AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 31 (2005), Pages 201-216

Long cycles through specified edges and vertices

TOMOKAZU NAGAYAMA  LIANG ZHANG

Department of Mathematical Imformation Science
Tokyo University of Science
Shinjuku-ku, Tokyo, 162-8601
Japan

Abstract

Let k, m, s be integers with £ > 2, m > 0, and 0 < s < k. We show
that if G is an (m + k)-connected graph, and F is a linear forest of G
with m edges and s isolated vertices, then G has a cycle of length at least
min{|V(G)|,20(G) — m} passing through F.

1 Introduction

All graphs considered in this paper are finite simple undirected graphs with no
loops and no multiple edges. For a graph G, we let V(G) and E(G) denote the
set of vertices and edges of G, respectively. For a vertex v of G, we let degg(v)
denote the degree of v in G. The minimum degree §(G) of G is defined by 6(G) =
min{deg,(v)|v € V(G)}. For k > 1, we define

k
ox(G) = min {Zizldegg(vi) | v, ..., vy are independent in G} ;

thus 01(G) = §(G). By a cycle, we mean a connected graph C' such that deg.(v) = 2
for all v € V(C). For a finite set X, the cardinality of X is denoted by |X]|.

A graph F is called a linear forest if every component of F is a path (F may
contain components consisting of a single vertex). For a linear forest F' in a graph
G, we say that a cycle C' of G passes through F if E(F) C E(C) and V(F) C V(C).
Define

S(F) ={z € V(F)|degp(z) = 0}.

There are many results about long cycles in graphs passing through specified edges
and vertices. Among them is the following theorem, which is proved by Hu et al. in
[5; Theorem 3]:

Theorem A Let k, m, s be integers with k> 2, m >0, and 0 < s <k —2. Let G
be an (m+k)-connected graph, and let F be a linear forest of G with |E(F)| = m and
|S(F)| =s. Then G has a cycle C of length at least min{|V (G)|, (2/(k+1))os+1(G)—
m} passing through F.
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As an immediately corollary of Theorem A, we obtain the following statement
(note that (1/k)ox(G) > 6(G) for any graph G by the definition of §(G) and o4(G)) :

Corollary B Let k, m, s be integers with k > 2, m >0, and 0 < s < k —2. Let
G be an (m + k)-connected graph, and let F be a linear forest of G with |[E(F)| =m
and |S(F)| = s. Then G has a cycle C of length at least min{|V(G)|,26(G) — m}
passing through F'.

In [5], it is shown that the lower bound min{|V(G)|,26(G) — m} on the length
of C is best possible in Corollary B (and hence in Theorem A). In [5], it is also
shown that for & = 2, the assumption that 0 < s < k — 2 cannot be replaced by
the assumption that 0 < s < k — 1 in Theorem A (it does not seem to be known
whether the same is true for k£ > 3). The purpose of this paper is to show that as
for Corollary B, the conclusion holds under the assumption that 0 < s < k :

Theorem 1 Let k, m, s be integers with k > 2, m > 0, and 0 < s < k. Let G be
an (m + k)-connected graph, and let F be a linear forest of G with |E(F)| = m and
|S(F)| = s. Then G has a cycle of length at least min{|V(G)|,26(G) — m} passing
through F .

We here mention that the following theorem, which is the case where m = 0 in
Theorem 1, was already proved by Locke in [6; Corollary 4.4] (for k& = 2) and by
Egawa and Glas and Locke in [3; Theorem 3] (for k£ > 3) :

Theorem C Let k, d be integers with d > k > 2. Let G be a k-connected graph
with 6(G) > d, and let X be a subset of V(G) with |X| = k. Then G has a cycle of
length at least min{|V(G)|, 2d} passing through X.

We also add that it was shown by Glas in [4] that for & = 2, the conclusion
of Theorem C holds under the weaker assumption that o5(G) > 2d (instead of the
assumption that 6(G) > d), and that it has recently been shown by Sakai in [7]
and [8] that for & > 3, the same holds under the still weaker assumption that
max{deg(z),deg;(y)} > d for any two nonadjacent distinct vertices z,y of G.

Our notation is standard, and is mostly taken from [1] and [2]. Possible exceptions
are as follows. Let G be a graph. For z € V(G), define Ng(z) = {y € V(G)|zy €
E(G)}; thus degg(z) = |Ng(z)|. For X C V(G), we let Ng(X) = UzexNg(z).
For X C V(G), we let (X)g denote the graph induced by X in G, and define
G-X = (V(G) — X)g. If X consists of a single vertex, say x, then we write
G —w for G — X. For z,y € V(G), a path having x as its initial vertex and y
as its terminal vertex is called an (z,y)-path. For an (x,y)-path P, P~' denotes
the (y,x)-path obtained by tracing P in the inverse direction. For z € V(G) and
Y C V(G), an (z,y)-path P such that V(P)NY = {y} is called an (z,Y")-path; thus
if # € Y, then the path z of length 0 is the only (z,Y)-path. A subgraph is often
identifed with its vertex set. For example, if H is a subgraph of G, then Ng(H)
means Ng(V(H)), and G — H means G — V(H).

