Long cycles through specified edges and vertices

Tomokazu Nagayama Liang Zhang

Department of Mathematical Imformation Science Tokyo University of Science Shinjuku-ku, Tokyo, 162-8601 Japan

Abstract

Let k, m, s be integers with $k \geq 2$, $m \geq 0$, and $0 \leq s \leq k$. We show that if G is an (m + k)-connected graph, and F is a linear forest of G with m edges and s isolated vertices, then G has a cycle of length at least $\min\{|V(G)|, 2\delta(G) - m\}$ passing through F.

1 Introduction

All graphs considered in this paper are finite simple undirected graphs with no loops and no multiple edges. For a graph G, we let V(G) and E(G) denote the set of vertices and edges of G, respectively. For a vertex v of G, we let $\deg_G(v)$ denote the degree of v in G. The minimum degree $\delta(G)$ of G is defined by $\delta(G) = \min\{\deg_G(v)|v\in V(G)\}$. For $k\geq 1$, we define

$$\sigma_k(G) = \min \left\{ \sum_{i=1}^k \deg_G(v_i) \mid v_1, \dots, v_k \text{ are independent in } G \right\};$$

thus $\sigma_1(G) = \delta(G)$. By a *cycle*, we mean a connected graph C such that $\deg_C(v) = 2$ for all $v \in V(C)$. For a finite set X, the cardinality of X is denoted by |X|.

A graph F is called a *linear forest* if every component of F is a path $(F \text{ may contain components consisting of a single vertex). For a linear forest <math>F$ in a graph G, we say that a cycle C of G passes through F if $E(F) \subset E(C)$ and $V(F) \subset V(C)$. Define

$$S(F) = \{x \in V(F) | \deg_F(x) = 0\}.$$

There are many results about long cycles in graphs passing through specified edges and vertices. Among them is the following theorem, which is proved by Hu et al. in [5; Theorem 3]:

Theorem A Let k, m, s be integers with $k \geq 2$, $m \geq 0$, and $0 \leq s \leq k-2$. Let G be an (m+k)-connected graph, and let F be a linear forest of G with |E(F)| = m and |S(F)| = s. Then G has a cycle C of length at least $\min\{|V(G)|, (2/(k+1))\sigma_{k+1}(G) - m\}$ passing through F.

As an immediately corollary of Theorem A, we obtain the following statement (note that $(1/k)\sigma_k(G) \geq \delta(G)$ for any graph G by the definition of $\delta(G)$ and $\sigma_k(G)$):

Corollary B Let k, m, s be integers with $k \geq 2$, $m \geq 0$, and $0 \leq s \leq k-2$. Let G be an (m+k)-connected graph, and let F be a linear forest of G with |E(F)| = m and |S(F)| = s. Then G has a cycle C of length at least $\min\{|V(G)|, 2\delta(G) - m\}$ passing through F.

In [5], it is shown that the lower bound $\min\{|V(G)|, 2\delta(G) - m\}$ on the length of C is best possible in Corollary B (and hence in Theorem A). In [5], it is also shown that for k=2, the assumption that $0 \le s \le k-2$ cannot be replaced by the assumption that $0 \le s \le k-1$ in Theorem A (it does not seem to be known whether the same is true for $k \ge 3$). The purpose of this paper is to show that as for Corollary B, the conclusion holds under the assumption that $0 \le s \le k$:

Theorem 1 Let k, m, s be integers with $k \geq 2$, $m \geq 0$, and $0 \leq s \leq k$. Let G be an (m+k)-connected graph, and let F be a linear forest of G with |E(F)| = m and |S(F)| = s. Then G has a cycle of length at least $\min\{|V(G)|, 2\delta(G) - m\}$ passing through F.

We here mention that the following theorem, which is the case where m=0 in Theorem 1, was already proved by Locke in [6; Corollary 4.4] (for k=2) and by Egawa and Glas and Locke in [3; Theorem 3] (for $k \geq 3$):

Theorem C Let k, d be integers with $d \ge k \ge 2$. Let G be a k-connected graph with $\delta(G) \ge d$, and let X be a subset of V(G) with |X| = k. Then G has a cycle of length at least $\min\{|V(G)|, 2d\}$ passing through X.

We also add that it was shown by Glas in [4] that for k=2, the conclusion of Theorem C holds under the weaker assumption that $\sigma_2(G) \geq 2d$ (instead of the assumption that $\delta(G) \geq d$), and that it has recently been shown by Sakai in [7] and [8] that for $k \geq 3$, the same holds under the still weaker assumption that $\max\{\deg_G(x),\deg_G(y)\}\geq d$ for any two nonadjacent distinct vertices x,y of G.

Our notation is standard, and is mostly taken from [1] and [2]. Possible exceptions are as follows. Let G be a graph. For $x \in V(G)$, define $N_G(x) = \{y \in V(G) | xy \in E(G)\}$; thus $\deg_G(x) = |N_G(x)|$. For $X \subset V(G)$, we let $N_G(X) = \bigcup_{x \in X} N_G(x)$. For $X \subset V(G)$, we let $\langle X \rangle_G$ denote the graph induced by X in G, and define $G - X = \langle V(G) - X \rangle_G$. If X consists of a single vertex, say x, then we write G - x for G - X. For $x, y \in V(G)$, a path having x as its initial vertex and y as its terminal vertex is called an (x, y)-path. For an (x, y)-path P, P^{-1} denotes the (y, x)-path obtained by tracing P in the inverse direction. For $x \in V(G)$ and $Y \subset V(G)$, an (x, y)-path P such that $V(P) \cap Y = \{y\}$ is called an (x, Y)-path; thus if $x \in Y$, then the path x of length 0 is the only (x, Y)-path. A subgraph is often identifed with its vertex set. For example, if H is a subgraph of G, then $N_G(H)$ means $N_G(V(H))$, and G - H means G - V(H).

If C is a cycle, we denote by \overrightarrow{C} the cycle C with a given orientation. For $u, v \in V(C)$, we denote by $u \overrightarrow{C} v$ the segment of C obtained by tracing C from u to

v in the direction of \overrightarrow{C} (if u=v, we let $u\overrightarrow{C}v=u$). Similarly, for a path P and $u, v \in V(P)$ such that u occurs before v on P, we let uPv denote the segment of P between u and v. If X is a cycle or a path, the length of X is denoted by l(X).

A connected graph is called *separable* if it has a cut vertex; otherwise it is called nonseparable. For a separable graph G, a maximal nonseparable subgraph of G is called a block of G. A block of G which contains precisely one cut vertex of G is called an endblock of G. In the proof of Theorem 1, we make use of the following lemma proved in [3; Lemma 5]:

Lemma 1 Let G be a nonseparable graph with at least two vertices, let u, v, x be vertices of G with $u \neq v$, and let d be an integer. Suppose that every vertex of G, except possibly u, v and one other vertex, has degree at least d. Suppose further that x has degree at least $\min\{3,d\}$. Then in G, there is a (u,v)-path which has length at least d and passes through x.

2 Proof of Theorem 1

By Theorem C, Theorem 1 holds for m=0. Thus let k, m, s be integers with $k\geq 2$, $m \ge 1$ and $0 \le s \le k$. We proceed by induction on s. By Corollary B, Theorem 1 holds for s=0. Thus let s>0, and assume that Theorem 1 is proved for s-1. Let G, F be as in Theorem 1. Let C be a longest cycle such that $E(F) \subset E(C)$ and $|S(F)\cap V(C)|\geq s-1$. By the induction hypothesis, $l(C)\geq \min\{|V(G)|, 2\delta(G)-m\}$. Thus if $S(F) \subset V(C)$, then the desired conclusion holds. Consequently we may assume $|S(F) \cap V(C)| = s - 1$. Write $S(F) - V(C) = \{y\}$. Let H be the connected component of G - V(C) which contains y. We henceforth fix an orientation of C, and let \overrightarrow{C} denote the cycle C with the orientation.

