Combination of the IGS repro2 terrestrial frames P. Rebischung¹, B. Garayt², Z. Altamimi¹, X. Collilieux² email: paul.rebischung@ign.fr Geocenter and terrestrial scale ¹IGN LAREG, Univ Paris Diderot, Sorbonne Paris Cité, Paris, France ² IGN SGN, Saint-Mandé, France ## Introduction Eight IGS Analysis Centers (ACs) have completed a second reanalysis campaign (repro2) of the GNSS data collected by the IGS global tracking network back to 1994, using the latest available models and methodology (http://acc.igs.org/reprocess2.html). The AC repro2 contributions comprise in particular daily terrestrial frame solutions (SINEX files) including station coordinates and Earth orientation parameters. The AC daily terrestrial frame solutions have been combined by the IGS Reference Frame Working Group. The obtained daily combined solutions form the IGS contribution to the next release of the International Terrestrial Reference Frame (ITRF2014). Hatched color: AC contribution included for comparison only Figure 2: Stations included in the daily repro2 combined solutions. The size and color of each dot is function of the number of days n each station is present. ## Station position residuals 4 mm With a few exceptions, the daily station position estimates provided by the different ACs are of homogeneous quality: the inter-AC agreement is at the level of ≈1.5 mm in horizontal and ≈4 mm in vertical after 2004 (Figure 4). The exceptions include: • COD: higher noise level before ≈1999, especially in East (Figures 3, 4) – ambiguity resolution? higher WRMS in North, likely due to small, unexplained station-specific biases (Figures 3, 4) – TBC -20 mm substantially higher WRMS in Up (≥ 6 mm; not shown) – under investigation ULR: higher level of high-frequency white noise, especially in horizontal (Figures 3, 4, 5) A spectral analysis of the AC station position residual time series (Figure 5) reveals distinct spectral peaks on top of a background white+flicker noise: • ΔII ΔCs· GPS draconitic harmonics at least up to the 15th All ACs: direct and aliased tide periods at 14.8, 14.2 and 13.6 d 2004 spectral peaks at 8.2 and 7.8 d. likely related to the use of GLONASS data COD & F excessive annual nower in North: unexplained spectral peak at 13.2 d in East and North: broad unexplained spectral peaks around 3.7 and 2.2 d. • GTZ: unexplained spectral peaks at 16.1 d in East and 11.8 d in North • MIT spectral peak at 7 d in North, likely due to weekly-based constraints on orbit parameters Figure 3: Example of station position residual time series Station YELL (Yellowknife, Canada) - North component 8 mm gfz jpl gtz 2000 2004 2008 2012 Figure 4: Smoothed, unbiased WRMS of the station position residuals from the daily combinations ### Figure 5: Stacked Lomb-Scargle normalized periodograms of the AC station position residual time series ## Earth orientation parameters • Inter-AC agreement at ≈30-40 μas for pole coordinates; ≈150-200 μas/d for pole rates; 15-30 μs/d for LOD • Pronounced predominance of MIT over combined pole rates and combined LOD. For LOD, this predominance is known to be related to the inter-day constraints applied by MIT to empirical orbit parameters. The predominance of MIT over the combined pole rates is presumably due to the same reason (to be confirmed). | | XPO
(μas) | YPO
(μas) | XPOR
(μas/d) | YPOR
(μas/d) | LOD
(μs/d) | |-----|--------------|--------------|-----------------|-----------------|---------------| | cod | 35 | 33 | 170 | 187 | 17 | | emr | 39 | 42 | 219 | 186 | 35 | | esa | 26 | 26 | 131 | 147 | 16 | | gfz | 36 | 38 | 171 | 180 | 21 | | grg | 36 | 30 | 160 | 204 | 16 | | jpl | 29 | 27 | 166 | 174 | 27 | | mit | 18 | 17 | 79 | 74 | 17 | | gtz | 28 | 27 | 143 | 148 | 20 | | ulr | 28 | 28 | 181 | 190 | 47 | Table 3: WRMS of the pole coordinate and pole rate residual time series shown in Figure 9 and of the LOD difference time series shown in Figure 10 Unlike for polar motion parameters, raw differences are shown instead of the combination residuals. This is because the AC LOD estimates are "calibrated" wrt Bulletin A before combination. ## **Products / Next steps** The repro2 SINEX combination products cover the period from GPS week 730 (January 2, 1994) to GPS week 1831 (February 14, 2015). They consist of the following files for each GPS week wwww: - ig2yyPwwww[0-6]_all.