If C is a cycle, we denote by 8 the cycle C' with a given orientation. For
u,v € V(C), we denote by uC'v the segment of C' obtained by tracing C' from u to



LONG CYCLES THROUGH SPECIFIED EDGES AND VERTICES 203

v in the direction of 8 (if w = v, we let uav = u). Similarly, for a path P and
u,v € V(P) such that u occurs before v on P, we let uPv denote the segment of P
between u and v. If X is a cycle or a path, the length of X is denoted by I(X).

A connected graph is called separable if it has a cut vertex; otherwise it is called
nonseparable. For a separable graph G, a maximal nonseparable subgraph of G is
called a block of G. A block of G which contains precisely one cut vertex of G is
called an endblock of G. In the proof of Theorem 1, we make use of the following
lemma proved in [3; Lemma 5]:

Lemma 1 Let G be a nonseparable graph with at least two vertices, let u,v,z be
vertices of G with u # v, and let d be an integer. Suppose that every vertex of G,
except possibly u,v and one other vertex, has degree at least d. Suppose further that
x has degree at least min{3,d}. Then in G, there is a (u,v)-path which has length at
least d and passes through x.

2 Proof of Theorem 1

By Theorem C, Theorem 1 holds for m = 0. Thus let k&, m, s be integers with k& > 2,
m > 1 and 0 < s < k. We proceed by induction on s. By Corollary B, Theorem 1
holds for s = 0. Thus let s > 0, and assume that Theorem 1 is proved for s — 1. Let
G, F be as in Theorem 1. Let C' be a longest cycle such that E(F) C E(C) and
|S(F)NV(C)| > s—1. By the induction hypothesis, [(C") > min{|V(G)|,26(G) —m}.
Thus if S(F) C V(C), then the desired conclusion holds. Consequently we may
assume |[S(F)NV(C)| = s —1. Write S(F) — V(C) = {y}. Let H be the connected
component of G — V(C') which contains y. We henceforth fix an orientation of C,
and let E') denote the cycle C with the orientation.

Write E(F % = {f1, fas. -+, fmts—1}, where f1,..., fmi+s—1 OCCUr
in this order along For j w1th 1<j<m+s—1,if f; € E(F), let f; = pjq; (p;
precedes g; on 8), and if f; € S(F), let p; = q; = f;. Define S; = ¢; C'pj11 (we take
Pm+s = pl)-

Claim 2.1 Let u,v be distinct vertices in V(C) N Ng(H). Then the following hold.
(a) l(uCuv)> 1.
(b) If E(uav) NE(F) =0, then l(uav) > 2.

Proof. Statement (a) immediately follows from the assumption that u # v, and (b)
follows from the maximality of C'. O

Claim 2.2 There exist two distinct vertices 1,25 € V(C) N Ng(H) such that
(a) E(x,Cas) NE(F) =0 and (V(z,Cas) — {21, 22}) N S(F) = 0,
(b) there is an (21, x2)-path Qo in (V(H) U {z1,22})¢
which passes through y, and
(©) (V(z1Caa) — {21, 22}) N Na(H) = 0.
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Proof. Since G is (m+ k)-connected, 6(G) > m+k, so {(C) > min{|V(G)|, 26(G) —
m} > m + k. Thus by Menger’s Theorem, there are m + k (y, V(C'))-paths which
are pairwise disjoint except at y. Since m + s — 1 < m + k, at least one of the
segments S; (1 < j < m+ s — 1) contains the endvertices (different from y) of two
of such paths, say P, and P,. If we let x; and x5 be the endvertices of P, and P,
respectively, then the path PP, is an (21, 22)-path through y in (V(H)U{x1, z2})¢-
Thus there exist two vertices x1, x2 € V(C) N Ng(H) which satisfy (a) and (b).
Choose such vertices z;, xs so that z; C'zy is minimal, and let Qg be as in (b).
Suppose ' € (V(azlaa@) — {x1,22}) N Ng(H), and let o' € V(H) N Ng(z'). Set
Q = Qo — {z1,22}, and let a1, ay be the endvertices of (). We choose our notation
so that a;z1,asxs € E(Qo) (it is possible that a; = as = y). Since H is connected,
there exists an (o', V(Q))-path Py in H. Let a” be the endvertex of P; on Q. If a”
is on a,Qy, «' and w, satisfy (a) and (b); if a” is on yQay, x; and z’ satisfy (a) and
(b). In either case, we get a contradiction to the minimality of 21 C'xs. Thus z; and
x4 satisty (c), as desired. O

Throughout the rest of the proof of Theorem 1, we let 21, xs, Qg be as in Claim
2.2, and set Cy = Qomaml. Then Cy passes through F by (a) and (b) of Claim 2.2.