Write $E(F) \cup (S(F) \cap V(C)) = \{f_1, f_2, \dots, f_{m+s-1}\}$, where f_1, \dots, f_{m+s-1} occur in this order along \overrightarrow{C} . For j with $1 \leq j \leq m+s-1$, if $f_j \in E(F)$, let $f_j = p_j q_j$ (p_j precedes q_i on \overrightarrow{C}), and if $f_i \in S(F)$, let $p_i = q_i = f_i$. Define $S_i = q_i \overrightarrow{C} p_{i+1}$ (we take $p_{m+s} = p_1).$

Claim 2.1 Let u, v be distinct vertices in $V(C) \cap N_G(H)$. Then the following hold.

- (a) $l(u\overrightarrow{C}v) \ge 1$. (b) If $E(u\overrightarrow{C}v) \cap E(F) = \emptyset$, then $l(u\overrightarrow{C}v) \ge 2$.

Proof. Statement (a) immediately follows from the assumption that $u \neq v$, and (b) follows from the maximality of C. \square

Claim 2.2 There exist two distinct vertices $x_1, x_2 \in V(C) \cap N_G(H)$ such that

- $E(x_1\overrightarrow{C}x_2) \cap E(F) = \emptyset \ \ and \ (V(x_1\overrightarrow{C}x_2) \{x_1, x_2\}) \cap S(F) = \emptyset,$
- there is an (x_1, x_2) -path Q_0 in $\langle V(H) \cup \{x_1, x_2\} \rangle_G$ which passes through y, and
- $(V(x_1\overrightarrow{C}x_2) \{x_1, x_2\}) \cap N_G(H) = \emptyset.$ (c)

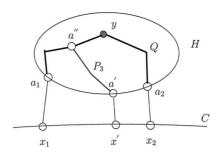


Fig. Claim 2.2

Proof. Since G is (m+k)-connected, $\delta(G) \geq m+k$, so $l(C) \geq \min\{|V(G)|, 2\delta(G) - m\} \geq m+k$. Thus by Menger's Theorem, there are m+k (y,V(C))-paths which are pairwise disjoint except at y. Since m+s-1 < m+k, at least one of the segments S_j $(1 \leq j \leq m+s-1)$ contains the endvertices (different from y) of two of such paths, say P_1 and P_2 . If we let x_1 and x_2 be the endvertices of P_1 and P_2 , respectively, then the path $P_1^{-1}P_2$ is an (x_1,x_2) -path through y in $\langle V(H) \cup \{x_1,x_2\} \rangle_G$. Thus there exist two vertices $x_1, x_2 \in V(C) \cap N_G(H)$ which satisfy (a) and (b). Choose such vertices x_1, x_2 so that $x_1 \overset{\frown}{C} x_2$ is minimal, and let Q_0 be as in (b). Suppose $x' \in (V(x_1 \overset{\frown}{C} x_2) - \{x_1, x_2\}) \cap N_G(H)$, and let $a' \in V(H) \cap N_G(x')$. Set $Q = Q_0 - \{x_1, x_2\}$, and let a_1, a_2 be the endvertices of Q. We choose our notation so that $a_1x_1, a_2x_2 \in E(Q_0)$ (it is possible that $a_1 = a_2 = y$). Since H is connected, there exists an (a', V(Q))-path P_3 in H. Let a'' be the endvertex of P_3 on Q. If a'' is on a_1Qy, x' and x_2 satisfy (a) and (b); if a'' is on yQa_2, x_1 and x' satisfy (a) and (b). In either case, we get a contradiction to the minimality of $x_1\overset{\frown}{C} x_2$. Thus x_1 and x_2 satisfy (c), as desired. \square

Throughout the rest of the proof of Theorem 1, we let x_1, x_2, Q_0 be as in Claim 2.2, and set $C_0 = Q_0 x_2 \overrightarrow{C} x_1$. Then C_0 passes through F by (a) and (b) of Claim 2.2.

Claim 2.3 If $|V(C) \cap N_G(H)| \ge \delta(G)$, there exists a cycle of length at least $2\delta(G) - m$ passing through F.

Proof. Write $V(C) \cap N_G(H) = \{x_1, \ldots, x_p\}$, where x_1, x_2 are as in Claim 2.2 and x_1, \ldots, x_p occur in this order along \overrightarrow{C} . Set $I = \{i \mid 1 \leq i \leq p, E(x_i \overrightarrow{C} x_{i+1}) \cap E(F) \neq \emptyset\}$ (we take $x_{p+1} = x_1$) and $J = \{1, 2, \ldots, p\} - I$. Note that $1 \in J$, and $l(Q_0)$ is at least two. Since $|I| \leq m$, it follows from Claim 2.1 that

$$l(C_0) = \sum_{i=1}^p l(x_i \overrightarrow{C_0} x_{i+1}) = l(Q_0) + \sum_{i \in I} l(x_i \overrightarrow{C} x_{i+1}) + \sum_{i \in J - \{1\}} l(x_i \overrightarrow{C} x_{i+1})$$

$$\geq 2 + |I| + 2(|J| - 1) = 2(|I| + |J|) - |I| \geq 2\delta(G) - m. \quad \Box$$

We now divide the proof of Theorem 1 into two cases.

Case 1: H is separable. Let B_1 , B_2 be two endblocks of H for which there exists a path in H which joins a vertex in $V(B_1)$ and a vertex in $V(B_2)$ and passes through y. Let b_1 , b_2 be the cut vertices of H such that $b_1 \in V(B_1)$ and $b_2 \in V(B_2)$, respectively. Set

$$r = |V(C) \cap (N_G(B_1 - b_1) \cup N_G(B_2 - b_2))|,$$

$$q = |(V(C) \cap (N_G(B_1 - b_1) \cup N_G(B_2 - b_2))) \cup \{x_1, x_2\}|,$$

and write

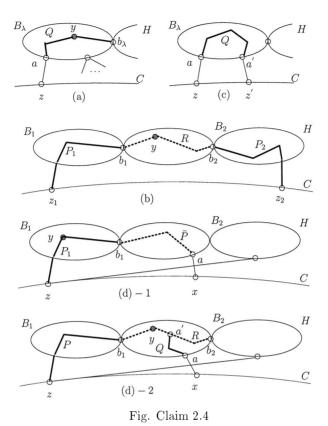
$$V(C) \cap (N_G(B_1 - b_1) \cup N_G(B_2 - b_2)) = \{u_1, \dots, u_r\},\$$

$$(V(C) \cap (N_G(B_1 - b_1) \cup N_G(B_2 - b_2))) \cup \{x_1, x_2\} = \{\bar{u}_1, \dots, \bar{u}_q\}$$

so that u_1, \ldots, u_r and $\bar{u}_1, \ldots, \bar{u}_q$ occur in this order along \overrightarrow{C} , respectively (indices of u and \bar{u} are to be read modulo r and q, repsecitively. We start with a claim.

