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Non-small cell lung cancer - genetic predictors
Vladimira Koudelakova, Magdalena Kneblova, Radek Trojanec, Jiri Drabek, Marian Hajduch

Background. Non-small cell lung cancer (NSCLC) accounts for approximately 85% of all lung cancer that is the leading 
cause of cancer-related mortality worldwide. Several predictive markers have been found in NSCLC patients to date 
but only a few are currently used for tailored therapy.
Methods and Results. PubMed and Web of Science online databases were used to search review and original articles 
on the most important predictive markers in NSCLC. 
Conclusion. EGFR activating mutations (exons 18 to 21) and EML4-ALK rearrangement are clinically important markers 
able to select NSCLC patients which benefit from EGFR or ALK tyrosine kinase inhibitors (gefitinib, erlotinib, crizotinib). 
Other markers, such as KRAS mutation, EGFR T790M mutation and C-MET amplification, are responsible for resistance 
to these inhibitors. Overcoming of this resistance as well as discovery of new potential markers and inhibitors is the 
main goal of ongoing research and clinical trials in NSCLC.
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INTRODUCTION

Lung cancer is the most frequent cause of cancer-relat-
ed deaths worldwide and it is responsible for more than 
1 million deaths annually1,2. The main reason is high tu-
mor aggressivity and high metastasis potential. Non-small 
cell lung cancer (NSCLC) is diagnosed in approximately 
85% of lung cancer cases and includes the adenocarci-
noma, squamous cell carcinoma and large cell carcinoma 
subtypes3. The intensive research has been made in the 
past few years on genetic, transcriptional, translational 
and epigenetic levels and the remarkable discoveries have 
been found. At least nine important driver mutations 
causing NSCLC have been described, mainly in adeno-
carcinoma subtype. Several markers are already used for 
best treatment strategy selection. Developing new drugs 
targeting the markers, clarification of predictive value of 
these markers as well as new markers discovering is still 
the subject of intensive research4. In this review, the clini-
cally most important genetic alterations in NSCLC, such 
as EGFR, KRAS, C-MET, EML4-ALK and ROS1 are 
summarized. 

EGFR 

The epidermal growth factor receptor (EGFR) gene 
is located on 7p11 and encodes a tyrosine-kinase recep-
tor from the HER family which is involved in develop-
ment, progression, angiogenesis and metastasis of various 
cancer types. After ligand binding (EGF, TGF-α, am-
phiregulin), the receptor hetero-/homodimerizes, auto-
phosphorylates tyrosine residues and activates two main 

downstream signaling pathways – RAS/MAPK and PI3K/
AKT (ref.5). Three mechanisms of EGFR activation in 
tumor cells have been described, including EGFR muta-
tions, amplification/gene copy number gain (CNG) and 
overexpression. 

Amplification/overexpression
EGFR overexpression is found in up to 80% of 

NSCLC cases and EGFR CNG/amplification is found 
in almost 60% of them, while these events often occur 
concurrently6-12. Increased EGFR expression was consid-
ered to be a poor prognostic factor in NSCLC patients12,13 
but a meta-analysis combining 18 studies of 2972 patients 
did not confirm the prognostic significance of EGFR ex-
pression (HR=1.14; 95% CI 0.97-1.34; P=0.103) (ref.14). 