Claim 2.3 If|V(C)NNg(H)| > 6(G), there exists a cycle of length at least 25(G)—m
passing through F'.

Proof. Write V(C) N Ng(H) = {1,...,2,}, where 1,25 are as in Claim 2.2
and zi,...,z, occur in this order along C'. Set I = {i|]1 < i < p,E(aziE')miH)
N E(F) # 0} (we take 2,41 = 1) and J = {1,2,...,p} — I. Note that 1 € J, and
[(Qo) is at least two. Since |I| < m, it follows from Claim 2.1 that

p

UCo) =Y UaiCois) = 1(Q0) + Y Ui Cawa) + Y I Caisa)

iel ieJ—{1}

22+ [ +2(|J] = 1) = 2(|1| + |J]) = 1] 2 26(G) —m. O

We now divide the proof of Theorem 1 into two cases.
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Case 1: H is separable. Let By, By be two endblocks of H for which there exists a
path in H which joins a vertex in V(B;) and a vertex in V(B,) and passes through y.
Let by, by be the cut vertices of H such that b; € V(By) and by € V(B,), respectively.
Set

r = | V(C) n (Ng(.Bl — bl) U NG(B2 — 62)) | s
g = [(V(C)N(Na(Bi—b1)UNg(By = b2))) U{z1, 22},
and write
V(C)N(Ng(By — b1) UNg(By — b)) = {u,...,ur},

(V(C) N (Ne(By — b1) U NG(By — b)) U {z, 2} = {a,..., i}

so that uy,...,u, and %y,..., %, occur in this order along 6'), respectively (indices of
u and u are to be read modulo r and ¢, repsecitvely. We start with a claim.

Claim 2.4

(a) Let A € {1,2}, and let z € V(C) N Ng(By — by). Then there exists a (z,b))-
path P in (V(B)) U {z})¢ which has length at least 6(G) — r + 1. Further if
y € V(B — b)), we can choose P so that P passes through y.

(b) Let z € V(C)N Ng(B1 — b1) and 25 € V(C) N Ng(Bs — by), and suppose that
21 # 2. Then there exists a (z1,22)-path in (V(H) U {21, 22})¢ which passes
through y and has length at least 2(6(G) — r + 1).

(c) Let A € {1,2}, and let 2,2 € V(C) N Ng(B)) with » # 2, and suppose that
[V(B\)NNg({z,2'})| > 2. Then there exists a (z,z')-path in (V(By)U{z,2 }¢
which has length at least 6(G) —r + 2.

(d) Let z € V(C) N Ng(Bl - bl) n Ng(BZ - bZ) and x € V(C) n Ng(H - (Bl —
b1) — (By — by)), and suppose that z # x. Then there exists a (z,z)-path in
(V(H) U{z,2})c which passes through y and has length at least 6(G) — r + 2.

Proof. (a) Take a € V(B — by) N Ng(z). Note that each vertex in V(By — by) has
degree at least §(G) — r in B,. Hence by Lemma 1, B, contains an (a,b,)-path Q
with length at least 6(G) — r and, in the case where y € V(B, — b,), we can choose
@ so that @ passes through y. Now if we let P = zaQ), then P has the desired
properties.

(b) By (a), for each XA = 1,2, there exists a (z),by)-path P in (V(By)U {zx})e
with length at least 6(G) — r + 1 such that Py passes through y in the case where
y € V(By — by). Let R be a (by,by)-path in H — (B, — b)) — (By — by). By the
choice of B; and Bs, we can choose R so that y € V(R) in the case where y ¢
V(B; — b)) UV(By — by). Then the path P,RP, ' has the desired properties.

(¢) By the assumption that |V (By) N Ng({2,2'})| > 2, we can take a € V(By) N
Ng(2) and @' € V(By) N Ng(2') so that a # a". By Lemma 1, B, has an (a,a’)-path
Q with length at least 6(G) — . Then the path zaQa 2" has the desired property.
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Fig. Claim 2.4

(d) Take a € V(H — (By — by) — (By — by)) N Ng(z). First assume y € V(B —
b1) UV (B, — by). By symmetry, we may assume y € V(B; — by). Then by (a), there
exists a (z,b1)-path P in (V(B;) U {z})¢ which passes through y and has length at
least §(G) — 7 + 1. There also exists a (b1, a)-path P in H — (B; — by) — (By — by).
Then the path PPax has the desired properties.