Claim 2.4

- (a) Let $\lambda \in \{1,2\}$, and let $z \in V(C) \cap N_G(B_\lambda b_\lambda)$. Then there exists a (z,b_λ) path P in $\langle V(B_\lambda) \cup \{z\} \rangle_G$ which has length at least $\delta(G) r + 1$. Further if $y \in V(B_\lambda b_\lambda)$, we can choose P so that P passes through y.
- (b) Let $z_1 \in V(C) \cap N_G(B_1 b_1)$ and $z_2 \in V(C) \cap N_G(B_2 b_2)$, and suppose that $z_1 \neq z_2$. Then there exists a (z_1, z_2) -path in $\langle V(H) \cup \{z_1, z_2\} \rangle_G$ which passes through y and has length at least $2(\delta(G) r + 1)$.
- (c) Let $\lambda \in \{1, 2\}$, and let $z, z' \in V(C) \cap N_G(B_\lambda)$ with $z \neq z'$, and suppose that $|V(B_\lambda) \cap N_G(\{z, z'\})| \geq 2$. Then there exists a (z, z')-path in $\langle V(B_\lambda) \cup \{z, z'\} \rangle_G$ which has length at least $\delta(G) r + 2$.
- (d) Let $z \in V(C) \cap N_G(B_1 b_1) \cap N_G(B_2 b_2)$ and $x \in V(C) \cap N_G(H (B_1 b_1) (B_2 b_2))$, and suppose that $z \neq x$. Then there exists a (z, x)-path in $\langle V(H) \cup \{z, x\} \rangle_G$ which passes through y and has length at least $\delta(G) r + 2$.
- **Proof.** (a) Take $a \in V(B_{\lambda} b_{\lambda}) \cap N_G(z)$. Note that each vertex in $V(B_{\lambda} b_{\lambda})$ has degree at least $\delta(G) r$ in B_{λ} . Hence by Lemma 1, B_{λ} contains an (a, b_{λ}) -path Q with length at least $\delta(G) r$ and, in the case where $y \in V(B_{\lambda} b_{\lambda})$, we can choose Q so that Q passes through y. Now if we let P = zaQ, then P has the desired properties.
- (b) By (a), for each $\lambda = 1, 2$, there exists a $(z_{\lambda}, b_{\lambda})$ -path P_{λ} in $\langle V(B_{\lambda}) \cup \{z_{\lambda}\} \rangle_{G}$ with length at least $\delta(G) r + 1$ such that P_{λ} passes through y in the case where $y \in V(B_{\lambda} b_{\lambda})$. Let R be a (b_{1}, b_{2}) -path in $H (B_{1} b_{1}) (B_{2} b_{2})$. By the choice of B_{1} and B_{2} , we can choose R so that $y \in V(R)$ in the case where $y \notin V(B_{1} b_{1}) \cup V(B_{2} b_{2})$. Then the path $P_{1}RP_{2}^{-1}$ has the desired properties.
- (c) By the assumption that $|V(B_{\lambda}) \cap N_G(\{z, z'\})| \geq 2$, we can take $a \in V(B_{\lambda}) \cap N_G(z)$ and $a' \in V(B_{\lambda}) \cap N_G(z')$ so that $a \neq a'$. By Lemma 1, B_{λ} has an (a, a')-path Q with length at least $\delta(G) r$. Then the path zaQa'z' has the desired property.



(d) Take $a \in V(H - (B_1 - b_1) - (B_2 - b_2)) \cap N_G(x)$. First assume $y \in V(B_1 - b_1) \cup V(B_2 - b_2)$. By symmetry, we may assume $y \in V(B_1 - b_1)$. Then by (a), there exists a (z, b_1) -path P in $\langle V(B_1) \cup \{z\} \rangle_G$ which passes through y and has length at least $\delta(G) - r + 1$. There also exists a (b_1, a) -path \bar{P} in $H - (B_1 - b_1) - (B_2 - b_2)$. Then the path $P\bar{P}ax$ has the desired properties.

Next assume $y \in V(H-(B_1-b_1)-(B_2-b_2))$. By the choice of B_1 and B_2 , we can take a (b_1,b_2) -path R in $H-(B_1-b_1)-(B_2-b_2)$ passing through y. Since $H-(B_1-b_1)-(B_2-b_2)$ is connected, there exists an (a,V(R))-path Q in $H-(B_1-b_1)-(B_2-b_2)$. Let a' be the endvertex of Q on R. Then at least one of the two paths b_1Ra' and $a'Rb_2$ passes through y. We may assume $y \in V(b_1Ra')$. By (a), there exists a (z,b_1) -path P in $(V(B_1) \cup \{z\})_G$ with length at least $\delta(G)-r+1$. Then the path $Pb_1Ra'Q^{-1}ax$ has the desired properties. \square

Let x_1, x_2, Q_0, C_0 be as in Claim 2.2 and the paragraph following the proof of

Claim 2.2. Also define

$$M = \{(u_i, u_{i+1}) | V(B_{\lambda} - b_{\lambda}) \cap N_G(\{u_i, u_{i+1}\}) \neq \emptyset \text{ for each } \lambda = 1, 2, \\ E(u_i \overrightarrow{C} u_{i+1}) \cap E(F) = \emptyset, (V(u_i \overrightarrow{C} u_{i+1}) - \{u_i, u_{i+1}\}) \cap S(F) = \emptyset\}, \\ \widetilde{M} = \{(u_i, u_{i+1}) | V(B_{\lambda} - b_{\lambda}) \cap N_G(\{u_i, u_{i+1}\}) \neq \emptyset \text{ for each } \lambda = 1, 2, \\ E(u_i \overrightarrow{C} u_{i+1}) \cap E(F) = \emptyset, |(V(u_i \overrightarrow{C} u_{i+1}) - \{u_i, u_{i+1}\}) \cap S(F)| = 1\}.$$

Further for $\lambda = 1, 2$, define

$$\begin{split} M_{\lambda} = & \{(u_{i}, u_{i+1}) | |V(B_{\lambda} - b_{\lambda}) \cap N_{G}(\{u_{i}, u_{i+1}\})| \geq 2, \\ & V(B_{3-\lambda} - b_{3-\lambda}) \cap N_{G}(\{u_{i}, u_{i+1}\}) = \emptyset, \\ & E(u_{i} \overrightarrow{C} u_{i+1}) \cap E(F) = \emptyset, (V(u_{i} \overrightarrow{C} u_{i+1}) - \{u_{i}, u_{i+1}\}) \cap S(F) = \emptyset\}. \end{split}$$

Claim 2.5 Suppose that one of the following four conditions is satisfied;

- (a) $|M| \ge 1$;
- (b) there exists $(u_i, u_{i+1}) \in \widetilde{M}$ such that $x_1 \overrightarrow{C} x_2 \not\subset u_i \overrightarrow{C} u_{i+1}$;
- (c) there exist $(u_{i_1}, u_{i_1+1}), (u_{i_2}, u_{i_2+1}) \in M_1 \cup M_2, i_1 \neq i_2$, such that $x_1 \overset{\frown}{C} x_2 \not\subset u_{i_1} \overset{\frown}{C} u_{i_1+1}$ and $x_1 \overset{\frown}{C} x_2 \not\subset u_{i_2} \overset{\frown}{C} u_{i_2+1}$; or
- (d) there exists $(u_i, u_{i+1}) \in \widetilde{M}$ such that $u_i, u_{i+1} \in N_G(B_1 b_1) \cap N_G(B_2 b_2)$.

Then there exists a cycle of length at least $2\delta(G) - m$ passing through F.

