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Abstract 

It is well accepted in the literature that for effective grain refinement some solute is required in the 

melt to restrict the growth of the solid even if potent nucleating particles with a favourable physical 

nature are present. In this paper, we investigate the effect of solute on grain initiation in an 

isothermal melt, and an analytical model is developed to account for the effect of solute elements on 

the grain size. This study revealed that the solute elements in the liquid ahead of the growing 

crystals reduce the growth velocity of the nucleated crystals, and increase the maximum 

undercooling achievable before recalescence. This allows for more particles to be active for 

nucleation, and consequently increases the number density of active particles, giving rise to a finer 

grain size. The analytical model shows that the final grain size can be related to the maximum 

undercooling, average growth velocity and solid fraction at the moment of the recalescence. Further 

analysis using the free growth model and experimental data in the literature revealed that for a given 

alloy system solidified under similar conditions the grain size can be empirically related to 1/Q (Q 

is the growth restriction factor) to a power of 1/3, which is considerably different from the empirical 

linear relationship in the literature. It is demonstrated that the 1/3 power law can describe the 

experimental data more accurately than a linear relationship.  
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1. Introduction 

 

The solute content has significant effects on grain refinement of engineering alloys [1-4]. For 

effective refinement, not only do the grain refining particles themselves need to be potent for 

heterogeneous nucleation, but also some solute elements are required to enhance the efficiency of 

the particles by restricting the growth of the solid, either at a columnar growth front competing with 

equiaxed solidification or from particles where nucleation has already occurred [5-7]. The degree of 

growth restriction for a particular solute was initially described by the constitutional-supercooling 

parameter P [8]: 

 
k

Ckm
P 0)1(

        (1) 

where m is the liquidus slope, k the equilibrium partition coefficient, and C0 the solute content in the 

alloy melt. Maxwell and Hellawell [9] suggested that, for spherical growth restricted by the 

partitioning of a single solute, to a good approximation the crystal growth rate for a given 

undercooling is inversely proportional to the parameter Q: 

)1(0 kmCQ         (2)  

The parameter Q is usually referred to as the growth restriction factor, and is used as a measure of 

the effects of solute on grain refinement in the absence of solute interactions [10-16]. It was found 
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that the experimental data were better interpreted in terms of Q [17].  Empirically, the average grain 

size l can be described as a linear function of 1/Q for various Al [4,10-14,18,19], Mg [1,20] and Ti 

alloys [21]: 

 Qbal          (3) 

where a and b are empirical constants. By further analysis of the experimental data, it is believed 

that a is related to the number density of active nucleating particles and b is related to the efficiency 

of the nucleating particles [22]. 

 

To characterize and quantify the effect of nucleating particles on grain refinement, the contribution 

made by solute elements needs to be established. Maxwell and Hellawell [9] analysed the 

heterogeneous nucleation in a spatially isothermal melt using the classical heterogeneous nucleation 

theory by assuming spherical diffusion-controlled growth. They demonstrated that the latent heat 

evolved by the growth of the solid raises the melt temperature above the heterogeneous nucleation 

temperature (recalescence), and thus suppresses further nucleation events. The role of the solute is 

to restrict the growth rate of the growing interface, which, in turn, allows time for further nucleation 

events to occur, and the final grain size is the result of competition between heterogeneous 

nucleation and growth.  

 

Winegard and Chalmers [23] proposed the constitutional supercooling driven nucleation model, and 

suggested that the constitutional supercooling arising from solute enrichment in the liquid ahead of 

an advancing solid front could trigger nucleation on available nucleating particles. Following this 

nucleation mechanism, StJohn and co-workers [14,24] considered grain nucleation in the liquid 

ahead of a growing crystal with a small temperature gradient. They suggested that nucleation occurs 

when the amount of constitutional supercooling generated, ΔTcs, reaches the undercooling required 

for nucleation, ΔTn, and that the constitutional supercooling driven nucleation mechanism is 

responsible for the development of the solidified grain structure. Such semi-empirical models 

[14,24] were presented by a linear relationship between l  and 1/Q. On the other hand, Quested and 

Greer [25] analysed the efficiency of grain refiners during directional solidification, and found that 

the diffusional composition profile from the growing grains actually reduced the undercooling 

available for grain initiation. 