Next assume y € V(H — (B; — by) — (B2 — by)). By the choice of By and By,
we can take a (b1, by)-path Rin H — (By — by) — (B, — by) passing through y. Since
H — (By — b)) — (By — by) is connected, there exists an (a, V(R))-path Q in H —
(B; — by) — (By — by). Let a' be the endvertex of @ on R. Then at least one of the
two paths b; Ra" and a' Rb, passes through y. We may assume y € V(byRa'). By (a),
there exists a (z,b;)-path P in (V(B;) U {z})¢ with length at least §(G) — r + 1.
Then the path Pb;Ra' Q 'az has the desired properties. O

Let z1, 23, Qg,Co be as in Claim 2.2 and the paragraph following the proof of
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Claim 2.2. Also define
M ={(us, uir1)|V(Bxr — by) N NG({U“U@_’_l}) # () for each A = 1,2,
u18u1+1 NE(F) u18u2+1 — {us,uip1}) NS(F) = 0},
M ={(ui, ui11)] V(By = b)) N NG<{ui,uM}> # 0 for each A = 1,2,
E(uiauiﬂ) NE(F) =10, |(V(U¢8Uz‘+1) —{ui, wipa }) NS(F)| = 1}.
Further for A = 1,2, define
My ={(ui, ui1)| [V(Bx — bx) N Ne({us; w1 })] > 2,
V(B3_) — b3 A) N Ne({ug,uirr}) =0
B(usCuisr) N B(F) = 0, (V(u:Cuspr) — {us, uinn}) N1 S(F) = 0},
Claim 2.5 Suppose that one of the followz'ng four conditions is satisfied,
(a) [M|=>1;
(b) there ewists (w;,u;r1) € M such that x13x2 ¢ uﬂum;

(c) there exist (Wiy, Wig11)s (Wiy, Uip11) € My U My, 4y # is, such that
:c2 7 u”éuhﬂ and wlgm Z iy CUjyir; oT

(d) there exists (u;,ussy) € M such that

Uzy U1 S Ng(Bl - bl) n NG(32 - bg)
Then there exists a cycle of length at least 26(G) — m passing through F'.
Proof. (a) Let (u;,u;4+1) € M. By symmetry, we may assume u; € V(C)N Ng(B; —
b1) and w41 € V(C)NNg(By—bs). By Claim 2.4 (b), there exists a (u;, u;+1)-path Q;
in (V(H)U{wi, ui41})e which passes through y and has length at least 2(6(G)—r+1).
Now set 7 = Qqu;+1 C'u;. Then C) passes through F and, arguing as in the proof
of Claim 2.3, we obtain

UC) = 1Q)+Y, s Cunn)
> 2060(G)—r+1)+2(r—1)—m=20(G) —

by Claim 2.1.

(b) Asin (a), we may assume u; € V(C)NNg(B;—b;) and u;1y € V(C)NNg(By—
by). Let @ be as in (a). Note that both u; Cu;y1 — {w;, wirr} and Q1 — {ws, uir1 }
contain precisely one vertex of S(F'). Hence it follows from the maximality of C' that
U(u; Cuger) > 1(Q1) > 2(5(G) — r + 1). Note that ¢ > . Let uy = ny, 1 = iing.
Then w41 = Up,41 by the assumption that 3 Cxy ¢ u;C'usyr and Claim 2.2 (c),
and @y = Upy41 by Claim 2.2 (c). Recall that Cy passes through F. Further since
the length of @y is at least two, we now obtain

I(OO) I(Qo) + Z(u18u2+1) + Z hzl(ahaamrl)

1<h<q hetha,
24200(G)—r+1)+2(¢g—2) —m > 26(G) —m.

v
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(c) By Claim 2.4 (c) and the maximality of C, l(uhauilﬂ),l(ui28ui2+1) >
0G) —r+2. Let uy, = Upy,Uy;, = Upy,&1 = Up,- Then as in the proof of (b),
Ujg41 = Why 41, Wig+1 = Upyt1, T2 = Upst1 Dy the assumption that z; Cxy & uy Cujyq
and 1 Cas ¢ uizauizﬂ and by Claim 2.2 (c). Therefore

U(Co) = UQo)+ Uy, Ciyin) + Uiy C i)

+Zl§h§q,h¢h1,hz,h3l(a"ga"“)
> 2420(G)—r+2)+2(¢—3)—m >26(G) —m.

(d) In view of (b), we may assume xlam C uiauiﬂ. Since uiauiﬂ # x13x2 by
the definition of M and Claim 2.2 (a), this implies that at least one of z; and x5 be-
longs to V(uia')uiﬂ) —{us, u;+1}. By symmetry, we may assume z3 € V(u; Cujpy) —
{us, ui+1}. By the definition of uy, ..., u,, this means x5 € Ng(H — (By —b1) — (By —
by)). Hence by Claim 2.4 (d), there exist a (u;, z)-path P in (V(H)U{u;, z,})¢ and
an (22, ;1 )-path P” in (V(H)U{z2, uiy1})¢ which pass through y and have length at
least §(G)—r+2. Since |(V(us Cuisr ) —{ts, uip1})NS(F)| = 1 by the definition of M,
we have (V(u; Ce) — {us, 22}) N S(F) = 0 or (V (23 C i) — {22, uis1 ) N S(F) = 0.
We may assume (V (u; C'z2) — {w;, 22}) N S(F) = 0 (we do not make use of z; in the
rest of the proof of the claim; so the roles of u; and w;y; are symmetri%. By the
maximality of C, l(xZBuiH) > I(P") > 6(G) —r+2. Now set Cy = P'zy C'u;. Then
C, passes through F', and

1(Cy)

I(P) + l(acza)uiﬂ) + Zl<h<T,h#l(“h8“h+1)
26(G) —r +2) +2(r — 1) —m > 26(G) —m. O

\Y

We return to the proof of the theorem for Case 1. In view of Claim 2.5 (a), we
may assume that M = 0.