[snx,ssc]: daily combined SINEX solutions ig2yyPwwww[0-6].[snx,ssc]: - ig2yyPwwww[0-6].res: - ig2yyPwwww[0-6] ITR.res: - ig2yyPwwww[0-6]_all.[snx,ssc]: - ig2yyPwwww.[snx,ssc] weekly combined SINEX sol. weekly combined SINEX sol. (stations w/o DOMES removed) combined FOPs daily combined SINEX solutions (stations w/o DOMES removed) daily AC - combined residuals daily AC - IGb08 residuals combination summary • ig2yyPwwww.erp: ### • ig2yyPwwww.sum: ### Product availability: The repro2 SINEX combination products are available at the following FTP servers: - ftp://igs-rf.ensg.eu/pub/repro2/wwww - ftp://igs.ensg.eu/pub/igs/products/wwww/repro2 - ftp://igs.ign.fr/pub/igs/products/wwww/repro2 - Analysis of the combined station position time series: Jump identification → New IGS discontinuity list - Modeling of post-seismic deformations - Preparation of a new IGS cumulative solution based on the daily repro2 combined solutions | Geografia and terrestrial scale | • | |--|-----| | 3 cm 1 | | | Oct William Habita de la company compa | cod | | -3 cm -3 cm | emr | | | | | | esa | | -9 cm | gtz | | -12 cm12 | grg | | -15 cm15 | jpl | | _18 cm | mit | | -21 cm | gtz | | -24 cm -24 cm | | | 1996 2000 2004 2008 2012 1998 2000 2004 2008 2012 | | | 6cm 5mm 5mm | | | 0 cm (S) (Market Market | cod | | -6 cm -5 mm | emr | | The first of f | esa | | -15 mm | gfz | | -18 cm -20 mm | grg | | -24 cm -25 mm | jpl | | -30 cm | mit | | -36 cm | gtz | | -42 cm40 mm40 mm40 mm | ulr | | 48 cm 45 mm | | | 1996 2000 2004 2008 2012 1996 2000 2004 2008 2012 | | | Figure 6: (X), (Y), (Z): AC geocenter residual time series. | | (S): Time series of scale factors estimated between the (pre-processed) daily AC solutions and the daily combined solutions | | XGC | | YGC | | ZGC | | scale | | | | | | |-----|--------|-------|------|--------|-------|------|--------|-------|------|--------|-------|------| | | offset | rate | WRMS | | cod | -1.7 | 0.07 | 3.4 | -2.2 | 0.10 | 3.5 | 0.9 | 0.18 | 9.5 | 0.2 | -0.01 | 0.4 | | emr | -0.2 | 0.09 | 4.6 | 2.3 | -0.27 | 5.4 | 1.8 | -0.17 | 8.8 | -0.5 | -0.02 | 0.6 | | esa | -1.1 | 0.17 | 3.1 | 0.6 | -0.33 | 3.2 | -1.6 | 0.16 | 7.1 | 0.4 | 0.04 | 0.5 | | gfz | -2.4 | 0.22 | 3.8 | 1.6 | -0.19 | 4.3 | 2.0 | -0.31 | 8.6 | -0.1 | -0.02 | 0.5 | | grg | -3.9 | 0.29 | 6.0 | 0.8 | -0.08 | 6.1 | -0.0 | 0.43 | 12.5 | -0.6 | -0.05 | 0.8 | | jpl | 2.0 | 0.04 | 4.4 | -2.9 | -0.01 | 4.6 | -1.8 | 0.11 | 8.0 | -0.2 | 0.00 | 0.5 | | mit | 0.1 | -0.14 | 2.2 | 1.7 | 0.04 | 2.2 | 0.2 | 0.06 | 3.6 | -0.1 | -0.02 | 0.3 | | gtz | 0.7 | 0.04 | 2.6 | -1.2 | 0.09 | 2.7 | -0.0 | -0.10 | 5.1 | -0.3 | 0.00 | 0.3 | | ulr | n/a 0.3 | 0.03 | 0.4 | Table 1: Results from linear fits to the geocenter residual time series and the scale factor time series shown in Figure 6. Offsets are given at 2005.0. Units are mm and mm/vr. Figure 7: Comparison of the repro2 combined geocenter coordinates (wrt IGb08) with geocenter coordinates (wrt ITRF2008) derived from the SLR contribution to ITRF2014. All time series shown in the figure were detrended beforehand. - Smoothed daily repro2 combined geocenter coordinate - Smoothed SLR-derived geocenter coordinates Figure 8: Scale factors estimated between the daily combined repro2 solutions and IGb08 - Trend + annual + semi-annual fit 0.28 -0.40 1.5 (2.6) 3.6 (2.8) 3.8 (5.9) ann phase 41 (48) 310 (320) 181 (26) 0.9 (0.8) 0.2 (0.3) 271 (282) 336 (159) 223 (202) Table 2: Results from trend + annual + semi-annual fits to: (a) the repro2 combined geocenter time series (wrt IGb08 (b) geocenter time series (wrt ITRF2008) derived from the SLR contribution to ITRF2014 (c) the scale factor time series shown in Figure 8 Offsets are given at 2005.0. Units are mm, mm/yr and deg. - · Excellent agreement between the scales of the AC solutions (< 1 mm; < 0.1 mm/yr; see Figure 6 (S), Table 1) - The temporal scale variations of the combined repro2 solutions seem geophysically reasonable (Figure 8, Table 2). making GNSS a potential contributor to the definition of the ITRE2014 temporal scale evolution. - Inter-AC agreement at ≈2-5 mm for the X and Y geocenter coordinates and ≈5-10 mm for the Z geocenter coordinate - · Non-negligible offsets and rates in the repro2 combined geocenter time series (wrt IGb08; see Table 2) - Annual geocenter motion: under-estimated along X, overestimated along Y; out-of-phase with SLR along Z