The predictive value of EGFR amplification/overex-
pression for responsiveness to EGFR tyrosine kinase in-
hibitors (EGFR TKIs) was tested in several studies. Initial 
studies, including the large trials BR.21 and ISEL, found 
clear association between increased EGFR copy num-
ber and good response to EGFR TKIs(ref.9,15-17). Other 
studies have not confirmed this finding18,19. In a recent 
meta-analysis20 which combined 22 independent studies 
(2005-2009) including 1821 NSCLC patients treated with 
EGFR TKIs monotherapy, EGFR CNG was significantly 
associated with increased overall survival (OS) (HR=0.77; 
95% CI 0.66-0.89; P=0.001), progression-free survival 
(PFS) (HR=0.60; 95% CI 0.46-0.79; P<0.001) and time-to-
progression (TTP) (HR=0.50; 95% CI 0.28-0.91; P=0.02). 
The following studies published by Brugger et al.21 and 
Hirsch et al.22 did not confirm the predictive significance 
of EGFR FISH positivity to erlotinib. The clinical rel-
evance of EGFR amplifications is difficult to decipher 
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because about 50% of EGFR-mutated cases show the co-
existence of increased EGFR copy number. The predictive 
value of EGFR copy number could be therefore affected 
by the occurrence of simultaneous EGFR mutation8,15,23. 
At the present, EGFR copy number testing is not recom-
mended in the selection of treatment in NSCLC. 

Activating mutations
In 2004, two independent research groups24,25 se-

quenced EGFR in advanced NSCLC patient samples. 
The aim was to evaluate the possible predictive value of 
EGFR mutations for EGFR TKIs therapy. In 14 out of 15 
patients who were good responders to gefitinib therapy, 
small in-frame deletions or amino acid substitutions were 
identified. No EGFR mutations were found in gefitinib 
non-responders. In these studies, EGFR activating muta-
tions were identified24,25. 

Activating mutations of EGFR, occurring in exon 18 
to 21 in the ATP-binding pocket part of the tyrosine-kinase 
domain, have been reported in 5 to 30% NSCLC cases 
depending on study population (app. 15% incidence in 
Caucasians compared to 30% in Asians). These mutations 
lead to a ligand-independent EGFR activation and are 
preferentially found in never/former smokers, women, 
East Asians and patients with adenocarcinoma histo-
logy. More than 3000 somatic EGFR mutations have 
been described to date26. Deletions in exon 19 (including 
residues 746 to 753) and arginine to leucine substitution 
(L858R) in exon 21 constitute about 90% of them6,8,27. 
Substitution of glycine to serine, alanine or cysteine in 
codon 719 (G719X) of exon 18 occurs in an additional 4% 
of cases and other missense mutations and small in-frame 
duplications/insertions in exon 20 account for the rest6. 

Targeted therapy 
The most effective inhibitors of EGFR tyrosine kinase 

signalization are the small anilinoquinazoline deriva-
tives, that act as reversible ATP-competitive inhibitors, 
erlotinib (Tarceva®, Genentech) and gefitinib (Iressa®, 
AstraZeneca). 

After successful preclinical28 and phase I clinical stud-
ies29,30, gefitinib progressed to phase II studies. Objective 
response rates between 10 and 20% were reported in two 
double-blind, randomized phase II trials (IDEAL 1 and 
2) which enrolled 210 and 221 NSCLC patients previ-
ously treated with one or two regimes31,32. Based on these 
results, gefitinib was FDA approved for advanced NSCLC 
patient treatment in May 2003. Based on results from un-
successful ISEL study, in June 2005, FDA limited the use 
of gefitinib. However, the IPASS trial confirmed the ben-
efit of patients with EGFR mutations of gefitinib therapy 
and European Medicines Agency (EMA) approved gefi-
tinib for the treatment of locally advanced or metastatic 
NSCLC patients with EGFR activating mutation in June 
2009 (ref.33,34).

The low-molecular weight inhibitor, erlotinib, showed 
antitumor activity in preclinical and phase I clinical stud-
ies35. Erlotinib was FDA approved in November 2004 
based on the results of phase III randomized trial BR.21 
which included 731 NSCLC patients treated by erlotinib 

or placebo in second or third line setting. The OS of the 
treated group was 2 months longer than the placebo group 
(6.7 months vs. 4.7 months). The 1-year OS was 31% 
for the erlotinib group compared to 22% for the control 
group36. 