Claim 2.6 Let 1 < j <m+s— 1, and suppose that V(S;) N\ Ng(B1 — b1) # 0 and
V(S;) N Ng(By — by) # 0. Then

V(SJ) n Ng(Bl - bl) = V(SJ) n Ng(Bz - b2) and
[V(S;) N Ne(By —by)| = [V(S;) N Na(By = by)| = 1.

Proof. By way of contradiction, suppose that |V (S;) N Ng(B1 —b1)| > 2 or |[V(S;)N
Ng(By — b2)| > 2 or V(Sj) N Ng(B1 — b1) # V(Sj) N Ng(By — by). Then there exist
wy,wy € V(S;) with wy # wy and wy C'wy C S; such that either wy € Ng(By — b)
and wy € Ng(Bs — by) or wy € Ng(By — by) and wy € Ng(B; — by). We may assume
that we have chosen w; and wy so that w; C'w, is minimal. Then (V(w;Cws) —
{wi,wa}) N (Ng(By — b1) U Ng(By — b2)) = 0, which implies (wy, ws) € M because
wy C'wy C S;. This contradicts the assumption that M = @. O
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Fig. Claim 2.5

Fig. Claim 2.6
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Now define
D)\ = {Uz | |V(B)\ - b)\) n NG(U1)| Z 2}

for A =1,2. Then for each A =1, 2,

(((V(©) N Ne(Bx = b)) = Da) N Na(a)
N(((V(C) N Na(By = b)) = Da) N No (b)) = 0 (1)

for every a,b € V(By — b)) with a # b. We divide the proof into two subcases
according to which of the two quantities |(V(C)NNg(Byx—0by))—D,| and |V (By—by)|
is the larger.

Subcase 1.1 |(V(O) N NG(B)\ — b)\)) - D)\| > |V(B)\ - b)\)| for some \ € {1,2}

By symmetry, we may assume |(V(C) N Ng(B; — b1)) — Di| > |V(B1 — by)).
If [Dy| > 3(G) — [V(Bi = by)l, then [V(C) N Ne(H)| > [V(C) N Ne(By — by)] =
|(V(C)N Na(By = by)) = Dif+ | Daf 2 [V(By = by)| + (6(G) = |V(BL = by)|) = 0(G),
and hence we obtain a cycle with the desired properties by Claim 2.3. Thus we may
assume 0(G)—|V(By—b1)| > |D;|. Then for every a € V(B —by), |((V(C)NNg(B1—
b)) - D) N No(a)] > [V(C) N No(a)l - 1D1] > 8(G) — (IV(Bo)] — 1) — |Di] > 0
because Ng(a) C V(B —a) U (V(C)N Ng(a)). Hence by (1),

V(C) N Ng(B1 — by
|

(V(C) N Ng(B1 —b1)) — Di| + | D
> {6(G) = (IV(B1)| = 1) = [Di|}V(B1 = b1)| + | D]
=0(G) —1— |D|
+(6(G) - |V(Bl)| — [D1)(|V(B1)] = 2) + | Dy
> 6(G) - (2)

Now if V(C) N Ng(By — by) ¢ V(C) N Ng(By — by), then |V(C) N Ng(H)| > 6(G)
by (2), and hence the desired conclusion follows from Claim 2.3. Thus we may
assume V(C) N Ng(By — by) C V(C) N Ng(B; — by). By Claim 2.6, this implies
|[V(S;)NNg(By —by)| < 1foreach 1 <j<m+s—1. Since |V(C)NNg(By —bs)| >
m+k —1 by the assumption that G is (m+ k)-connected and since s < k, this forces
s =k and |V(S;) N Ng(B; — by)| =1 for each j. By Claim 2.6, this in turn implies
|[V(S;) N Ng(By — b1)| = 1 for each j, and hence |V(C) N Ng(By — b)) =m+k — 1.
Since §(G) > m + k, this together with (2) implies 6(G) = m + k, and hence

[V(C)N Na(H)| 2 m+k =6(G),

by the assumption that G is (m + k)-connected. Therefore we obtain a desired cycle
by Claim 2.3.

