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CD4+ T cell exhaustion revealed by high
PD-1 and LAG-3 expression and the loss of
helper T cell function in chronic hepatitis B
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Abstract

Background: Immune inhibitory receptors play an important role in chronic infections. However, little is known about
their role in hepatitis B virus (HBV) infection. Here, we analyzed the relationship between programmed death-1 (PD-1)
and lymphocyte activation gene-3 (LAG-3) expression on CD4+ T cells and HBV disease progression.

Results: PD-1 and LAG-3 expression was significantly higher on CD4+ T cells from HBV patients than on those from the
HCs. In addition, a significant positive correlation was found between the PD-1 and LAG-3 expression levels and the
ALT(alanine aminotransferase) level. CD4+ T cell function was inhibited by high PD-1 and LAG-3 levels, and CD4+ T cells
with high PD-1 and LAG-3 expression lost the ability to secrete IFN-γ, IL-2 and TNF-α. Furthermore, blockade of the
PD-1 and LAG-3 pathways reversed the damage to CD4+ T cell proliferation and cytokine secretion.

Conclusions: CD4+ T cell exhaustion during chronic HBV had high PD-1 and LAG-3 expression and the absence of
helper T cell cytokines, including IFN-γ, IL-2 and TNF-α. After blocking PD-L1 and LAG-3, CD4+ T cell function in chronic
hepatitis B patients was partially restored.

Keywords: CD4+ T cells, Chronic HBV infection, Inhibitory molecules, Programmed death 1 (PD-1), Lymphocyte
activation gene-3 (LAG-3), Cytokine

Background
Chronic hepatitis B virus (HBV) infection is a serious
public health challenge that can result in severe conse-
quences, such as liver cirrhosis and hepatocellular
carcinoma [1]. Vigorous immune responses against
HBV, including HBV-specific T cell and helper T cell
responses, are thought to play a dominant role in viral
clearance and disease pathogenesis as well as in prevent-
ing or reducing the prevalence of liver cirrhosis and liver
cancer [2, 3]. During virus infection, CD8+ T cells
urgently require CD4+ T cells because CD8+ T cell func-
tions are seriously damaged and are gradually reduced

without the assistance of CD4+ T cells [4, 5]. CD4+ T
cells are known to participate in all immune responses
and have multiple effects. CD4+ T cells can differentiate
into Th1, Th2, Th17 and regulatory T (Treg) cells. These
cells mediate signals through cell-to-cell contact or
cytokine secretion. Th1 cells mainly secrete cytokines
such as IL-2, IFN-γ and TNF-α to eradicate viruses and
parasites causing intracellular infections and play an
important role in cellular immunity. Th2 cells participate
in humoral immunity by secreting cytokines that can
promote antibody production, such as IL-3, IL-4, IL-6
and IL-10. Then, the antibodies clear pathogens causing
extracellular infections [6]. Treg cells (CD4+CD25+Foxp3+

regulatory T cells) are a group of CD4+ T cells with immu-
nomodulatory effects that have a powerful immunosup-
pressive function. Foxp3 is a critical factor that can serve
as a promotion factor for Treg cells. The main function of
Foxp3 is regulating and maintaining Treg differentiation
and development [7, 8]. Treg cells can reduce the effect-
iveness of HBV-specific T cell responses when the virus
persists. Removal of Treg cells from patients can lead to
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HBV-specific T cell expansion and IFN-γ overproduction
[9]. Therefore, CD4+ T cells play an important role in viral
clearance and disease pathogenesis during HBV infection.
The weak T cell response of chronic hepatitis B pa-