The predictive role of EGFR mutations to EGFR 
TKIs therapy sensitivity was revealed by different stud-
ies and confirmed by large meta-analysis including 59 
studies of 3101 NSCLC patients. EGFR mutations were 
predictive of response to single agent EGFR TKIs with 
sensitivity and specificity of 0.78, resp. 0.86 (ref.37). Many 
other studies elucidating EGFR TKIs efficiency in dif-
ferent settings and biomarker-selected populations were 
recently reviewed38,39. In general, EGFR TKIs treatment 
significantly improves the survival of NSCLC patients 
with EGFR mutations compared to chemotherapy.

Several clinical trials, clearly reviewed by Patil et al.40, 
are evaluating the efficacy of cetuximab (Erbitux®, Merck 
KGaA) in combination with various types of treatment 
and assessing the predictive role of EGFR, KRAS and 
other potential biomarkers. Predictive value of EGFR mu-
tations, amplification or overexpression and KRAS muta-
tions for cetuximab therapy was not confirmed to date41,42. 

EGFR TKIs and de novo resistance
The best described mechanism of de novo resistance to 

EGFR TKIs is mutation in the KRAS oncogene which is 
present in 20 to 30% of lung cancer patients. KRAS and 
its importance for NSCLC therapy management is dis-
cussed below. Another cause of de novo resistance is the 
occurrence of insertion mutations in exon 20 of EGFR. 
In vitro studies have demonstrated that insertion in EGFR 
exon 20 causes both oncogenic transformation and resis-
tance to EGFR TKIs (ref.43). Experiences with patients 
harboring EGFR exon 20 insertions corresponds with 
preclinical data. Clinical data showed very few responses 
to EGFR TKIs in these patients15,44,45. Substitution of 
methionine to threonin at position 790 (T790M) of the 
EGFR exon 20 was reported in 2.7-40% of TKI-naïve cas-
es44,46,47. Patients with this mutation were found to have 
poorer outcome on EGFR TKIs therapy47-49. A secondary 
T790M mutation is more frequent and is associated with 
acquired resistance (described below). De novo resistance 
to EGFR TKIs therapy was also found in NSCLC patients 
with HER2 exon 20 insertions. Cancer cells presenting 
this mutation remain sensitive to HER2 targeted therapies 
but show resistance to EGFR TKIs (ref.50,51). 

TKIs and acquired resistance
Acquired resistance to EGFR TKIs is a serious prob-

lem because the majority of initially responsive, EGFR 
TKIs-treated patients develop resistance within 12 
months52. Resistance to EGFR TKIs may be caused by 
presence of cancer stem cell-like cells which are selected 
during EGFR TKIs therapy53. Generally, two crucial 
mechanisms of acquired resistance have been described, 
secondary T790M EGFR mutation and C-MET ampli-
fication. T790M mutation was described as the first 
mechanism of EGFR TKIs acquired resistance in 2005 by 
Kobayashi and Pao et al.54,55. Both groups studied NSCLC 
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patients with EGFR activating mutation (L858R or exon 
19 deletion), who progressed on the gefitinib or erlotinib 
therapy. The T790M mutation was identified by compari-
son of pre- and post-progression samples and confirmed 
on NSCLC cell lines in vitro. A secondary T790M muta-
tion is localized in the ATP-binding pocket of the kinase 
domain and is present in approximately 50% of NSCLC 
patients with acquired resistance27,56-58. Substitution in 
codon 790 increases ATP binding affinity of EGFR tyro-
sine kinase domain and EGFR TKIs are not able to bind. 
T790M mutated cells lose sensitivity to gefitinib and erlo-
tinib but not to irreversible TKIs (e.g. pan-HER inhibitor 
PF0299804) (ref.59). A second mechanism of acquired 
resistance, C-MET amplification, is discussed below. 