Proof. (a) Let $(u_i, u_{i+1}) \in M$. By symmetry, we may assume $u_i \in V(C) \cap N_G(B_1 - b_1)$ and $u_{i+1} \in V(C) \cap N_G(B_2 - b_2)$. By Claim 2.4 (b), there exists a (u_i, u_{i+1}) -path Q_1 in $\langle V(H) \cup \{u_i, u_{i+1}\} \rangle_G$ which passes through y and has length at least $2(\delta(G) - r + 1)$. Now set $C_1 = Q_1 u_{i+1} \overrightarrow{C} u_i$. Then C_1 passes through F and, arguing as in the proof of Claim 2.3, we obtain

$$l(C_1) = l(Q_1) + \sum_{1 \le h \le r, h \ne i} l(u_h \overrightarrow{C} u_{h+1})$$

$$\ge 2(\delta(G) - r + 1) + 2(r - 1) - m = 2\delta(G) - m$$

by Claim 2.1.

(b) As in (a), we may assume $u_i \in V(C) \cap N_G(B_1 - b_1)$ and $u_{i+1} \in V(C) \cap N_G(B_2 - b_2)$. Let Q_1 be as in (a). Note that both $u_i \overrightarrow{C} u_{i+1} - \{u_i, u_{i+1}\}$ and $Q_1 - \{u_i, u_{i+1}\}$ contain precisely one vertex of S(F). Hence it follows from the maximality of C that $l(u_i \overrightarrow{C} u_{i+1}) \geq l(Q_1) \geq 2(\delta(G) - r + 1)$. Note that $q \geq r$. Let $u_i = \bar{u}_{h_1}, x_1 = \bar{u}_{h_2}$. Then $u_{i+1} = \bar{u}_{h_1+1}$ by the assumption that $x_1 \overrightarrow{C} x_2 \not\subset u_i \overrightarrow{C} u_{i+1}$ and Claim 2.2 (c), and $x_2 = \bar{u}_{h_2+1}$ by Claim 2.2 (c). Recall that C_0 passes through F. Further since the length of Q_0 is at least two, we now obtain

$$l(C_0) = l(Q_0) + l(u_i \overrightarrow{C} u_{i+1}) + \sum_{1 \le h \le q, h \ne h_1, h_2} l(\bar{u}_h \overrightarrow{C} \bar{u}_{h+1})$$

$$\ge 2 + 2(\delta(G) - r + 1) + 2(q - 2) - m \ge 2\delta(G) - m.$$

(c) By Claim 2.4 (c) and the maximality of C, $l(u_{i_1}\overrightarrow{C}u_{i_1+1}), l(u_{i_2}\overrightarrow{C}u_{i_2+1}) \ge \delta(G) - r + 2$. Let $u_{i_1} = \bar{u}_{h_1}, u_{i_2} = \bar{u}_{h_2}, x_1 = \bar{u}_{h_3}$. Then as in the proof of (b), $u_{i_1+1} = \bar{u}_{h_1+1}, u_{i_2+1} = \bar{u}_{h_2+1}, x_2 = \bar{u}_{h_3+1}$ by the assumption that $x_1\overrightarrow{C}x_2 \not\subset u_{i_1}\overrightarrow{C}u_{i_1+1}$ and $x_1\overrightarrow{C}x_2 \not\subset u_{i_2}\overrightarrow{C}u_{i_2+1}$ and by Claim 2.2 (c). Therefore

$$\begin{array}{lcl} l(C_0) & = & l(Q_0) + l(u_{i_1} \overrightarrow{C} u_{i_1+1}) + l(u_{i_2} \overrightarrow{C} u_{i_2+1}) \\ & & + \sum_{1 \leq h \leq q, h \neq h_1, h_2, h_3} l(\bar{u}_h \overrightarrow{C} \bar{u}_{h+1}) \\ & \geq & 2 + 2(\delta(G) - r + 2) + 2(q - 3) - m \geq 2\delta(G) - m. \end{array}$$

(d) In view of (b), we may assume $x_1\overrightarrow{C}x_2\subset u_i\overrightarrow{C}u_{i+1}$. Since $u_i\overrightarrow{C}u_{i+1}\neq x_1\overrightarrow{C}x_2$ by the definition of \widetilde{M} and Claim 2.2 (a), this implies that at least one of x_1 and x_2 belongs to $V(u_i\overrightarrow{C}u_{i+1})-\{u_i,u_{i+1}\}$. By symmetry, we may assume $x_2\in V(u_i\overrightarrow{C}u_{i+1})-\{u_i,u_{i+1}\}$. By the definition of u_1,\ldots,u_r , this means $x_2\in N_G(H-(B_1-b_1)-(B_2-b_2))$. Hence by Claim 2.4 (d), there exist a (u_i,x_2) -path P' in $\langle V(H)\cup\{u_i,x_2\}\rangle_G$ and an (x_2,u_{i+1}) -path P'' in $\langle V(H)\cup\{x_2,u_{i+1}\}\rangle_G$ which pass through y and have length at least $\delta(G)-r+2$. Since $|(V(u_i\overrightarrow{C}u_{i+1})-\{u_i,u_{i+1}\})\cap S(F)|=1$ by the definition of \widetilde{M} , we have $(V(u_i\overrightarrow{C}x_2)-\{u_i,x_2\})\cap S(F)=\emptyset$ or $(V(x_2\overrightarrow{C}u_{i+1})-\{x_2,u_{i+1}\})\cap S(F)=\emptyset$. We may assume $(V(u_i\overrightarrow{C}x_2)-\{u_i,x_2\})\cap S(F)=\emptyset$ (we do not make use of x_1 in the rest of the proof of the claim; so the roles of u_i and u_{i+1} are symmetric). By the maximality of C, $l(x_2\overrightarrow{C}u_{i+1})\geq l(P'')\geq \delta(G)-r+2$. Now set $C_2=P'x_2\overrightarrow{C}u_i$. Then C_2 passes through F, and

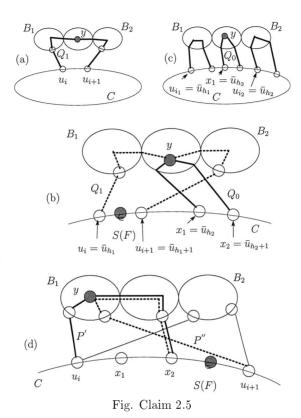
$$\begin{array}{lcl} l(C_2) & = & l(P^{'}) + l(x_2 \overrightarrow{C} u_{i+1}) + \sum_{1 \leq h \leq r, h \neq i} l(u_h \overrightarrow{C} u_{h+1}) \\ & \geq & 2(\delta(G) - r + 2) + 2(r - 1) - m \geq 2\delta(G) - m. \end{array}$$

We return to the proof of the theorem for Case 1. In view of Claim 2.5 (a), we may assume that $M=\emptyset$.