  

In the models mentioned previously, single-sized nucleating particles were assumed explicitly or 

implicitly. Greer et al. [17] found that the efficiency of a grain refiner could be explained better by 

using the free-growth criterion to describe grain initiation in the isothermal melt, in which a 

distribution of particle sizes was assumed. The undercooling required for grain initiation (ΔTfg) on 

an individual particle with size d is given by [17]: 

dS

σ
T

v

fg

4
         (4) 

where σ is the solid-liquid interfacial energy and ΔSv the entropy of fusion per unit volume. The 

free growth model revealed that the larger particles become active at a smaller undercooling, and 

most of the smaller particles remain inactive due to the occurrence of recalescence. For small 

castings the assumption of an isothermal melt and the application of the free growth criterion give a 

quantitatively correct prediction of the grain size with a numerical calculation [17,26-28].  

 

In this paper, we analyse the effect of solute content on grain refinement in an isothermal melt and 

the effect of constitutional undercooling on grain initiation. An analytical model will be presented 

to predict the grain size as a function of solute content in an isothermal melt. The analytical model 

will be validated against experimental results available in the literature. 

 

2. Effect of constitutional undercooling on grain initiation 
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It is well known that a solidification structure depends strongly on the solidification conditions. For 

simplicity, we will confine our discussion in this paper to solidification under isothermal conditions. 

Isothermal solidification is not only a hypothetical condition, but is also found in many practical 

cases as a good approximation. Due to the large thermal diffusion coefficient in the liquid state, the 

thermal diffusion length is usually two to three orders of magnitude greater than the solute diffusion 

length [9]. This makes it possible to achieve isothermal or near-isothermal solidification through the 

interplay between the external heat extraction and the latent heat release from the growing solid 

phase [17,26]. Such cases can be found in solidification of small castings with a low cooling rate, 

solidification of alloys with a low superheat and formation of the equiaxed zoon in DC casting.  

 

Fig. 1 shows a typical cooling curve during solidification under isothermal conditions. According to 

the free growth model [17], nucleation starts on the largest particle at a temperature just below the 

alloy liquidus (Tl), and progressively on the smaller particles. Nucleation ceases when recalescence 

occurs at temperature Tf, at which the external heat extraction balances the latent heat release due to 

the growth of the already nucleated crystals. Tf corresponds to the temperature for the smallest 

active particle to nucleate. The thermal plateau after recalescence corresponds to the growth 

temperature (Tg) of the nucleated crystals. The maximum nucleation undercooling ( Tre) at 

recalescence can be approximated as the difference between Tg and Tf. There should be no further 

nucleation events after Tf, and further solidification can only be achieved by crystal growth. A 

typical feature of isothermal solidification is the existence of recalescence [17,26]. To analyse the 

effect of solute contents on grain initiation, we will focus our discussion on the temperature range 

between Tl and Tf. 

 

Between Tl and Tf, there is a competition between nucleation of new crystals and growth of the 

existing crystals. The growth of an existing crystal will reject solute atoms from the solid into the 

liquid, resulting in an enrichment of solute in the liquid at the solid/liquid (S/L) interface if the 

partition coefficient k is less than unity. Fig. 2 shows a schematic illustration of a growing crystal 

with a radius r and a characteristic width (D/V) of the solute concentration profile in the liquid 

ahead of the growing crystal, where D is the diffusion coefficient of the solute in the liquid and V is 

the crystal growth velocity.  It is assumed that the solute atoms rejected by the growing crystal 

diffuse only into the region between r and r+D/V. Fig. 3 shows a schematic representation of the 

concentration profile ahead of a growing crystal. Cs and Ci are the solute concentrations in the solid 

and liquid, respectively, at the S/L interface. For simplicity, the solute content in the solid can be 

considered to be Cs=kC0, where C0 is bulk alloy composition. At the initial stage of solidification, 

the solute profile in the liquid between r and r+D/V can be well approximated by a straight line: 

 x
VD

CC
CC

/
x 0i

i .        (5) 