KRAS

KRAS (Kirsten rat sarcoma viral oncogene homo-
log) gene localized on 12p12 encodes membrane-bound 
GTPase protein which, as well as other members of 
the RAS protein family (NRAS and HRAS), plays an 
important role in EGFR-mediated signal transduction. 
EGFR activates KRAS through the adaptor protein Grb-
2 (growth factor receptor-bound protein 2) and guanine 
nucleotide-exchange factor (GEF) molecules which are re-
sponsible for exchange of GDP to GTP. GTP-KRAS binds 
target proteins (e.g. RAF), activates them and GTPase ac-
tivating proteins (GAP) stimulate GTP hydrolysis. KRAS-
mediated signaling regulates several cellular processes, 
such as proliferation, differentiation and survival. 

Activating mutations
Pathologic KRAS activation resulting from mutations 

in the KRAS gene has been found in many cancer types 
including NSCLC. KRAS mutations occur in approxi-
mately 20% of lung cancer cases60,61. The majority (about 
90%) of found point mutations occur in exon 2 (codon 12 
and 13), less frequent are mutations in exon 13 (codon 61) 
(ref.26,61). Point mutation leads to amino acid substitution 
and GAP insensitivity resulting in constitutively active 
GTP-binding KRAS signal transduction. KRAS mutations 
are more frequently found in Caucasian population, ad-
enocarcinomas, males and current smokers60,62,63. In never 
smoking patients with adenocarcinoma, KRAS mutation 
is probably associated with transition mutation (G to A) 
compared to transversion (G to T or G to C) in current 
smokers60. Recent meta-analysis has shown KRAS mu-
tations occurring in 26% of former or current smokers 
vs. 6% in never smokers64. The majority of studies have 
shown that KRAS and EGFR mutations are mutually ex-
clusive63,65-68. Co-existence of both mutations was reported 
by Han et al. only69. 

Prognostic role 
Several studies have evaluated the importance of 

KRAS mutations for survival, recurrence and metastasis. 
In 2005, Mascaux et al.70 published the results of meta-
analysis comparing KRAS prognostic significance in 28 
independent retrospective studies with a total number 

of 3620 patients included. This meta-analysis showed a 
worse survival of KRAS mutated patients with HRs of 
1.30 (95% CI, 1.20-1.49; P=0.01). In subgroup analysis, 
KRAS was a statistically significant prognostic factor 
in adenocarcinomas (HR=1.52; 95% CI, 1.30 to 1.78; 
P=0.02) but not in squamous cell carcinomas. Following 
studies did not confirm KRAS mutations as an indepen-
dent prognostic factor67,68. The prognostic importance 
of KRAS mutations in NSCLC remains controversial 
and needs to be confirmed on prospective well-defined 
NSCLC patient cohorts. 

Resistance to EGFR TKIs
Although the prognostic role of KRAS mutations is 

not clearly described, the predictive significance of EGFR 
TKIs therapy response was confirmed in several studies. 
KRAS mutations have been reported to be associated with 
de novo resistance to EGFR inhibitors in NSCLC patients 
in several studies15,16,19,58,65,69. Recently Mao et al. published 
meta-analysis of 22 studies analyzing 1470 NSCLC pa-
tients, KRAS mutation was detected in 16% (231/1470). 
Objective response rate (ORR) of KRAS mutated patients 
was 3% compared to 26% ORR in patients with wt-KRAS. 
This analysis confirmed that KRAS mutations are nega-
tive predictors of tumor responsiveness to EGFR TKIs 
therapy in NSCLC (ref.64). However, due to the mutual 
exclusivity of EGFR and KRAS mutations, the clinical 
importance of KRAS assessment in NSCLC remains low. 