Subcase 1.2 |(V(C)N Ng(By — b)) — Dy < [V(By — by)| for each A € {1,2}.
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Fix A € {1,2} for the moment. By (1), there is a vertex gy € V(By—b,) satisfying
{(V(C) N Ng(By = bx)) = Da} N Ne(gr) =0,
that is to say,
V(C) N Ng(gx) C D. (3)

Since G is (m + k)-connected, there exist m + k (g, V(C))-paths Py 1,..., Pxmtk
which are pairwise disjoint except at gy. For each h, let ¢, ;, denote the endvertex of
P, differrent from g,. Thus ¢y, € V(Py) N V(C). At most one of the paths Py
(1 < h <m+ k) passes through by. We choose our labeling so that by ¢ V(P ) for
eachl <h<m+k—1. Thenty, € V(C)NNg(By—b,) foreach 1 <h <m+k—1.

Claim 2.7 Let 1 < j <m+s—1and 1 < hy,hy < m-+k—1 with hy # hs,
and suppose that tyn, Ctyp, C S;. Then there exists (u;,uiv1) € My such that

Ui Gty CEapy Clapg-

Proof. We first show that |V(B)‘ - b)‘) n Ng({t)\,hl,t)\,}m}” Z 2. If t)\,hl or t)\,hm
say txn;, belongs to Ng(gy), then by (3) and the definition of Dy, |V(By — b)) N
NG({t)\,h17t)\,h2})| Z |V(B)\ - b)\) mNG(t)\,hl)| Z 2; if t)\,h17t)\,h2 §é NG(g)\)7 then letting
a, be the vertex preceding ¢y, on P;, and a, be the vertex preceding t,j, on
]D)\,h27 we obtain |V(B)\ — b)\) n NG({t)\,h17t)\,h2})| Z |{a1,a2}| Z 2 by the choice of
P)‘,l, .. '7P)\,77L+k—1' Choose wy,wy € V(t)\,hl t)\,hz) n (Ng(Bl — bl) @] Ng(Bz — 62))
with w; # 1wy, w1 Caws C txy Ctangs [(V(Br —b1) UV (Bs —bs)) N N ({wr, ws})| > 2
and V (B, — by) N Ng({wy,ws}) # 0 so that wy C'wy is minimal. By the symmetry
of the roles of w; and wy, we may assume V(B — by) N Ng(w;) # 0. Suppose that
(V(W181U2)—{w1, wZ})m(Ng(Bl—bl)UNg(BQ—bZ)) # 07 and take w € (V(w1 wZ)—
{wl,wZ}) n (Ng(.Bl - bl) @] Ng(BZ - bZ)) If V(Bg_)\ - bg_)\) n Ng(UJ) 7é 07 then we
have |(V/(B1 —b1)UV(By —by)) N Ng({wr, w})| > |V(Br—by) N Ng(w)|+ |V (Bs-x —
bg,)\) n NG(’LU)| > 2 and V(B)\ - b)\) n NG({wl,w}) D V(B)\ — b)\) n NG(wl) 7é 07
which contradicts the minimality of w; C'ws. If V(Bs_y — b3_y) N Ng(w) = 0, then
V(By — by) N Ng(w) # ® and hence we have V(B — b)) N Ng({wy,w}) # 0 and
V(By—by)NNg({w,ws}) # 0 and, from |(V(By —b;)UV (By —b2) )N Ng({wy, we})| >
2, we get |(V(.B1 - bl) @] V(B2 - bZ)) n Ng({wl,W}” Z 2 or |(V(B1 - bl) @] V(.B2 -
by)) N Ng({w,ws})| > 2, which again contradicts the minimality of wy C'w,. Thus
(V(wy Cwy) — {wy,ws}) N (Ng(By — b1) UNg(By —b2)) = 0, and hence there exists ¢
with 1 <@ < r such that w; = u; and wy = u;4;. Since we are assuming M = () (see
the paragraph preceding Claim 2.6), this forces V(Bs_y — b3_») N Ne({wy, w2}) =0
because w; C'wy C Sj. Consequently (wi,w,) € My, as desired. O

We are now in a position to complete the discussion for Case 1. If |M; |+ |Ms| > 3,

then some two members of M; U M satisfy the condition in Claim 2.5 (c), and hence
we obtain a desired cycle by Claim 2.5 (c).
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Fig. Claim 2.7

Thus we may assume that |[M;| 4 |Ms] < 2. For convenience, for each 1 < j <
m+ s — 1, we define

- {Sj (if fi=1 € B(F))
! Sj— fin (if fj1 € S(F))