tients (CHB) is associated with persistently high viral
replication [2, 10]. Recent studies revealed that the
sustained combination of exposure to antigens with high
viral loads and excessive inhibitory signals in the liver
microenvironment could lead to a progressive loss of T
cell function and exhaustion of HBV-specific T cells
[1, 3]. These “exhausted T cells” presented a state
dysfunction of T cell and was firstly observed during
chronic lymphocytic choriomeningitis virus (LCMV)
infection in mice [11, 12] exhibit increased expression
of immune inhibitory molecules, including programmed
death-1 (PD-1), lymphocyte activation gene-3 (LAG-3 or
CD223), T cell immunoglobulin domain and mucin
domain 3 (TIM-3), CD244 (2B4) and CD160 [13–16].
Indeed, in our previous studies, we demonstrated high
PD-1 and LAG-3 expression levels on exhausted CD8+ T
cells during chronic HBV infection [17, 18].
PD-1 and LAG-3, which have been identified as

markers of exhausted T cells in chronic diseases, play a
role in homeostasis maintenance and immune regula-
tion, especially during chronic viral infections resulting
in depletion of T lymphocytes [18, 19]. Those inhibitory
molecules have been associated with a hierarchical
dysfunction of CD8+ T cell proliferation, cytokine pro-
duction, and increased apoptosis [20–22]. However, the
detailed roles of PD-1, LAG-3 and other inhibitory re-
ceptors in the development and maintenance of HBV
CD4+ T cell dysfunction has not been elucidated.
In this study, we investigated the relationship between

the expression of inhibitory molecules on CD4+ T cells
in the peripheral blood and CHB disease progression.
Furthermore, we sought to understand the functional
impact of inhibitory molecules, such as PD-1 and LAG-
3, as measured by changes in CD4+ T cell proliferation
and IFN-γ, IL-2, TNF-α and IL-10 secretion.

Results
Expression of inhibitory receptors on the surface of
peripheral blood CD4+ T cells from chronic hepatitis B
patients
The frequencies of CD4+ T cells with surface expression
of the inhibitory receptors PD-1, LAG-3, CD160 and
CD244 were evaluated in the CHB patient group (CHB
group) and healthy control group (HC group) using flow
cytometry. Significantly higher frequencies of PD-1+CD4+

and LAG-3+CD4+ cells were observed in the CHB group
than in the HC group (P = 0.0014 and P = 0.0104, respect-
ively). No difference was found in the CD160 and CD244
expression levels (Fig. 1).

Correlation between hepatic injury and the PD-1 and
LAG-3 expression levels on T cells
Since PD-1 and LAG-3 were highly expressed by CD4+

T cells relative to the expression levels in the HC group,
we analyzed the association between the PD-1 and
LAG-3 expression levels on CD4+ T cells and the serum
ALT levels (as a marker of hepatic injury) together with
the HBV DNA levels among the HBV patients. A posi-
tive correlation was observed between PD-1 and LAG-3
expression and the serum ALT level (LAG3+CD4+: r =
0.3132, P = 0.0135, PD-1+CD4+: r = 0.3039, P = 0.0163,
Fig. 2a, b). However, no association was found between
the PD-1 and LAG-3 expression and HBV DNA levels
(LAG3+CD4+: r = 0.0423, P = 0.7436, PD-1+CD4+: r =
0.0811, P = 0.5305, Fig. 2 c, d). These results suggested
that the inhibitory receptors PD-1 and LAG-3 were
highly expressed by CD4+ T cells from the CHB patients
and were related to the degree of hepatic injury.

Difference in cytokine production between the exhausted
and non-exhausted CD4+ T cells
The frequencies of CD4+ T cells with Th1 cytokine ex-
pression, such as IFN-γ, IL-2 and TNF-α, were assessed
in the CHB group by flow cytometry. Higher IFN-γ, IL-2
and TNF-α expression levels were detected in both the
PD1−CD4+ and LAG-3−CD4+ cells than in the
PD1+CD4+ and LAG-3+CD4+ cells obtained from the
CHB patients (all P < 0.0001, Fig. 3). This result demon-
strated that high PD-1 and LAG-3 expression could lead
to CD4+ T cell dysfunction.