C-MET

The C-MET protooncogene is localized on chromo-
some region 7q31 (ref.71) and codes a tyrosine kinase 
receptor - hepatocyte growth factor receptor (HGFR). 
HGF/SF (hepatocyte growth factor/ scatter factor) is 
the only known ligand of this receptor. HGF binding 
results in phoshorylation of C-MET tyrosine residues72, 
recruitment of adaptor proteins Grb2, Gab1, SHC and 
activation of downstream MAPK, PI3K-Akt and STAT 
signaling pathways73-75. C-MET and HGF are required for 
normal tissue development and therefore they are widely 
expressed in a various cell types. C-MET/HGF dysregula-
tion and pathogenic activation is described in almost all 
cancer types76-78 and has been identified as a promising 
therapeutic target. The first reported oncogenic C-MET 
activation resulting from translocation of chromosome 
1 and 7 was found in an osteosarcoma cell line. Fusion 
TRP-MET protein has constitutive tyrosine kinase trans-
forming activity76. C-MET can be activated by many other 
mechanisms, such as amplification, overexpression of re-
ceptor or ligand and point mutation57,79,80. 

Amplification/overexpression
C-MET amplification leads to receptor overexpression 

and constitutive HGF-independent activation81. C-MET 
amplification has been reported in range from 3 to 21% 
of EGFR TKI-naïve NSCLC patients and is associated 
with poor prognosis, increased proliferation, tumor inva-
siveness and angiogenesis82-87. The greatest percentage of 



Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2013 Jun; 157(2):125-136.

128

reported C-MET FISH-positive cases results from chro-
mosome 7 polysomy. True C-MET amplification is rare 
event in NSCLC, occurs in 3 to 7% cases84-86,88,89. Some 
studies have reported association between C-MET and 
EGFR amplification83,84. Chromosome 7 polysomy is 
probably responsible for significant correlation between 
EGFR and C-MET FISH positivity. Higher copy number/
overexpression of C-MET was found in brain metastasis 
compared to primary lung tumor tissues. C-MET-activated 
tumor cells have probably higher potential to migrate and 
create metastasis90,91.

Resistance to EGFR TKIs
The importance of C-MET copy number evaluation 

rapidly increased when Engelman et al. found that the 
cause of acquired resistance to gefitinib in an NSCLC cell 
line (HCC827) is amplification of chromosomal region 
7q31.1–7q33.3 where C-MET is localized. Consequently, 
C-MET-driven EGFR TKIs resistance was confirmed on 
18 NSCLC patient samples57. C-MET amplification has 
been described in approximately 20% of NSCLC patients 
with acquired resistance57,88,92-94; in some cases T790M mu-
tation of EGFR occurs simultaneously. Engelman et al. 
found that the bypass mechanism of C-MET signaling 
activation in resistant cells is through ERBB3-mediated 
PI3K-Akt signaling pathway57.

Turke et al. theorized that NSCLC cells become 
C-MET amplified and therefore resistant during EGFR 
TKIs treatment by selection of a preexisting small C-MET 
amplified clone95. This study was performed on EGFR 
TKIs-sensitive NSCLC cell line HCC827 and 27 paired 
NSCLC patient samples (pre- and post-therapy). In the 
cell line study, a small subpopulation of C-MET amplified 
cells increased 300x over 19-days EGFR TKIs exposure. 
In tumor samples, C-MET-driven resistance was observed 
in 4 out of 27 cases, rare subpopulation (< 1%) of C-MET 
amplified cells was found in pre-treatment specimens in 
all 4 cases. These data suggest that acquired C-MET-
driven resistance can be suppressed by dual EGFR and 
C-MET inhibition. 

Targeted therapy
Several strategies of C-MET inhibition based on 

the mechanism of HGF/C-MET activation have been 
reported. In C-MET amplified/overexpressed tumors, 
selective blockade of active receptor by small-molecule 
inhibitors or monoclonal antibodies seem to be effec-
tive. Several C-MET TKIs such as PHA665752 (ref.81,96),  
PF-02341066 (crizotinib, Xalkori®, Pfizer), SGX523 
(ref.97,98), ARQ197 (tivantinib, ArQule) (ref.99,100) and 
XL184 (cabozantinib, Exelixis) (ref.101) as well as mono-
clonal antibody MetMAb (onartuzumab, Genentech) 
(ref.102) were tested in a preclinical setting on NSCLC 
cell lines and xenograft models. 