(when j = m+ s — 1, we take fp+s = f1). The reason why we consider T; besides
S; is that V(C) is the disjoint union of the V(T;) (1 < j < m + s — 1), while
V(S;) N V(Sj+1) # 0 for j with fj41 € S(F). We first consider the case where
M, = 0 for some A € {1,2}. We may assume M; = 0. Let t11,...,¢1mik-1 b€ as
in the first paragraph of Subcase 1.2. Since M; = 0, it follows from Claim 2.7 that
1,15 timen—1 belong to distinct V(T;) (j =1,...,m + s —1). Since k > s, this
implies that

s=k (4)

and V(T;)N Ng(B1 —b) # 0 for each j. By Claim 2.6, this implies [V (T;) N Ng(By —
by)| < 1for each j. Since G is (m+k)-connected, this forces |V(T;)NNg(B2—bs)| = 1
for each j. Consequently again by Claim 2.6, V(T;)NNg(B1—b1) = V(T;)NNg(Bs —
by) and |V (T;)NNg(B1—b1)| = |V(T;)NNg(B; —by)| = 1 for each j. Now take j such
that f; € S(F)NV(C) (note that |[S(F)NV(C)|=s5s—1=k—12>1by (4)). Write
V(Tj-1) 0 No(By = by) = V(Tj_1) N Na(Bs — by) = {z} and V(Tj) N No(B, - by) =
V(T;) " Ng(Bs — by) = {# } (when j = 1, we take Ty = Tpp5-1). Then z° # f; by
Claim 2.6, and hence (z,2') € M. Note that (z, ) satisfies the condition in Claim
2.5 (d). Therefore we obtain a desired cycle by Claim 2.5 (d).

We are left with the case where |M;| = |My| = 1. Write M; = {(u;,uir1)}
and M, = {(uy,uy,,)}, and let ji, j, be the indices such that u;Cu;4qy C Sj; and
Uy O Uy 4y C sz. By Claim 26, V(Sjl)ﬂNg(.BZ —62) = 0 and V(sz)ﬁNg(Bl —bl) =
0; in particular, j; # j». Since My = {(uj,u;y1)}, we see from Claim 2.7 that
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Fig. Claim 2.8

[V(Tj) N {tia, s timen—1}] < 2 and |V(T;) N {t11,. ., timee—1}] < 1 for each j
with j # J1, Ja. Slnce k> s and V(Tj,) N NG(BI — by) = 0, this implies (4) holds,
V(T;) N {tia, - timiw—1}t] = 2, and |V(Tj) N {t11,. .., timex—1}| = 1 for each
j with j # ji, jo; in particular, V( 5N Ng(Bl —by) # @ for each j with j # jo.
Similarly V(T;) N Ng(Bs — bg) # 0 for each j with j # j;. By Claim 2.6, this
implies V(Tj) N Ng(By — b1) = V(T}) N Ng(By — by) and |V(T;) N Ng(By — by)| =
V(T )ﬂNG(BQ—b2)| = 1for each j # ji, jo. Now take j such that f; € S(F)NV(C).
Let z be the vertex in V/(Tj_1) N (Ng(B1 — b1) U Ng(By — by)) closest to f; on S;_;
(when j = 1, we take Ty = Tpys 1 and Sy = Spys 1), and let 2' be the vertex in
V(T;) N (Ng(By — b1) U Ng(By — by)) closest to f; on T;. We have z € Ng(By — b)
and z' € Ng(By — by), or 2 € Ng(By — by) and z' € Ng(B; — by). By Claim 2.6,
this implies z* # fj, and hence (z,z’) € M. Note that either the two members of
M, U M, satisfy the condition in Claim 2.5 (c), or else (z,z') satisfies the condition
in Claim 2.5 (b). Therefore we obtain a desired cycle by (c) or (b) of Claim 2.5.

Case 2 H is nonseparable.
Let 7' = |V(C) N Ng(H)| and V(C) N Ng(H) = {vy,... ,,} so that vy,..., v,
occur in this order along C' (indices are to be read modulo 7). Define
M ={(vs,vis)| [V (H) N Ne({vs, v 1) > 2, E(v;Cvia) 0 E(F) = 0,
(V( vﬂvm —{vi,vi11}) N S(F) = 0},
M —{(v3, o) V(H) 0 No({ois vis1})| 2 2, E(0:C i) N E(F) = 0,
[(V(0:Coiss) = o vis}) N S(F)] < 1)

(so M' c M).

Claim 2.8 Let z,2° € V(C) N Ng(H) with = # 2', and suppose that |V(H) N
Ng({z,2'})| > 2. Then there exists a (z,z)-path in (V(H) N {2,z })¢ which passes
through y and has length at least 6(G) — ' + 2.

Proof. By the assumption that [V/(H) N Ng({z,2'})| > 2, we can take a € V(H) N
Ng(z) and @ € V(H) N Ng(2') so that a # a'. By Lemma 1, H has an (a,a’)-path
Q which passes through y and has length at least 6(G) — r'. Then the path zaQa 2’
has the desired properties. O
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Fig. Claim 2.9

Claim 2.9 If |M'| > 1 and |M'| > 2, then there exists a cycle of length at least
26(G) — m passing through F.