Fig. 1 Distribution frequencies of inhibitory receptors on the
surfaces of CD4+ T cells from the CHB patients and healthy
individuals. Analysis of the percentages of PD-1+, LAG-3+, CD160+

and CD244+ CD4+ T cells from the HCs (n = 60) and CHB
patients.*P < 0.05, **P < 0.01
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PD-L1 and LAG-3 antibodies improve the ability of Th1
cells to produce cytokines
Next, we characterized the reactivation of CD4+ T cells
based on the production of Th1 cytokines, such as IFN-
γ, IL-2 and TNF-α, following PD-L1 and LAG-3 block-
ade. IFN-γ, IL-2 and TNF-α production was significantly
higher in the cells isolated from CHB patients and
stimulated with HBcAg + anti-LAG-3, HBcAg + PD-L1
and HBcAg + anti-PD-L1 + anti-LAG-3 than in those

stimulated with HBcAg alone (P = 0.019, P = 0.041 and
P = 0.003; P = 0.0004, P = 0.003 and P = 0.014; and P =
0.002, P = 0.001 and P = 0.006, respectively). No signifi-
cant differences were noted in cytokine production
between the cells stimulated with HBcAg + IgG1 and
HBcAg (Fig. 4). These results indicated that neither PD-
L1 nor LAG-3 blockade was able to reactivate CD4+ T
cell functions when compared to the ability of antigenic
stimulation alone.

Fig. 2 Association between the frequency of PD-1+and LAG-3+ CD4+ T cells and conventional markers for liver damage in CHB patients.
a: Relationship between the serum ALT levels and the percentages of CD4+ LAG-3+ T cells in the CHB patients. b: The relationship between the
serum ALT levels and the percentage of CD4+ PD-1+ T cells in the CHB patients. c: The relationship between the HBV DNA levels and the
percentages of CD4+LAG-3+ T cells in the CHB patients. d: The relationship between the HBV DNA levels and the percentages of CD4+PD-1+ T
cells in the CHB patients

Fig. 3 Comparison of Th1 cytokine levels in PD1− and LAG-3−CD4+ T cells and in PD1+ and LAG-3+ CD4+ T cells. The proportions of IFN-γ, IL-2
and TNF-α-producing PD-1− LAG-3−CD4+ and PD-1+LAG-3+CD4+ T cells. ***P < 0.001
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The PD-L1 and LAG-3 antibodies suppress Foxp3
expression
Treg surface markers, including CD4, CD25 and Foxp3,
were analyzed by flow cytometry. The proportion of
Foxp3+ cells among the CD4+CD25+ cells was lower
when the cells were stimulated with HBcAg + anti-
LAG-3, HBcAg + PD-L1 and HBcAg + PD-L1 + anti-
LAG-3 than when stimulated they were with HBcAg
alone or HBcAg + IgG1 (P = 0.0005, P < 0.0001 and P =
0.0002, respectively; Fig. 5a). These findings suggested
that blocking PD-L1 or LAG-3 would prevent the pro-
duction of Tregs.

The PD-L1 and LAG-3 antibodies reduced IL-10 secretion
from CD4+ T cells
We used ELISA to measure the cytokine levels in the
culture supernatants from CD4+ T cells stimulated with
HBcAg, HBcAg + IgG1, HBcAg + anti-LAG-3, HBcAg +
anti-PD-L1 and HBcAg + PD-L1 + anti-LAG-3. We
found that IL-10 could be inhibited by the LAG-3 or
PD-L1 antibody (P = 0.002 P = 0.005 and P = 0.004, re-
spectively, compared with HBcAg alone; Fig. 5b). We
speculated that PD-L1 and LAG-3 blockade contributed
to the reduced inhibition of CD4+ T cells. Other cyto-
kines, including IL-6, IL-4 and TGF-β, were also exam-
ined. However, no change in IL-6 was found, and the
IL4 and TGF-β levels were too low to be detected (data
not shown).