Cabozantinib, dual inhibitor of VEGFR2 and C-MET, 
has reached clinical testing in several cancer types. In 
NSCLC, cabozantinib is investigated in combination with 
erlotinib compared to erlotinib alone in phase I/II clinical 
study (NCT00596648) (ref.103). This inhibitor seems to be 

an effective inhibitor of tumor angiogenesis and metasta-
sis in C-MET-deregulated NSCLC cases101. 

One of the most promising molecules is the non-ATP-
competitive selective C-MET inhibitor tivantinib which 
passed phase I and II clinical trials. Sequist et al.104 re-
ported results of double-blind randomized phase II trial 
(NCT00777309) including 167 randomly assigned previ-
ously treated, EGFR TKI-naïve NSCLC patients. Patients 
who obtained erlotinib combined with tivantinib (ET) 
were compared to patients obtaining erlotinib with pla-
cebo (EP). Median PFS was 3.8 months for ET com-
pared to 2.3 months for EP (HR=0.81; 95% CI, 0.57-1.16; 
P=0.24). ET-treated patients had significantly longer time 
to development of new metastasis (7.3 vs. 3.6 months, 
P<0.01). Significantly better response to ET therapy was 
observed in KRAS mutated patients compared to KRAS 
mutated in the EP regime (HR=0.18; 95% CI, 0.05 to 0.70; 
P=0.006). In this study, only 2 patients had true C-MET 
amplification, increased copy number (≥ 4 copies/cell) 
was found in 37 patients. C-MET positive patients tend 
to benefit from the ET regime and this benefit rises with 
increasing cut-off of C-MET copy number. Tivantinib in 
combination with erlotinib can prolong PFS, OS and time 
to metastasis in NSCLC patients compared to erlotinib 
alone. Ongoing clinical trials combining tivantinib and 
erlotinib in different setting are summarized in Table 1. 

Crizotinib, a dual inhibitor of ALK and C-MET ki-
nases is approved for treatment of NSCLC patients with 
ALK rearrangement. Nevertheless, response to crizotinib 
was shown in non-ALK rearranged NSCLC cell lines, 
xenograft model105 as well as patient with de novo amplifi-
cation of C-MET (ref.106). Anti-tumor activity of crizotinib 
is studied in randomized phase I/II trial (NCT00965731) 
in NSCLC patients treated by erlotinib alone versus erlo-
tinib in combination with crizotinib103. The results from 
this study could clarify the inhibitory effect of crizotinib 
in C-MET amplified cases as it was shown on xenograft 
models107.

MetMAb (onartuzumab) in combination with erlo-
tinib have been evaluted in randomized, double-blind, 
phase II trial (NCT00854308). PFS was 2.2 vs. 2.6 
months for patients obtained erlotinib + MetMAb (EM) 
vs. erlotinib + placebo (EP). In subgroup of C-MET 
positive NSCLC patients, PFS was 2.9 for EM vs. 1.5 
months for EP. Efficiency of MetMAb in NSCLC 
should be confirmed by ongoing clinical trials combining 
MetMAb with erlotinib (NCT01456325), bevacizumab/
pemetrexed (NCT01496742) and paclitaxel + platinum 
(NCT01519804) (ref.103).

ALK

The ALK (anaplastic lymphoma kinase) protein is 
a transmembrane tyrosine kinase receptor normally ex-
pressed only in the small intestine, testis and brain108 but 
not in normal lung tissue109. Translocation of the ALK 
gene t(2;5) leading to NPM1-ALK fusion was firstly 
reported by Morris et al.108 in anaplastic large cell lym-
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phoma (ALCL). Alterations of ALK gene were also 
identified in neuroblastomas110 and inflammatory myofi-
broblastic tumors111. In 2007, Soda and colleagues identi-
fied a small inversion in the short arm of chromosome 2, 
inv(2)(p21p23) in NSCLC patients. This inversion leads 
to fusion of the N-terminal part of the echinoderm mi-
crotubule associated protein like-4 (EML4) with kinase 
domain of ALK (ref.112). 