Claim 2.6 Let $1 \le j \le m+s-1$, and suppose that $V(S_j) \cap N_G(B_1-b_1) \ne \emptyset$ and $V(S_j) \cap N_G(B_2-b_2) \ne \emptyset$. Then

$$V(S_j) \cap N_G(B_1 - b_1) = V(S_j) \cap N_G(B_2 - b_2)$$
 and $|V(S_j) \cap N_G(B_1 - b_1)| = |V(S_j) \cap N_G(B_2 - b_2)| = 1.$

Proof. By way of contradiction, suppose that $|V(S_j) \cap N_G(B_1 - b_1)| \ge 2$ or $|V(S_j) \cap N_G(B_2 - b_2)| \ge 2$ or $|V(S_j) \cap N_G(B_1 - b_1)| \ne V(S_j) \cap N_G(B_2 - b_2)$. Then there exist $w_1, w_2 \in V(S_j)$ with $w_1 \ne w_2$ and $w_1 \overrightarrow{C} w_2 \subset S_j$ such that either $w_1 \in N_G(B_1 - b_1)$ and $w_2 \in N_G(B_2 - b_2)$ or $w_1 \in N_G(B_2 - b_2)$ and $w_2 \in N_G(B_1 - b_1)$. We may assume that we have chosen w_1 and w_2 so that $w_1 \overrightarrow{C} w_2$ is minimal. Then $(V(w_1 \overrightarrow{C} w_2) - \{w_1, w_2\}) \cap (N_G(B_1 - b_1) \cup N_G(B_2 - b_2)) = \emptyset$, which implies $(w_1, w_2) \in M$ because $w_1 \overrightarrow{C} w_2 \subset S_j$. This contradicts the assumption that $M = \emptyset$. \square



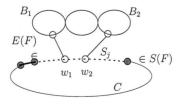


Fig. Claim 2.6

Now define

$$D_{\lambda} = \{u_i \mid |V(B_{\lambda} - b_{\lambda}) \cap N_G(u_i)| \ge 2\}$$

for $\lambda = 1, 2$. Then for each $\lambda = 1, 2$,

$$\left(\left(\left(V(C) \cap N_G(B_{\lambda} - b_{\lambda}) \right) - D_{\lambda} \right) \cap N_G(a) \right)
\cap \left(\left(\left(V(C) \cap N_G(B_{\lambda} - b_{\lambda}) \right) - D_{\lambda} \right) \cap N_G(b) \right) = \emptyset$$
(1)

for every $a, b \in V(B_{\lambda} - b_{\lambda})$ with $a \neq b$. We divide the proof into two subcases according to which of the two quantities $|(V(C) \cap N_G(B_{\lambda} - b_{\lambda})) - D_{\lambda}|$ and $|V(B_{\lambda} - b_{\lambda})|$ is the larger.

Subcase 1.1
$$|(V(C) \cap N_G(B_{\lambda} - b_{\lambda})) - D_{\lambda}| \ge |V(B_{\lambda} - b_{\lambda})|$$
 for some $\lambda \in \{1, 2\}$.

By symmetry, we may assume $|(V(C) \cap N_G(B_1 - b_1)) - D_1| \ge |V(B_1 - b_1)|$. If $|D_1| \ge \delta(G) - |V(B_1 - b_1)|$, then $|V(C) \cap N_G(H)| \ge |V(C) \cap N_G(B_1 - b_1)| = |(V(C) \cap N_G(B_1 - b_1)) - D_1| + |D_1| \ge |V(B_1 - b_1)| + (\delta(G) - |V(B_1 - b_1)|) = \delta(G)$, and hence we obtain a cycle with the desired properties by Claim 2.3. Thus we may assume $\delta(G) - |V(B_1 - b_1)| > |D_1|$. Then for every $a \in V(B_1 - b_1)$, $|((V(C) \cap N_G(B_1 - b_1)) - D_1) \cap N_G(a)| \ge |V(C) \cap N_G(a)| - |D_1| \ge \delta(G) - (|V(B_1)| - 1) - |D_1| > 0$ because $N_G(a) \subset V(B_1 - a) \cup (V(C) \cap N_G(a))$. Hence by (1),

$$|V(C) \cap N_G(B_1 - b_1)|$$

$$= |(V(C) \cap N_G(B_1 - b_1)) - D_1| + |D_1|$$

$$\geq \{\delta(G) - (|V(B_1)| - 1) - |D_1|\}|V(B_1 - b_1)| + |D_1|$$

$$= \delta(G) - 1 - |D_1|$$

$$+ (\delta(G) - |V(B_1)| - |D_1|)(|V(B_1)| - 2) + |D_1|$$

$$\geq \delta(G) - 1. \tag{2}$$

Now if $V(C) \cap N_G(B_2 - b_2) \not\subset V(C) \cap N_G(B_1 - b_1)$, then $|V(C) \cap N_G(H)| \ge \delta(G)$ by (2), and hence the desired conclusion follows from Claim 2.3. Thus we may assume $V(C) \cap N_G(B_2 - b_2) \subset V(C) \cap N_G(B_1 - b_1)$. By Claim 2.6, this implies $|V(S_j) \cap N_G(B_2 - b_2)| \le 1$ for each $1 \le j \le m+s-1$. Since $|V(C) \cap N_G(B_2 - b_2)| \ge m+k-1$ by the assumption that G is (m+k)-connected and since $s \le k$, this forces s = k and $|V(S_j) \cap N_G(B_2 - b_2)| = 1$ for each j. By Claim 2.6, this in turn implies $|V(S_j) \cap N_G(B_1 - b_1)| = 1$ for each j, and hence $|V(C) \cap N_G(B_1 - b_1)| = m+k-1$. Since $\delta(G) \ge m+k$, this together with (2) implies $\delta(G) = m+k$, and hence

$$|V(C) \cap N_G(H)| \ge m + k = \delta(G),$$

by the assumption that G is (m+k)-connected. Therefore we obtain a desired cycle by Claim 2.3.

Subcase 1.2
$$|(V(C) \cap N_G(B_{\lambda} - b_{\lambda})) - D_{\lambda}| < |V(B_{\lambda} - b_{\lambda})| \text{ for each } \lambda \in \{1, 2\}.$$

Fix $\lambda \in \{1, 2\}$ for the moment. By (1), there is a vertex $g_{\lambda} \in V(B_{\lambda} - b_{\lambda})$ satisfying

$$\{(V(C) \cap N_G(B_{\lambda} - b_{\lambda})) - D_{\lambda}\} \cap N_G(g_{\lambda}) = \emptyset,$$

that is to say,

$$V(C) \cap N_G(g_\lambda) \subset D_\lambda. \tag{3}$$

Since G is (m+k)-connected, there exist m+k $(g_{\lambda},V(C))$ -paths $P_{\lambda,1},\ldots,P_{\lambda,m+k}$ which are pairwise disjoint except at g_{λ} . For each h, let $t_{\lambda,h}$ denote the endvertex of $P_{\lambda,h}$ different from g_{λ} . Thus $t_{\lambda,h} \in V(P_{\lambda,h}) \cap V(C)$. At most one of the paths $P_{\lambda,h}$ $(1 \leq h \leq m+k)$ passes through b_{λ} . We choose our labeling so that $b_{\lambda} \notin V(P_{\lambda,h})$ for each $1 \leq h \leq m+k-1$. Then $t_{\lambda,h} \in V(C) \cap N_G(B_{\lambda}-b_{\lambda})$ for each $1 \leq h \leq m+k-1$.

Claim 2.7 Let $1 \leq j \leq m+s-1$ and $1 \leq h_1, h_2 \leq m+k-1$ with $h_1 \neq h_2$, and suppose that $t_{\lambda,h_1} \overrightarrow{C} t_{\lambda,h_2} \subset S_j$. Then there exists $(u_i, u_{i+1}) \in M_{\lambda}$ such that $u_i \overrightarrow{C} u_{i+1} \subset t_{\lambda,h_1} \overrightarrow{C} t_{\lambda,h_2}$.