Discussion
T cell exhaustion was first described 20 years ago by
Zajac and Gallimore in a lymphocytic choriomeningitis
virus (LCMV)-infected mice suffering from specific
CD8+ T cell dysfunction [11, 12]. A similar phenomenon
was later confirmed in HBV, HCV, and cancer patients
[23]. Researchers discovered that T cells exhibited pro-
gressive and gradual exhaustion during persistent infec-
tion [24, 25]. T cell exhaustion begins once the virus

begins to replicate on a massive scale, as shown by
higher expression of inhibitory molecules (such as PD-1
and LAG-3) and limited T cell proliferation and dysfunc-
tion [26, 27]. Eventually, T cell exhaustion results in
inhibition of host immune responses and hence the patho-
gen becomes dominant, leading to persistent infection.
T cell exhaustion is a status of gradual T cell dysfunc-

tion that arises during chronic infections. The inhibitory
receptors PD-1 and LAG-3 are expressed successively
on the cell surface and emerge only when the cells are
close to apoptosis. The numbers and types of receptors
are closely related to the degree of T cell exhaustion
[28, 29]. During HBV infection and clearance, CD4+

T cells are the key factor regulating on the cellular
CTL response to HBV [30–32]. According to previous
research, the lack of CD4+ Th cells was the main
cause of CD8+ T cell exhaustion [33]. Although CD4+

T cells have remained important for T cell exhaustion
[34, 35], the mechanism of CD4+ T cell exhaustion in
chronic HBV-infected patients is not well understood.
Mueller et al. reported that efficient presentation of
durable virus antigen resulted in T cell exhaustion
[36]. High expression of inhibitory receptors on CD8+

T cells was related to sustained viral recognition [22].
The amount and variety of inhibitory receptors in-
creased during chronic HBV infection, and infection
led to T cell dysfunction, deviation from normal
effector cells, and apoptosis [22, 37, 38]. Previous re-
search had shown that blocking PD-1 or LAG-3 path-
way can stimulate T-cell activation and proliferation
to improve immunity and clearance of tumors and
virus [21, 39].
In this study, we compared the distribution frequen-

cies of both PD-1 and LAG-3 on CD4+ T cells from
CHB patients and healthy individuals. The distribution
frequencies of PD-1 and LAG-3 on CD4+ T cells from
CHB patients were significantly higher than those from
healthy individuals. Furthermore, our results showed a

Fig. 4 Effect of LAG-3 and PD-L1 blockade on Th1 cytokine release. IFN-γ, IL-2 and TNF-α expression on CD4+ T cells after HBV antigen
stimulation with anti-IgG1 (isotype), anti-LAG-3, anti-PD-1 and anti-LAG-3 together with anti-PD-1 for 48 h. *P < 0.05, **P < 0.01, ***P < 0.001
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significant positive correlation between PD-1 and LAG-3
expression on CD4+ T cells with conventional markers
for hepatic injury, such as ALT. This result indicated
that the distribution frequencies of PD-1 and LAG-3
were positively correlated with the level of liver
inflammation.
Tregs are a type of T cell subset that encompasses a

large population of lymphocytes. These cells play pivotal
roles in maintaining immune homeostasis, have

immunosuppressive functions and can inhibit the activa-
tion and proliferation of CD4+ and CD8+ T cells by
secreting inhibitory cytokines [40]. In patients with
chronic HBV infection, local expression of co-inhibitory
receptors and immunosuppressive mediators results in a
unique immune regulatory environment in the liver with
dysfunctional T cells. This hepatic suppressive micro-
environment consists primarily of higher numbers of
Tregs, upregulated programmed death-1/programmed

Fig. 5 Effect of LAG-3 and PD-L1 blockade on Treg expansion and inhibitory cytokine secretion by CD4+ T cells. a. Foxp3 expression on CD25+ T
cells after HBV antigen stimulation with anti-IgG1 (isotype), anti-LAG-3, anti-PD-1, and anti-LAG-3 with anti-PD-1 for 48 h. Graphs showing events
after gating on CD3+CD4+ T cells. b IL-10 secretion from CD4+ T cells after incubation of antigens with anti-IgG1 (isotype), anti-LAG-3, anti-PD-1
and anti-LAG-3 together with anti-PD-1 for 48 h. **P < 0.01, ***P < 0.001
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death ligand-1 (PD-1/PD-L1) signals and low levels of
Toll-like receptor (TLR) expression [2, 41]. Previous re-
search indicated that chronic HBV infection was related
to an increase in Tregs and defective CD8+ T cells that
failed to produce IFN-γ [42, 43]. Help from CD4+ T cells
is important for maintenance of CD8+ T cell function
during chronic infections, but CD4+ T cells also lose this
capacity during chronic HBV infections [44]. In our
study, PD-1 and LAG-3 blockade partially inhibited
CD4+CD25+Foxp3+ Treg expansion and suppressed in-
hibitory cytokine IL-10 secretion from CD4+ T cells. We
also observed that the ability of CD4+ T cells to produce
IFN-γ, IL-2, and TNF-α was improved by blocking PD-1
and LAG-3. This result indicated that CD4+ T cell func-
tions could be partly recovered by PD-1 and LAG-3
blockade.
T cell functions can be regulated by multiple inhibitory