EML4-ALK fusion
EML4-ALK rearrangement is being found in ap-

proximately 2-7% NSCLC cases113-115. The fusion leads 
to protein redistribution to cytoplasm112 and protein di-
merization via coiled-coil domains of EML4 resulting in 
phosphorylation and highly oncogenic ALK kinase activa-
tion116,117. More than 13 variants of EML4-ALK have been 
identified to date containing different parts of EML4; 
the coiled-coil domain is preserved in all variants. Exon 
13 (variant 1), resp. exon 6a/b (variant 3a/b) of EML4 
fused to the ALK exon 20 are the two most frequent vari-
ants which are present in more than 50% cases117-120. Tree 
other rare fusion partners of ALK are known in NSCLC, 
KIF5B (ref.121), TFG (ref.122) and KLC1 (ref.123). The inci-
dence of these fusion partners is less than 1% (ref.121,122,124). 
Heuckemann et al. showed that protein stability and sen-
sitivity to treatment depend on EML4-ALK variant and 
fusion partner type125.

Except for ALK rearrangement, ALK amplification/
CNG have been reported120,126. Increased ALK copy num-
ber was associated with EGFR FISH positivity but no 
association with prognosis was found126. The significance, 
if any, of ALK CNG for response to therapy, prognosis or 
histopathologic features, needs to be analyzed.

A subgroup of EML4-ALK patients has typical clinical 
and histological features. ALK rearrangement is typically 
found in adenocarcinoma with signet ring cell subtype, 
younger patients113,114,116,117 with never or light (10 packs 
per year) smoking history114,127. No other association with 
gender or ethnicity has been found. ALK fusion is mutu-
ally exclusive in most NSCLC cases114,128,129, concurrent 
EGFR and KRAS mutations were described in only few 
cases130-134.

Targeted therapy
EML4-ALK fusion is a therapeutic target for the ATP-

competitive TKI crizotinib. In preclinical analyses, the 
inhibitory effect of crizotinib was confirmed on ALK 
rearranged cell lines derived from a variety of human 
cancers135,136. Based on these studies, crizotinib entered 
multicenter, open-label phase I trial (NCT00585195). 
In this study, crizotinib showed significant antitumor 
activity in enrolled 82 advanced, ALK-positive NSCLC 
patients. The ORR to crizotinib was 57% at mean treat-
ment duration of 6.4 months. The estimated probability 
of 6 month progression-free survival was 74% (ref.113). In 
the retrospective data analysis from this study, reported 
by Shaw et al.115, the 1-year OS was 74% and 2-year OS 
was 54%. ALK-positive patients treated by crizotonib 
had similar OS compared to EGFR TKIs-treated EGFR-

mutant patients (P=0.786) but significantly better OS than 
ALK-positive crizotinib-untreated group. Moreover, ALK-
positive crizotinib-treated patients had significantly better 
OS (P=0.020) than controls (wt-EGFR, ALK-negative) 
treated by conventional chemotherapy. Based on the re-
sults of phase I study and ongoing phase II studies (255 
patients; NCT00932451), crizotinib (Xalkori®, Phizer) 
was FDA approved in August 2011 and EMA approved in 
October 2012 for treatment of locally advanced or meta-
static ALK-positive NSCLC patients. Ongoing clinical 
trials evaluating efficiency of crizotinib in different setting 
are summarized in Table 2.