Proof. Let (v;,v;11) € M and (vy,vy,,) € M' with i #i'. By Claim 2.8, there
exists a (v;, viy1)-path @ in (V(H) U {v;, vi41})¢ which passes through y and has
length at least 6(G) — 7' + 2, and there exists a (vy, vy ,)-path QZ in (V(H) U
{vy, vy 11})¢ which passes through y and has length at least 6(G) — 7' + 2. By the
maximality of C, [ UIE%,H > 1(Q2) > 6(G) — 71" + 2. Set C, = lem?vi. Then
(' passes through F' and, arguing as in the proof of Claim 2.5, we obtain

l(cl) = l(vi/ Bviurl) + Zl<h<7" hoti i,l(vhauhﬂ)
> (0(G) =7 +2)+(8(G) =7 +2)+2(r —2) -
= 2§(G)—m. O
Now define

{u] [V(H) N No(v:)| > 2}.
Then

(((v(€) N Ne(H)) = D') N Ne(a))

n ((V(C) N Na(H)) = D') N Na(b)) = 0 (5)
for every a,b € V(H) with a # b. We divide the proof into two subcases according

to which of the two quantities |(V(C) N Ng(H)) — D'| and |V(H)| is the larger.
Subcase 2.1  |[(V(C) N Ng(H)) — D'| > |V(H)| (this includes the case where

V(H)[ =1).

If D] > 6(G) ~ |V(H)|, then [V(C)NNe(H)| = [(V(C)NNe(H)) ~ D'|+|D'| >
|[V(H)|+ (6(G)—|V(H)|) = 6(G), and hence we obtain a desired cycle by Claim 2.3.
Thus we may assume §(G) — [V/(H)| > |D'|. Then for every a € V(H), |(V(C)N
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Fig. Claim 2.10

Ng(H)) = D') N Ne(a)] > |V(C) N Ne(a)] = |D'| > 6(G) = ([V(H)[ = 1) = [D'] >0
because Ng(a) C V(H — a) U (V(C) N Ng(a)). Hence by (5),

V(C)n Ne(H)|
((V(C) N No(H)) = D'| +|D|

> {8(G) — (IV(H)] - 1) — [D'}|V(H)| + 1D
—8(G) - |D

+(3(@) — [V(H)| = 1D DV () - 1)+ 1D
> 6(G).

Therefore we again obtain a desired cycle by Claim 2.3.
Subcase 2.2 |(V(C)N Ng(H)) — D'| < |V(H)|.
By (5), there is a vertex ¢ € V(H) satisfying

{(v(©)nNa(H) - D'} nNe(g) = 0,
that is to say,
V(C)NNglg) c D

Since G is (m + k)-connected, there exist m+k (g',V(C))-paths Py, ..., P, ., which

m
are pairwise disjoint except at g . For each h, let ¢}, denote the endvertex of P,’L

differrent from g'. Thus ¢, € V(P,) N V(C). We omit the proof of the following
claim because it is similar to and easier than that of Claim 2.7.

Claim 2.10 Let 1 < hy,hy < m+ k with hy # hy, and suppose that E(t’hlatlm) N
E(F) =0 and |(V(t'h18t'h2)—{t'hl,t'hz})ﬂS(Fﬂ < 1. Then there exists (v, viy1) €
M’ such that v;Cviy C t4,Cty; in particular, if (V(t'hlat'hz) —{t'h,th}) N
S(F) =0, then (vi,viy;) € M. O

We are now in a position to complete the discussion for Case 2. In view of Claim
2.9, we may assume |M'| < 1. Let T} be as in Subcase 1.2. Since s < k, there exists
jo such that |V(Tjo) N {t'1, ..., mix}| > 2. Take t'p,,t'hy € V(Tjo) N{t 1, st min}
with 'y, # t'p, so that t'4,Ct'p, C Tj,. By Claim 2.10, there exists (v;,vi41) €
M’ such that v;Cviyy C tp, Ct'py; thus M = {(vi,v41)}. Then by Claim 2.10,
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V(Tj) Nt 1, e} = {thyth} and [V(T;) N {t 1,...,tlrln+k}| < 1 for each
j # Jo. Since s < k, this 1mphes s =kand [V(T))N{t1,...,t mix}| = 1 for each
j# jo. In parmcular V(T) N {1, ... .t mex} # O for each j. Now take j such that
fi € S(F)NV(C) (note that we get S(F) NV(C) # 0 from s = k). Let t's, be
the vertex in V(Tj_1) N {t'1,...,t mss} closest to f; on S;_; (when j = 1, we take
To = Trnrs_1 and Sy = Spye_1), and let t', be the vertex in V(T BN {1, mar}
closest to f; on T} (1t is possible that ¢ hy = =t hy O t hy = =t py)- By Claim 2.10, there

exists (vy,vy,,) € M' such that UIE%,H C t, Ct'hy. Then (vi,vit1) # (vy,vp41)-
Thus we have [M'| = 1 and |M'| > 2, and we therefore obtain a desired cycle by
Claim 2.9. This concludes the discussion for Case 2, and completes the proof of
Theorem 1.
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