Thus, Ci can be obtained through the equality between the amount of solute rejected from the 

growing solid and the excess solute accumulated in the region between r and r+D/V. The 

constitutional (solute) undercooling, Ts, ahead of the growing crystal is then given by: 

 0is CCmT .        (6) 

It is clear that both Ci and ΔTs increase with the crystal growth. Thus, ΔTs reaches a maximum value 

at Tf, and therefore we only need to consider ΔTs at the moment of recalescence.  

        

The key question to answer is whether constitutional undercooling generated by the rejected solute 

from the growing crystals can activate nucleation on new particles. The physical properties used in 

the calculation are listed in Table 1. The calculated C0, Cs, Ci and ΔTs for various alloy 

compositions and process conditions are listed in Table 2. Fig. 4 shows the schematic liquidus (Tl) 

and local temperature (Tlc) profiles ahead of a growing crystal. ΔTkc is the sum of the kinetic and 

curvature undercoolings. ΔT is the local thermal undercooling, ΔT=ΔTre at the moment of 

recalescence. At a very early stage of solidification, ΔTs is usually much smaller than ΔT (ΔTre), as 
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indicated in Table 2. The liquidus in the region of D/V ahead of the growing crystals is decreased, 

due to the increase of solute content. Thus, the diffusional composition ahead of a growing crystal 

actually reduces the undercooling available for grain initiation. However, this conclusion is drawn 

based on the data in Table 2, where the cooling rate is relatively small. To confirm this conclusion it 

is necessary to investigate the effect of cooling rate on solute undercooling.  

  

Using the approach adopted in our previous study [28], l , ΔTre and the solid fraction at 

recalescence (fsr) are obtained for an AZ91 alloy solidified in a large range of cooling rates (0.1~10
3
 

K/s) with intensive melt shearing, and listed in Table 3. C0, Cs, Ci and ΔTs were calculated using the 

same procedure, and are also summarized in Table 3. The variation of ΔTs and ΔTre as a function of 

the cooling rate reveals that ΔTre increases significantly with the cooling rate, indicating that at a 

higher cooling rate the smaller particles become active, resulting in an increase in the total number 

of active particles. Consequently, the grains become finer at a higher cooling rate. On the other 

hand, ΔTs decreases with an increase of the cooling rate, and becomes negligible when the cooling 

rate is above 1 K/s. Thus, at a high cooling rate the constitutional undercooling ahead of the 

growing crystals becomes negligible compared to ΔTre, and could have little effect on grain 

initiation. It should be pointed out that such an analysis can only be treated qualitatively since the 

assumption of isothermal solidification becomes uncertain at a high cooling rate. 

 

On the other hand, for the cases of a small cooling rate the latent heat released by the growing 

crystal could lead to a temperature rise at the S/L interface, i.e. local recalescence. The heat flow 

from the S/L interface into the liquid will result in a negative temperature gradient surrounding the 

growing crystal, and the thermal undercooling becomes smaller in the melt adjacent to the S/L 

interface [9]. Therefore, the local recalescence further reduces the available undercooling for grain 

initiation in the diffusional zone of a growing crystal, and outside this region there always is a larger 

local undercooling (ΔT) available for grain initiation.  

 

Based on the above analysis, it can be safely concluded that in an isothermal melt, constitutional 

undercooling due to the growth of existing crystals cannot activate nucleation in an isothermal melt. 

This is in direct contrast to the recently proposed constitutional undercooling driven nucleation in 

the literature [14,24].  Further theoretical analysis is required to understand the exact mechanism of 

solute effects on heterogeneous nucleation. 