Proof. We first show that $|V(B_{\lambda} - b_{\lambda}) \cap N_G(\{t_{\lambda,h_1}, t_{\lambda,h_2}\})| \geq 2$. If t_{λ,h_1} or t_{λ,h_2} , say t_{λ,h_1} , belongs to $N_G(g_{\lambda})$, then by (3) and the definition of D_{λ} , $|V(B_{\lambda}-b_{\lambda})|$ $N_G(\{t_{\lambda,h_1},t_{\lambda,h_2}\})| \geq |V(B_{\lambda}-b_{\lambda}) \cap N_G(t_{\lambda,h_1})| \geq 2; \text{ if } t_{\lambda,h_1},t_{\lambda,h_2} \notin N_G(g_{\lambda}), \text{ then letting } t_{\lambda,h_1} \in \mathcal{N}_G(g_{\lambda})$ a_1 be the vertex preceding t_{λ,h_1} on P_{λ,h_1} and a_2 be the vertex preceding t_{λ,h_2} on P_{λ,h_2} , we obtain $|V(B_{\lambda}-b_{\lambda})\cap N_G(\{t_{\lambda,h_1},t_{\lambda,\underline{h_2}}\})|\geq |\{a_1,a_2\}|\geq 2$ by the choice of $P_{\lambda,1},\ldots,P_{\lambda,m+k-1}$. Choose $w_1,w_2\in V(t_{\lambda,h_1}\overrightarrow{C}t_{\lambda,h_2})\cap (N_G(B_1-b_1)\cup N_G(B_2-b_2))$ with $w_1 \neq w_2$, $w_1 \overrightarrow{C} w_2 \subset t_{\lambda,h_1} \overrightarrow{C} t_{\lambda,h_2}$, $|(V(B_1 - b_1) \cup V(B_2 - b_2)) \cap N_G(\{w_1, w_2\})| \geq 2$ and $V(B_{\lambda} - b_{\lambda}) \cap N_G(\{w_1, w_2\}) \neq \emptyset$ so that $w_1 \overrightarrow{C} w_2$ is minimal. By the symmetry of the roles of w_1 and w_2 , we may assume $V(B_{\lambda} - b_{\lambda}) \cap N_G(w_1) \neq \emptyset$. Suppose that $(V(w_1\overrightarrow{C}w_2) - \{w_1, w_2\}) \cap (N_G(B_1 - b_1) \cup N_G(B_2 - b_2)) \neq \emptyset$, and take $w \in (V(w_1\overrightarrow{C}w_2) - b_2)$ $\{w_1, w_2\}$) $\cap (N_G(B_1 - b_1) \cup N_G(B_2 - b_2))$. If $V(B_{3-\lambda} - b_{3-\lambda}) \cap N_G(w) \neq \emptyset$, then we have $|(V(B_1 - b_1) \cup V(B_2 - b_2)) \cap N_G(\{w_1, w\})| \ge |V(B_\lambda - b_\lambda) \cap N_G(w_1)| + |V(B_{3-\lambda} - b_{1-\lambda})| \le |V(B_\lambda - b_\lambda) \cap N_G(w_1)| + |V(B_{3-\lambda} - b_{1-\lambda})| \le |V(B_\lambda - b_\lambda) \cap N_G(w_1)| + |V(B_\lambda$ $|b_{3-\lambda}| \cap N_G(w)| \geq 2$ and $V(B_{\lambda} - b_{\lambda}) \cap N_G(\{w_1, w\}) \supset V(B_{\lambda} - b_{\lambda}) \cap N_G(w_1) \neq \emptyset$, which contradicts the minimality of $w_1 \overrightarrow{C} w_2$. If $V(B_{3-\lambda} - b_{3-\lambda}) \cap N_G(w) = \emptyset$, then $V(B_{\lambda}-b_{\lambda})\cap N_G(w)\neq\emptyset$ and hence we have $V(B_{\lambda}-b_{\lambda})\cap N_G(\{w_1,w\})\neq\emptyset$ and $V(B_{\lambda} - b_{\lambda}) \cap N_G(\{w, w_2\}) \neq \emptyset$ and, from $|(V(B_1 - b_1) \cup V(B_2 - b_2)) \cap N_G(\{w_1, w_2\})| \geq$ 2, we get $|(V(B_1-b_1)\cup V(B_2-b_2))\cap N_G(\{w_1,w\})|\geq 2$ or $|(V(B_1-b_1)\cup V(B_2-b_2))\cap N_G(\{w_1,w\})|\geq 2$ $|b_2| \cap N_G(\{w, w_2\})| \geq 2$, which again contradicts the minimality of $w_1 \overrightarrow{C} w_2$. Thus $(V(w_1\overrightarrow{C}w_2) - \{w_1, w_2\}) \cap (N_G(B_1 - b_1) \cup N_G(B_2 - b_2)) = \emptyset$, and hence there exists i with $1 \le i \le r$ such that $w_1 = u_i$ and $w_2 = u_{i+1}$. Since we are assuming $M = \emptyset$ (see the paragraph preceding Claim 2.6), this forces $V(B_{3-\lambda} - b_{3-\lambda}) \cap N_G(\{w_1, w_2\}) = \emptyset$ because $w_1 \overrightarrow{C} w_2 \subset S_i$. Consequently $(w_1, w_2) \in M_\lambda$, as desired. \square

We are now in a position to complete the discussion for Case 1. If $|M_1|+|M_2| \geq 3$, then some two members of $M_1 \cup M_2$ satisfy the condition in Claim 2.5 (c), and hence we obtain a desired cycle by Claim 2.5 (c).

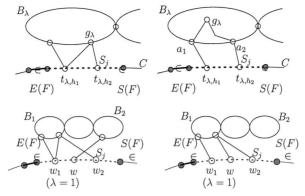


Fig. Claim 2.7

Thus we may assume that $|M_1| + |M_2| \le 2$. For convenience, for each $1 \le j \le m+s-1$, we define

$$T_{j} = \begin{cases} S_{j} & \text{(if } f_{j+1} \in E(F)) \\ S_{j} - f_{j+1} & \text{(if } f_{j+1} \in S(F)) \end{cases}$$

(when j=m+s-1, we take $f_{m+s}=f_1$). The reason why we consider T_j besides S_j is that V(C) is the disjoint union of the $V(T_j)$ $(1 \leq j \leq m+s-1)$, while $V(S_j) \cap V(S_{j+1}) \neq \emptyset$ for j with $f_{j+1} \in S(F)$. We first consider the case where $M_{\lambda}=\emptyset$ for some $\lambda \in \{1,2\}$. We may assume $M_1=\emptyset$. Let $t_{1,1},\ldots,t_{1,m+k-1}$ be as in the first paragraph of Subcase 1.2. Since $M_1=\emptyset$, it follows from Claim 2.7 that $t_{1,1},\ldots,t_{1,m+k-1}$ belong to distinct $V(T_j)$ $(j=1,\ldots,m+s-1)$. Since $k \geq s$, this implies that

$$s = k \tag{4}$$

and $V(T_j) \cap N_G(B_1 - b_1) \neq \emptyset$ for each j. By Claim 2.6, this implies $|V(T_j) \cap N_G(B_2 - b_2)| \leq 1$ for each j. Since G is (m+k)-connected, this forces $|V(T_j) \cap N_G(B_2 - b_2)| = 1$ for each j. Consequently again by Claim 2.6, $V(T_j) \cap N_G(B_1 - b_1) = V(T_j) \cap N_G(B_2 - b_2)$ and $|V(T_j) \cap N_G(B_1 - b_1)| = |V(T_j) \cap N_G(B_2 - b_2)| = 1$ for each j. Now take j such that $f_j \in S(F) \cap V(C)$ (note that $|S(F) \cap V(C)| = s - 1 = k - 1 \geq 1$ by (4)). Write $V(T_{j-1}) \cap N_G(B_1 - b_1) = V(T_{j-1}) \cap N_G(B_2 - b_2) = \{z\}$ and $V(T_j) \cap N_G(B_1 - b_1) = V(T_j) \cap N_G(B_2 - b_2) = \{z'\}$ (when j = 1, we take $T_0 = T_{m+s-1}$). Then $z' \neq f_j$ by Claim 2.6, and hence $(z, z') \in \widetilde{M}$. Note that (z, z') satisfies the condition in Claim 2.5 (d). Therefore we obtain a desired cycle by Claim 2.5 (d).