molecules, including PD-1, LAG-3, CD224, CD160, T
cell immunoglobulin mucin-3 (Tim-3) and CTLA-4
[10, 16]. A recent study detected high LAG-3 and
PD-1 expression levels in chronic LCMV infections,
which could lead to CD8+ T cell dysfunction [45, 46].
However, very little research into CD4+ T cell exhaus-
tion is available. Our current study revealed that the
PD-1 and LAG-3 expression levels regulated the func-
tions of CD4+ T cells during chronic HBV infection.
CD4+ T cells with PD-1 and LAG-3 expression exhib-
ited reduced IFN-γ, IL-2 and TNF-α production.
However, CD4+ T cell function was restored when
PD-1 and LAG-3 activity was inhibited by treatment
with PD-L1 and LAG-3 antibodies.
Our findings characterize the intricate mechanisms

that regulate the immune response during chronic HBV
infection and may have therapeutic implications for fu-
ture T cell function therapies.

Conclusion
In summary, during HBV infection, CD4+ T cells appeared
as high expression of PD-1 and LAG-3 but loss of helper
T cells’ fuction such as decreased secretion of IFN-γ, IL-2
and TNF-α. After blocking PD-L1 and LAG-3, the func-
tion of CD4+ T cells in chronic hepatitis B patients can be
partially restored. Our findings could provide a new thera-
peutic implications for future T-cell function therapies.

Methods
Patients
A total of 62 treatment-naïve active CHB patients were
involved in this study, and 60 healthy individuals served
as controls (HCs) in parallel. The details for each experi-
ment for these patients (such as inhibitory molecule ex-
pression levels in CD4+ T cells and the effect of blocking
antibodies on CD4+ T cells) are provided in Fig. 6. The
diagnostic criteria for CHB referred to the American
Association for the Study of Liver Diseases (AASLD)
Practice Guidelines [47].
The clinical characteristics of all study groups are pre-

sented in Table 1. Patients with autoimmune disease,
diabetes, hyperthyroidism, hematological system dis-
eases, and other hepatotropic disease were excluded
from the study. Patients who received HBV treatment
within 6 months prior to blood sampling were also ex-
cluded. Written informed consent was obtained from all
individuals according to the Declaration of Helsinki
(1964). The Medical Ethics Committee of the First Affili-
ated Hospital, School of Medicine, Zhejiang University
(Hangzhou, China), approved the study.

Analysis of serum HBV markers and liver function
Serum ALT was measured using automated biochemical
techniques (Hitachi 7600, Tokyo, Japan) (upper limit of

Fig. 6 Flowchart of patients for each experiment in this study. *these patients were used for both Foxp3 and cytokine detection
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normal: 35 IU/L). The serum HBeAg level was deter-
mined using the Chemiluminescent Microparticle Im-
munoassay (CMIA) kit for the Architect-i2000 system
(Abbott Laboratories, Chicago, IL, USA), with a positive
result recorded as S/CO ≥ 1.0. The serum HBV DNA
load was also determined by ABI 7300 fluorescent quan-
titative PCR (Applied Biosystems Corporation, Foster
City, CA, USA), with a detection limit of 300 viral
genome copies/mL.