 

3. Modelling the solute effects on grain initiation 

 

3.1 Basic considerations 

 

Solidification conditions determine the solidification structure for a given alloy composition. In this 

study we assume that solidification occurs in an isothermal melt. During solidification of an 

isothermal melt, the latent heat released by the growing crystals leads to recalescence, which marks 

the end of nucleation according to the free growth criterion. The growth of the nucleated crystals 

before recalescence is expected to be spherical. Mullins and Sekerka [34] examined the stability of 

spheres growing by diffusion of solute, and concluded that morphological instabilities will occur 

when the size of a sphere crystal is 7 times the critical nucleation radius. At the time of recalescence 

in an isothermal melt, r and fsr are usually very small, with fsr being in the order of magnitude of 10
-

4
 for typical Al [9,26] and Mg alloy melts [28]. For an isothermal melt solidifying in the 

temperature range between Tl and Tf, the assumption of spherical growth is reasonably justified 

[17]. In addition, it is assumed that very potent nucleating particles with a log-normal size 

distribution are present in the isothermal melt, and therefore the free growth criterion can be directly 

applied in the analysis.  
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Solute contents have a strong influence on the solidification process of an isothermal melt through 

growth restriction [9]. The growth restriction factor Q is usually taken as a quantitative measure of 

such an effect. The higher the Q is, the lower the crystal growth velocity, and in turn the less latent 

heat is released from the growing crystals. Therefore, for alloys with higher Q, recalescence occurs 

at a lower temperature, providing a larger undercooling (larger ΔTre) for more particles to be active 

for nucleation. The number of active particles increases rapidly with the undercooling in the melt 

under the assumption of a log-normal distribution of particle size. The growth of these active 

particles eventually leads to recalescence. After recalescence, the undercooling required for the 

remaining particles in the melt is larger than ΔTre, and these particles become redundant. The grain 

initiation is then stopped by the recalescence, and ΔTre corresponds to the required undercooling for 

the smallest active particles in the melt. By assuming that there is no grain multiplication by 

dendrite fragmentation, the grain density Ng should be equal to the active particle density Na, and 

then the total number of active particles determines the average grain size l . At the same time, the 

accumulated solute ahead of the growing crystals reduces the undercooling available for grain 

initiation in the diffusional zone. Therefore grain initiation occurs outside the diffusion zone of the 

growing crystals, where the available undercooling increases with Q. Fig. 5 shows schematic 

cooling curves for the alloys with low and high Q. To sum up, the increase in solute content reduces 

velocity of crystal growth, increases the total undercooling achievable before recalescence. This in 

turn increases the number density of active particles for nucleation, and reduces the grain size in the 

solidified microstructure.  

 

3.2 The analytical model 

 

At temperatures between Tl and Tf, the radius of the i
th

 spherical crystal (ri) at the time t is given by 

[9,35]: 

 
2/1

i Dtr          (7) 

where λ is given by the invariant size approximation [35]: 

 

2/1
2

2/1 π4π2
S

SS
       (8) 

and  

 
i

c0

i

c

1

2

TTmCk

TT
S       (9) 

where ΔT is the total undercooling and ΔTc
i
 is the curvature undercooling of the i

th
 crystal.  

 

ΔT can be expressed as ΔT=ΔTs+ΔTc+ΔTk, where ΔTk is the kinetic undercooling. ΔTk may be 

neglected in comparison with ΔTs [9], and then ΔTs=ΔT-ΔTc. For very potent nucleating particles, 

ΔT is very small, usually a few tenths of a degree. Therefore, one has 0mC »ΔT-ΔTc, and S «1 

from equation (9). Both equations (8) and (9) can be simplified as: 

 

 
2/12/1

2/1π2
SS

S
      (10) 

and 

Q

TT

mCk

TT
S

i

c

0

i

c 2

1

2
.      (11) 

Substituting equation (11) into (10), one obtains: 

 

2/1
i

c2

Q

TT
.        (12) 
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Differentiating equation (7) with respect to time gives the growth rate of the i
th

 crystal as: 

 
2/1

2/1

i
i

2

1

t

D

td

rd
V .        (13) 