We are left with the case where $|M_1| = |M_2| = 1$. Write $M_1 = \{(u_i, u_{i+1})\}$ and $M_2 = \{(u_{i'}, u_{i'+1})\}$, and let j_1, j_2 be the indices such that $u_i \overrightarrow{C} u_{i+1} \subset S_{j_1}$ and $u_i \overrightarrow{C} u_{i'+1} \subset S_{j_2}$. By Claim 2.6, $V(S_{j_1}) \cap N_G(B_2 - b_2) = \emptyset$ and $V(S_{j_2}) \cap N_G(B_1 - b_1) = \emptyset$; in particular, $j_1 \neq j_2$. Since $M_1 = \{(u_i, u_{i+1})\}$, we see from Claim 2.7 that

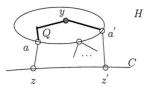


Fig. Claim 2.8

 $|V(T_{j_1})\cap\{t_{1,1},\ldots,t_{1,m+k-1}\}|\leq 2 \text{ and } |V(T_j)\cap\{t_{1,1},\ldots,t_{1,m+k-1}\}|\leq 1 \text{ for each } j \text{ with } j\neq j_1,j_2. \text{ Since } k\geq s \text{ and } V(T_{j_2})\cap N_G(B_1-b_1)=\emptyset, \text{ this implies } (4) \text{ holds, } |V(T_{j_1})\cap\{t_{1,1},\ldots,t_{1,m+k-1}\}|=2, \text{ and } |V(T_j)\cap\{t_{1,1},\ldots,t_{1,m+k-1}\}|=1 \text{ for each } j \text{ with } j\neq j_1,j_2; \text{ in particular, } V(T_j)\cap N_G(B_1-b_1)\neq\emptyset \text{ for each } j \text{ with } j\neq j_2. \text{ Similarly } V(T_j)\cap N_G(B_2-b_2)\neq\emptyset \text{ for each } j \text{ with } j\neq j_1. \text{ By Claim } 2.6, \text{ this implies } V(T_j)\cap N_G(B_1-b_1)=V(T_j)\cap N_G(B_2-b_2) \text{ and } |V(T_j)\cap N_G(B_1-b_1)|=|V(T_j)\cap N_G(B_2-b_2)|=1 \text{ for each } j\neq j_1,j_2. \text{ Now take } j \text{ such that } f_j\in S(F)\cap V(C). \text{ Let } z \text{ be the vertex in } V(T_{j-1})\cap (N_G(B_1-b_1)\cup N_G(B_2-b_2)) \text{ closest to } f_j \text{ on } S_{j-1} \text{ (when } j=1, \text{ we take } T_0=T_{m+s-1} \text{ and } S_0=S_{m+s-1}), \text{ and let } z' \text{ be the vertex in } V(T_j)\cap (N_G(B_1-b_1)\cup N_G(B_2-b_2)) \text{ closest to } f_j \text{ on } T_j. \text{ We have } z\in N_G(B_1-b_1) \text{ and } z'\in N_G(B_2-b_2), \text{ or } z\in N_G(B_2-b_2) \text{ and } z'\in N_G(B_1-b_1). \text{ By Claim } 2.6, \text{ this implies } z'\neq f_j, \text{ and hence } (z,z')\in \widehat{M}. \text{ Note that either the two members of } M_1\cup M_2 \text{ satisfy the condition in Claim } 2.5 \text{ (c), or else } (z,z') \text{ satisfies the condition in Claim } 2.5 \text{ (b)}. \text{ Therefore we obtain a desired cycle by (c) or (b) of Claim } 2.5.$

Case 2 H is nonseparable.

Let $r' = |V(C) \cap N_G(H)|$ and $V(C) \cap N_G(H) = \{v_1, \ldots, v_{r'}\}$ so that $v_1, \ldots, v_{r'}$ occur in this order along C (indices are to be read modulo r'). Define

$$\begin{split} M^{'} = & \{(v_{i}, v_{i+1}) | \, | \, V(H) \cap N_{G}(\{v_{i}, v_{i+1}\}) | \geq 2, E(v_{i}\overrightarrow{C}v_{i+1}) \cap E(F) = \emptyset, \\ & (V(v_{i}\overrightarrow{C}v_{i+1}) - \{v_{i}, v_{i+1}\}) \cap S(F) = \emptyset\}, \\ \widetilde{M}^{'} = & \{(v_{i}, v_{i+1}) | \, | \, V(H) \cap N_{G}(\{v_{i}, v_{i+1}\}) | \geq 2, E(v_{i}\overrightarrow{C}v_{i+1}) \cap E(F) = \emptyset, \\ & | (V(v_{i}\overrightarrow{C}v_{i+1}) - \{v_{i}, v_{i+1}\}) \cap S(F) | \leq 1\} \end{split}$$

(so $M' \subset \widetilde{M}'$).

Claim 2.8 Let $z, z' \in V(C) \cap N_G(H)$ with $z \neq z'$, and suppose that $|V(H) \cap N_G(\{z, z'\})| \geq 2$. Then there exists a (z, z')-path in $\langle V(H) \cap \{z, z'\} \rangle_G$ which passes through y and has length at least $\delta(G) - r' + 2$.

Proof. By the assumption that $|V(H) \cap N_G(\{z, z'\})| \geq 2$, we can take $a \in V(H) \cap N_G(z)$ and $a' \in V(H) \cap N_G(z')$ so that $a \neq a'$. By Lemma 1, H has an (a, a')-path Q which passes through y and has length at least $\delta(G) - r'$. Then the path zaQa'z' has the desired properties. \square

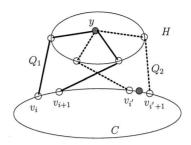


Fig. Claim 2.9

Claim 2.9 If $|M'| \ge 1$ and $|\widetilde{M'}| \ge 2$, then there exists a cycle of length at least $2\delta(G) - m$ passing through F.

Proof. Let $(v_i, v_{i+1}) \in M'$ and $(v_{i'}, v_{i'+1}) \in \widetilde{M'}$ with $i \neq i'$. By Claim 2.8, there exists a (v_i, v_{i+1}) -path Q_1 in $\langle V(H) \cup \{v_i, v_{i+1}\} \rangle_G$ which passes through y and has length at least $\delta(G) - r' + 2$, and there exists a $(v_{i'}, v_{i'+1})$ -path Q_2 in $\langle V(H) \cup \{v_{i'}, v_{i'+1}\} \rangle_G$ which passes through y and has length at least $\delta(G) - r' + 2$. By the maximality of C, $l(v_i \overrightarrow{C} v_{i'+1}) \geq l(Q_2) \geq \delta(G) - r' + 2$. Set $C_1 = Q_1 v_{i+1} \overrightarrow{C} v_i$. Then C_1 passes through F and, arguing as in the proof of Claim 2.5, we obtain

$$l(C_{1}) = l(Q_{1}) + l(v_{i'}\overrightarrow{C}v_{i'+1}) + \sum_{1 \leq h \leq r', h \neq i, i'} l(v_{h}\overrightarrow{C}v_{h+1})$$

$$\geq (\delta(G) - r' + 2) + (\delta(G) - r' + 2) + 2(r' - 2) - m$$

$$= 2\delta(G) - m. \quad \Box$$

Now define

$$D' = \{v_i | |V(H) \cap N_G(v_i)| \ge 2\}.$$

Then

$$\left(\left(\left(V(C) \cap N_G(H) \right) - D' \right) \cap N_G(a) \right)$$

$$\cap \left(\left(\left(V(C) \cap N_G(H) \right) - D' \right) \cap N_G(b) \right) = \emptyset$$
(5)

for every $a, b \in V(H)$ with $a \neq b$. We divide the proof into two subcases according to which of the two quantities $|(V(C) \cap N_G(H)) - D'|$ and |V(H)| is the larger.