Resistance to crizotinib
Similar to other TKIs therapies, de novo as well as 

acquired resistance to crizotinib have already been re-
ported. Two mutations in ALK kinase domain, C1156Y 
and L1196M, were identified as potential mechanisms of 
resistance to crizotinib therapy in 28-years old NSCLC 
patient137. Both mutations as cause of acquired resistance 
to crizotinib were confirmed in following studies134,138 and 
other resistance-related mutations, L1152R, G1269A/S 
and S1206R, have been described134,139,140. Some other 
potential mechanisms of resistance, such as EML4-ALK 
CNG, KRAS and EGFR concurrent mutations, were de-
scribed by Doebele et al.134. 

Several treatment strategies overcoming crizotinib re-
sistance are tested on cell lines and xenografts models141,142. 
The Hsp90 inhibitors which show the most promising 
results are tested in number of clinical trials. Inhibitors 
IPI-504 (Phase II; NCT01228435), AP26113 (Phase I/II; 
NCT01449461), CH5424802 (Phase I/II; NCT01588028), 
X396 (Phase I; NCT01625234) are tested in advanced 
lung cancer patients in monotherapy125,143 whereas STA-
9090 (Phase I/II; NCT01579994) and AT13387 (Phase 
I/II; NCT01712217) inhibitors are tested in combination 
with crizotinib (detailed in Table 2) (ref.103). 

OTHER CLINICALLY IMPORTANT BIOMARKERS

HER-2 (17q) overexpression has been described in 
approximately 20% NSCLC cases, whereas insertion in 
HER-2 exon 20 is the rare event (2%). These mutations oc-
cur mainly in adenocarcinoma, non-smokers and Asians 
and are associated with resistance to EGFR TKIs (ref.50). 
This resistance can be overcome by dual TKIs inhibition 
by lapatinib or BIBW 2292 (ref.51,144). 

Translocation of ROS1 gene (6q) was identified as 
potential driver mutation in NSCLC cell lines122. ROS1 
gene rearrangement has been described in approximate-
ly 2% NSCLC cases and tree fusion partners, CD74, 
SLC34A2 and FIG, have been identified to date145,146. 
Patients with ROS1 rearrangement have similar features 
as patients harboring EGFR mutation or ALK rearrange-
ment, ROS1 rearranged patients are more likely Asian, 
younger and never smokers with adenocarcinoma histol-
ogy145. ROS1 rearrangement leads to constitutive kinase 
activity and sensitivity to TKIs in vitro135. Bergethon et al. 
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showed promising antitumor activity of crizotinib in one 
patient with ROS1 rearrangement treated in clinical trial 
NCT00585195 (ref.145). 

Mutations in PIK3CA, BRAF and AKT genes were 
reported in up to 3% of lung cancer cases. Large scale of 
BRAF, MEK, AKT and mTOR inhibitors are tested in 
ongoing clinical trials and are a promise for new person-
alized treatment opportunities in NSCLC patients147,148.

CONCLUSION

Personalized medicine requires molecular genetic test-
ing prior to decision about which therapeutic regimen 
is appropriate for an individual patient. Several predic-
tive markers have been identified in NSCLC patients but 
only the minority of them is clinically used for therapy 
individualization. Nevertheless, personalized therapeu-
tic opportunities of NSCLC are expected to increase in 
the following years. Number of clinical trials is currently 
evaluating efficiency of inhibitors directed against vari-
ous genetic markers and ongoing intensive research is 
focused on identification of new therapeutic targets as 
well as testing new therapeutics. In future, clear algorithm 
reflecting clinically importance of each marker will be 
required for the routine diagnostics in NSCLC because of 
limited sample material. New methodologies combining 
currently using methods able to evaluate several markers 
simultaneously will be needed for appropriate NSCLC 
patient care management. 

In conclusion, EGFR mutations and EML4-ALK rear-
rangement are currently the strongest predictive markers 
and only clinically applicable markers for patient selection 
to targeted therapy in NSCLC. 
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