Rearranging equation (7) gives: 

 
D

r
t

2

2

i .         (14) 

 

Substituting equations (12) and (14) into (13) and rearranging, one has: 

 
QV

TTD
r

i

i

c
i .        (15) 

The volume fraction of the solid at the moment of recalescence is given by: 

 
a

1

3

isr π
3

4N

i

rf .        (16) 

 

For simplicity, it is assumed that the radius of growing crystals is identical at ΔTre, and fsr of the 

identical Na crystals is the same as that of the actual growing crystals. Thus, equation (16) becomes: 

 a

3

esr π
3

4
Nrf          (17) 

where re is the equivalent radius of the growing crystals, which is defined as the radius of Na mono-

sized crystals providing a solid fraction of fsr. These identical crystals have the same curvature 

undercooling cT  according to equation (4), where ΔTfg= cT , and hence the same growth rate V . 

Equation (15) becomes: 

 
QV

TTD
r cre

e .        (18) 

Rearranging equation (17) gives:  

Na= 3

e

sr

π4

3

r

f
.         (19) 

When recalescence occurs, Na=Ng. Ng is linked with the average grain size l  through the following 

equation [17]: 

Ng= 3

5.0

l
.         (20) 

One eventually obtains: 

 e

3/1

sr3

π2
r

f
l .        (21) 

Substituting equation (18) into (21) produces: 

QV

TTD

f
l cre

3/1

sr3

π2
.       (22) 

 

Equation (22) describes theoretically the effect of solute on the grain size produced under 

isothermal solidification conditions due to growth restriction of solute (Q) at the S/L interface. In 

addition to Q, the key parameters affecting grain size are fsr, ΔTre, cT  and V , which are all 

functions of Q, and can all be evaluated using the free growth criterion based on the procedures 

described in our previous paper [28]. Thus, the grain size can be calculated from equation (22) with 

fsr, ΔTre, cT , V , Q and D as input parameters. The calculated grain sizes for AZ91D alloy and 
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commercial-purity (CP) aluminium under different solidification conditions are compared with the 

experimental results [26,28] in Table 4. It is clear that the predicted gain sizes are in good 

agreement with the experimental results, suggesting that this analytical model can be used to predict 

the grain size. 

 

However, fsr, cT  and V , as input parameters for grain size prediction, can not be determined by 

experiment, limiting the predicting power of Equation (22). It is desirable to simplify Equation (22), 

and this can be achieved by analysing the dependence of such parameters on the growth restriction 

factor Q.  

 

For potent particles, ΔTre is considerably small. ΔTre can be obtained from the measurement of the 

cooling curves. On the other hand, it is not possible to obtain cT  from an experimental 

observation. cT  can be estimated according to equation (4) for re when the grain initiation is 

stopped, and the calculated cT  is listed in Table 2 for Mg and Al alloys. It can be seen that cT  is 

relatively small, compared to ΔTre, and can be neglected in most cases. Thus equation (22) can be 

simplified as: 

QV

TD

f
l re

3/1

sr3

π2
.        (23) 

 

According to the present model, the grain size is proportional to 3
1

srf . Generally, fsr is a function of 

Q, T , the Gibbs-Thomson parameter  and physical conditions of the grain refining particles. The 

theoretical calculations based on the free growth model [26] revealed that fs increases with Q, T and 

the addition level of the grain refiner. For example, fsr increases from 1.5 10
-4

 to 6.4 10
-4

 while the 

cooling rate increases from 0.22 K/s to 3.5 K/s for AZ91 alloy melts with intensive melt shearing 

[28]. fsr increases from 1.5 10
-4

 for Q=2.21 to 2.2 10
-4

 for Q=4.42 in the CP-Al melt with the 

addition of 1p.p.t. Al-5Ti-1B [26]. Table 2 lists the values of fsr for the alloys with different 

chemical compositions and solidification conditions. It can be seen that the variation of fsr is 

relatively small for typical casting conditions.  