Subcase 2.1 $|(V(C) \cap N_G(H)) - D'| \ge |V(H)|$ (this includes the case where |V(H)| = 1).

If $|D'| \ge \delta(G) - |V(H)|$, then $|V(C) \cap N_G(H)| = |(V(C) \cap N_G(H)) - D'| + |D'| \ge |V(H)| + (\delta(G) - |V(H)|) = \delta(G)$, and hence we obtain a desired cycle by Claim 2.3. Thus we may assume $\delta(G) - |V(H)| > |D'|$. Then for every $a \in V(H)$, $|((V(C) \cap V(H))| = |D'|$.

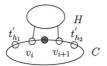


Fig. Claim 2.10

 $N_G(H)$) -D') $\cap N_G(a)$ | $\geq |V(C) \cap N_G(a)| - |D'| \geq \delta(G) - (|V(H)| - 1) - |D'| > 0$ because $N_G(a) \subset V(H-a) \cup (V(C) \cap N_G(a))$. Hence by (5),

$$|V(C) \cap N_G(H)|$$
= $|(V(C) \cap N_G(H)) - D'| + |D'|$
 $\geq \{\delta(G) - (|V(H)| - 1) - |D'|\}|V(H)| + |D'|$
= $\delta(G) - |D'|$
 $+(\delta(G) - |V(H)| - |D'|)(|V(H)| - 1) + |D'|$
 $> \delta(G)$.

Therefore we again obtain a desired cycle by Claim 2.3.

Subcase 2.2
$$|(V(C) \cap N_G(H)) - D'| < |V(H)|.$$

By (5), there is a vertex $g' \in V(H)$ satisfying

$$\left\{ (V(C) \cap N_G(H)) - D' \right\} \cap N_G(g') = \emptyset,$$

that is to say,

$$V(C) \cap N_G(g') \subset D'$$
.

Since G is (m+k)-connected, there exist m+k (g',V(C))-paths P'_1,\ldots,P'_{m+k} which are pairwise disjoint except at g'. For each h, let t'_h denote the endvertex of P'_h different from g'. Thus $t'_h \in V(P'_h) \cap V(C)$. We omit the proof of the following claim because it is similar to and easier than that of Claim 2.7.

Claim 2.10 Let $1 \leq h_1, h_2 \leq m+k$ with $h_1 \neq h_2$, and suppose that $E(t'_{h_1}\overrightarrow{C}t'_{h_2}) \cap E(F) = \emptyset$ and $|(V(t'_{h_1}\overrightarrow{C}t'_{h_2}) - \{t'_{h_1}, t'_{h_2}\}) \cap S(F)| \leq 1$. Then there exists $(v_i, v_{i+1}) \in \overrightarrow{M}'$ such that $v_i\overrightarrow{C}v_{i+1} \subset t'_{h_1}\overrightarrow{C}t'_{h_2}$; in particular, if $(V(t'_{h_1}\overrightarrow{C}t'_{h_2}) - \{t'_{h_1}, t'_{h_2}\}) \cap S(F) = \emptyset$, then $(v_i, v_{i+1}) \in \overrightarrow{M}'$. \square

We are now in a position to complete the discussion for Case 2. In view of Claim 2.9, we may assume $|M'| \leq 1$. Let T_j be as in Subcase 1.2. Since $s \leq k$, there exists j_0 such that $|V(T_{j_0}) \cap \{t'_1, \ldots, t'_{m+k}\}| \geq 2$. Take $t'_{h_1}, t'_{h_2} \in V(T_{j_0}) \cap \{t'_1, \ldots, t'_{m+k}\}$ with $t'_{h_1} \neq t'_{h_2}$ so that $t'_{h_1} \overrightarrow{C} t'_{h_2} \subset T_{j_0}$. By Claim 2.10, there exists $(v_i, v_{i+1}) \in M'$ such that $v_i \overrightarrow{C} v_{i+1} \subset t'_{h_1} \overrightarrow{C} t'_{h_2}$; thus $M' = \{(v_i, v_{i+1})\}$. Then by Claim 2.10,

 $V(T_{j_0}) \cap \{t'_{1}, \ldots, t'_{m+k}\} = \{t'_{h_1}, t'_{h_2}\} \text{ and } |V(T_{j}) \cap \{t'_{1}, \ldots, t'_{m+k}\}| \leq 1 \text{ for each } j \neq j_0. \text{ Since } s \leq k, \text{ this implies } s = k \text{ and } |V(T_{j}) \cap \{t'_{1}, \ldots, t'_{m+k}\}| = 1 \text{ for each } j \neq j_0. \text{ In particular, } V(T_{j}) \cap \{t'_{1}, \ldots, t'_{m+k}\} \neq \emptyset \text{ for each } j. \text{ Now take } j \text{ such that } f_{j} \in S(F) \cap V(C) \text{ (note that we get } S(F) \cap V(C) \neq \emptyset \text{ from } s = k). \text{ Let } t'_{h_3} \text{ be the vertex in } V(T_{j-1}) \cap \{t'_{1}, \ldots, t'_{m+k}\} \text{ closest to } f_{j} \text{ on } S_{j-1} \text{ (when } j = 1, \text{ we take } T_0 = T_{m+s-1} \text{ and } S_0 = S_{m+s-1}), \text{ and let } t'_{h_4} \text{ be the vertex in } V(T_{j}) \cap \{t'_{1}, \ldots, t'_{m+k}\} \text{ closest to } f_{j} \text{ on } T_{j} \text{ (it is possible that } t'_{h_3} = t'_{h_2} \text{ or } t'_{h_4} = t'_{h_1}). \text{ By Claim 2.10, there exists } (v_{i'}, v_{i'+1}) \in \widetilde{M}' \text{ such that } v_{i'} \overrightarrow{C} v_{i'+1} \subset t'_{h_3} \overrightarrow{C} t'_{h_4}. \text{ Then } (v_{i}, v_{i+1}) \neq (v_{i'}, v_{i'+1}).$ Thus we have |M'| = 1 and $|\widetilde{M}'| \geq 2$, and we therefore obtain a desired cycle by Claim 2.9. This concludes the discussion for Case 2, and completes the proof of Theorem 1.

Acknowledgment

We would like to thank Professor Yoshimi Egawa for his assistance in the preparation of this paper.

References

- J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Macmillan Co., New York (1976).
- [2] R. Diestel, Graph Theory, Springer-Verlag, New York (1997).
- [3] Y. Egawa, R. Glas and S. C. Locke, Cycles and paths through specified vertices in k-connected graphs, J. Combin. Theory Ser. B 52 (1991), 20-29.
- [4] R. Glas, Längste Wege und Kreise durch vorgegebene Ecken in Graphen, Diplomarbeit, TU Berlin (1987).
- [5] Z. Hu, F. Tian and B. Wei, Long cycles through a linear forest, J. Combin. Theory Ser. B 82 (2001), 67–80.
- [6] S. C. Locke, A generalization of Dirac's Theorem, Combinatorica 5 (1985), 149–159.
- [7] T. Sakai, Long cycles and paths through vertices with small degree, preprint.
- [8] T. Sakai, Long paths and cycles through specified vertices in k-connected graphs, Ars Combin. 58 (2001), 33-65.