента по диссертации Мельникова Алексея Юрьевича на тему: Исследование торможения вязкого сверхзвукового потока с образованием псевдоскачка в цилиндрических каналах на соискание ученой степени кандидата физико-математических наук по специальности 1.1.9 — механика жидкости, газа и плазмы.

#### О себе сообщаю:

| Ученая степень, отрасли науки                                            | Д.ф-м.н., физико-математические науки                                                                                                          |  |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Научные специальности, по которым защищена диссертация                   | 01.02.05- "Механика жидкости, газа и плазмы"                                                                                                   |  |
| Ученое звание                                                            | Без звания                                                                                                                                     |  |
| Академическое звание                                                     | Без звания                                                                                                                                     |  |
| Тел:                                                                     | +79134628863                                                                                                                                   |  |
| E-mail:                                                                  | tupikin@itp.nsc.ru                                                                                                                             |  |
| Должность                                                                | Старший научный сотрудник                                                                                                                      |  |
| Подразделение организации                                                | Лаборатория физических основ энергетических технологий                                                                                         |  |
| Полное наименование организации,<br>являющейся основным местом<br>работы | Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук |  |
| Ведомственная принадлежность орг.                                        | Министерство науки и высшего образования Российской<br>Федерации                                                                               |  |
| Адрес служебный: Почтовый индекс, город, улица, дом                      | 630090, Новосибирская область, город Новосибирск, проспект Академика Лаврентьева, д. 1.                                                        |  |
| Web-сайт организации.                                                    | https://www.itp.nsc.ru/                                                                                                                        |  |
| Телефон организации.                                                     | +7(383) 330-90-40                                                                                                                              |  |
| E-mail организации.                                                      | director@itp.nsc.ru                                                                                                                            |  |

Список основных публикаций официального оппонента по теме диссертации в рецензируемых научных изданиях за последние 5 лет (не более 15 работ):

| $N_{\underline{0}}$ | Авторы                                                                                                                | Название статьи, журнал, год, том, №, страницы                                                                                                                                   |
|---------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                   | Абашев В.М.,<br>Еремкин И.Н.,<br>Животов Н.П.,<br>Замураев В.П.,<br>Калинина А.П.,<br>Третьяков П.К.,<br>Тупикин А.В. | Экспериментальное и численное моделирование процессов сверхзвукового истечения из полузакрытого канала // Инженернофизический журнал, Т.91, No.2, C. 361-370, 2018 г.            |
| 2                   | Тупикин А.В.,<br>Замащиков В.В.                                                                                       | Растяжение ламинарного пламени в слабом электрическом поле // Физика горения и взрыва. Т.56, No.2. C. 3-9, 2020 г.                                                               |
| 3                   | Третьяков П.К.,<br>Тупикин А.В.,<br>Куранов А.Л.,<br>Колосенок С.В.,<br>Саваровский А.А.,<br>Абашев В.М.              | Применение синтез-газа для интенсификации горения керосина в сверхзвуковом потоке // Физика горения и взрыва. No 5, C. 45-48, 2020 г.                                            |
| 4                   | Третьяков П.К.<br>Тупикин А.В.,<br>Зудов В.Н.                                                                         | Горение керосина в псевдоскачке при изменении условий на входе в модель камеры сгорания СПВРД // Физика горения и взрыва. Т. 57, № 6. С. 3-7, 2021 г.                            |
| 5                   | Зудов В.Н.,<br>Тупикин А.В.                                                                                           | Влияние внешнего электрического поля на оптический разряд в скоростном потоке // Журнал технической физики. Т.92, вып. 2. С. 209-215, 2022 г.                                    |
| 6                   | Третьяков П.К.,<br>Тупикин А.В.                                                                                       | Режимы горения керосина в канале постоянного сечения при числе Маха М=1.7 на входе // Физика горения и взрыва. Т.58, № 5. С.28-32, 2022 г.                                       |
| 7                   | Arbuzov V.A., Arbuzov E.V., Dubnishchev Yu.N., Zolotukhina O.S., Lukashov V.V. and Tupikin A.V                        | Hilbert-optic diagnostics of hydrogen-oxygen inverse diffusion flame // Energies. V.15, Iss.24. P.9566, 2022                                                                     |
| 8                   | Зудов В.Н.,<br>Тупикин А.В.                                                                                           | Инициирование гомогенного горения в высокоскоростной струе совместным воздействием оптического и электрического разрядов // Физика горения и взрыва. Т.59, №1. Р. 25-31, 2023 г. |
| 9                   | Тупикин А.В.,<br>Третьяков П.К.                                                                                       | Стабилизация оптическим разрядом водородно-воздушного пламени в высокоскоростном потоке // Физика горения и взрыва. Т.59, №6. Р. 3-9, 2023 г.                                    |

Не являюсь членом экспертного совета ВАК.

Согласен на включение моих персональных данных в аттестационное дело соискателя и их дальнейшую обработку.

д.ф.-м.н., старший научный сотрудник

лаборатории №7.4 ИТ (

А.В. Тупикин

Учёный секретарь ИТ (

к.ф.-м.н.

М.С. Макаров