 

V  can be estimated from an analysis of the experimental data. Ignoring cT , rearranging equation 

(18) gives: 

 
Qr

TD
V

e

re .          (24) 

The calculation results indicate that V  is strongly dependent on the cooling rate, and exhibits a 

slight variation for various alloys at a given cooling rate. For example, at a cooling rate of 3.5 K/s 

V  is 0.05 mm/s for CP Al with the addition of 1 p.p.t. Al-5Ti-1B, and 0.02~0.04 mm/s in the 

compositional range of 0.1~9% for Mg1-xAlx alloys. However, V  decreases dramatically to about 

0.00075 mm/s for AZ91 alloy at a cooling rate of about 0.2 K/s.  

 

Now let us analyse the dependence of fsr, ΔTre and V  on Q by taking the Mg-Al alloy system as an 

example. Figs. 6(a)-(c) show the fsr, ΔTre and V  evaluated from the experimental grain size data 

plotted against 1/Q. It is interesting to find that fsr, ΔTre and V  are all closely related to 1/Q, and 

their dependence on 1/Q can be described mathematically by a power law relationship as given in 

Fig. 6. By inserting such power law dependence on 1/Q into equation (23), one obtains a much 

simplified version of equation (23): 
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3/1

1

Q
Kl          (25) 

where K is a constant, which is independent of alloy composition, but strongly dependent on alloy 

systems, solidification conditions and the physical nature of nucleating particles, such as number 

density, size and size distribution. For a given alloy system and nucleating particles, K represents 

the combined effect of potency and efficiency of the nucleating system. The smaller the value K is, 

the higher the grain refining efficiency. 

 

Fig. 7 shows a comparison between experimental data from the literature [36] and the prediction 

from equation (25) for the Al-Si and Al-Zn systems. The good agreement in Fig. 7 suggests that 

(1/Q)
1/3

 accounts for the solute effect more effectively than a simple linear relationship.  In addition, 

it is found that the grain size of the majority of Al-based wrought alloys solidified under the TP-1 

condition [22] can be well described as a function of  (1/Q)
1/3

 with K=0.58,  as clearly demonstrated 

in Fig. 8.  

 

4. Discussion 

 

Grain refinement through enhancing heterogeneous nucleation requires highly potent nucleating 

particles with a high efficiency. However, the terms of potency and efficiency have been used in the 

literature in a rather confusing way. To clear the confusion, we have recently provided the 

definition of both terms according to the epitaxial nucleation model [37]. Nucleating potency is 

defined as the degree of the perfection of the lattice matching at the solid/substrate interface during 

heterogeneous nucleation and the better the lattice match, the higher the nucleation potency will be. 

Therefore, nucleating potency is an inherent property of a given nucleating system, which consists 

of the substrate, the solid and the liquid composition. By contrast, nucleating efficiency refers to the 

effectiveness of a given type of solid particles (e.g., TiB2) with specific physical characteristics and 

solidification conditions, such as number density, size, size distribution of the nucleating substrates, 

as well as cooling rate. For a given nucleating system, nucleation potency is fixed but nucleation 

efficiency can be changed by modifying the physical characteristics of the nucleating particles 

and/or changing the solidification conditions. Based on such definitions, we can analyse the effect 

of a solute on heterogeneous nucleation.  

 

Solute atoms affect the potency of a given nucleating system. According to the expitaxial nucleation 

theory [37], solute atoms may segregate at the liquid/substrate interface at temperatures above the 

alloy liquidus if this reduces the interfacial energy. The segregated solute atoms modify the 

crystallographic mismatch between the substrate and the solid phase during the nucleation process 

by either changing the lattice parameter of the solid solution or by formation of an intermetallic 

phase. If this modification reduces the misfit it will increase the potency of the nucleation system, 

(enhancing heterogeneous nucleation); if the solute atoms at the liquid/substrate interface enlarge 

the misfit it will decrease the potency and poison the heterogeneous nucleation.  