Peripheral blood mononuclear cell isolation
Peripheral blood mononuclear cells (PBMCs) were
isolated from blood samples by Ficoll-Hypaque density
gradient centrifugation (Amersham Pharmacia, Uppsala,
Sweden). The growth medium was supplemented with
10% heat-inactivated fetal calf serum (GIBCO, USA),
100 units/mL of penicillin and 100 μg/mL of strepto-
mycin, and the cells were cultured at 37 °C with 5%
CO2.

Flow cytometry analysis
The PBMCs were resuspended in PBS buffer and then
incubated with anti-CD4-FITC (Becton Dickinson
Biosciences, USA), anti-CD223-APC (R&D Systems,
Inc., USA.), anti-PD-1-PE-Cy7 (BioLegend, USA), anti-
CD160-PE (BioLegend, USA) and anti-CD244-PerCP-
Cy5.5 (BioLegend, USA) antibodies at room temperature
for 30 min in the dark. Immunoglobulin IgG isotype-
matched antibodies served as the negative controls. The
stained cells were analyzed using the FACScan™ system
(Becton Dickinson Biosciences, USA).

Isolation and stimulation of CD4+ T cells
CD4+ T cells were enriched from PBMCs by positive se-
lection using magnetic-activated cell-sorting columns
(Miltenyi Biotec, Germany) and adjusted to a cell density
of ~ 1 × 106 cells/mL. Purified CD4+ T cells were stimu-
lated for 72 h at 37 °C with HBV core antigen (1 μg/mL;
Meridian, BioDesign, USA) + PBS (control; GIBCO,
USA), HBV core antigen (1 μg/mL; Meridian, BioDesign,
USA) + anti-IgG1 (1 μg/mL; eBioscience, USA), HBV
core antigen + anti-PDL1 (1 μg/mL; eBioscience, USA),
HBV core antigen + anti-LAG-3 antibody (1 μg/mL;

Abcam, UK), and HBV core antigen + anti-PDL1 (1 μg/
mL) + anti-LAG-3 antibody (1 μg/mL). Subsequently, the
cell culture supernatants were collected and stored at −
80 °C for ELISA, and the cells were collected for flow
cytometry.

Determination of intracelluar cytokine release by flow
cytometry
After 72 h of in vitro stimulation, the cells were incu-
bated with a cell stimulation cocktail (1:500, eBioscience,
USA). After 5 h of incubation, the cells were stained with
anti-CD4-APC (BioLegend, USA) at room temperature
for 30min in the dark. After fixation and permeabilization,
the cells were stained with anti-IFN-γ-PerCP-Cy5.5
(BioLegend, USA), anti-IL-2-PE (BioLegend, USA), and
anti-TNF-α-FITC (BioLegend, USA) at room temperature
for 30min in the dark. Immunoglobulin IgG isotype-
matched antibodies served as the negative controls. The
cells were analyzed with the FACScan system.

Determination of Foxp3 expression by flow cytometry
To detect Foxp3, CD4+ T cells were incubated with anti-
CD4-FITC and anti-CD25-APC (eBioscience, USA). After
permeabilization and fixation, the cells were incubated
with anti-Foxp3-PE or an IgG1 control (eBioscience,
USA) at room temperature for 30min in the dark. Then,
the cells were then analyzed with the FACScan system.

Cytokine detection by ELISA
Sandwich ELISA technology was used to measure the con-
centrations of human IL-10, TGF-β and IL-4 in the CD4+

T cells. All Quantikine ELISA kits (BioLegend, USA) were
used according to the manufacturer’s instructions.

Statistical analysis
Continuous variables are presented as the mean ± stand-
ard error of the mean (SEM). The Mann-Whitney U test
was used to compare the HBV group with the healthy
control group, and the Wilcoxon signed rank test was
used to analyze differences between the anti-PDL1/
LAG-3-treated and untreated groups. The correlations
between the PD-1 and LAG-3 expression levels and the
HBV DNA and ALT levels were analyzed by Pearson’s
correlation analysis. The data were analyzed using
GraphPad Prism 7.0. P values < 0.05 were considered
statistically significant.
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