 

Solute atoms also affect nucleation efficiency. Based on the free growth criterion, the large 

nucleating particles start to grow as soon as the available undercooling reaches their ΔTfg in the 

isothermal melt. If the partition coefficient k<1, the growing new crystal will reject solute to the S/L 

interface, causing constitutional undercooling and growth restriction. As discussed previously in 

section 2, for an isothermal melt, constitutional undercooling will reduce the total undercooling, and 

will not be able to activate particles in the diffusion zone for heterogeneous nucleation. However, as 

demonstrated in section 3, growth restriction will allow more particles with a suitable size to be 

active for heterogeneous nucleation before recalescence, resulting in enhanced nucleation efficiency 

and a finer grain size in the solidified microstructure. 
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Based on the above analysis, Equation (23) has only taken into account the effect of solute on the 

nucleation efficiency by assuming all the nucleating particles are highly potent. Therefore, equation 

(23) can only be used to elucidate the effect of a solute on grain refinement through growth 

restriction, and its predicting power should not be overstated. However, although largely empirical, 

Equation (25) can account for the overall effect of solute on both potency and efficiency, and can be 

used to predict the grain size for a given nucleating system once the constant K has been evaluated 

from the experimental data for the system, as has been demonstrated in Figs. 7 and 8.  

 

In addition, the present model (equations (23) and (25)) provides a new understanding of the solute 

effect on grain refinement. Firstly, Equations (23) and (25) limit well. They give 0l  when 

Q . This means that an alloy with infinitely large growth restriction will give an infinitely 

small grain size. This is in contrast to the linear relationship (equation (3)), which predicts that 

al  when Q , being clearly unphysical. Secondly, the 1/3 power law offers a more accurate 

description of the experimental data available in the literature than the linear relationship 

[1,4,22,24]. The plots of grain size against 1/Q based on the experimental data in the literature 

frequently exhibit a deviation from the linear approximation at the high Q end for both binary and 

multi-component systems [1,22,24]. In contrast, the 1/3 power law (equation (25)) offers a better 

agreement with the experimental data, particularly at the high Q end of the plot. Thirdly, the model 

parameter K can be easily determined by a few careful experiments for a given alloy system 

solidifying under similar experimental conditions. This allows an easy assessment of the alloy 

composition on the grain size once K is evaluated. Finally, the model parameter K can be used as a 

direct measurement of the grain refining efficiency of a given nucleating system in comparison with 

other nucleating systems. The smaller the K is, the higher the grain refining efficiency is. 

 

Accurate prediction of grain size in an as-cast microstructure is very difficult if at all possible. 

Grain size is affected by both nucleation and growth processes. During growth after completion of 

nucleation, grain multiplication through dendrite fragmentation may take place under certain 

solidification conditions and result in a refined microstructure. Even if grain multiplication is 

eliminated and the grain size is completely determined by the nucleation process, there are still 

many factors affecting nucleation, and therefore grain size. It is well understood that heterogeneous 

nucleation is affected by alloy composition, the chemical and physical natures of the nucleating 

particles and the exact solidification conditions. Alloy composition affects both the potency of 

nucleating particles through adsorption at the liquid/particle interface and the efficiency through 

growth restriction; The crystal structure of the nucleating particles affects the misfit and therefore 

potency; the physical nature of the particles, such as number density, size and size distribution 

determine the nucleation efficiency; the solidification conditions, such as cooling rate and 

temperature gradient in the melt, also have a strong influence on nucleation efficiency. It seems 

impossible to take simultaneously all such variables into consideration in one single analytical 

model. Consequently, analytical modelling of grain refinement can only be focused on 

understanding the nucleation mechanism rather than an accurate prediction of grain size. 

 

5. Summary 

 

The effects of solute content on grain refinement in isothermal melts have been analysed. In an 

isothermal melt, an increase of Q restricts the growth of previously initiated grains, and results in 

larger undercooling being available for grain initiation on smaller particles until the grain initiation 

is stopped by the recalescence, leading to a finer grain size after solidification. On the other hand, 

the accumulated solute elements in the diffusional zone of the growing crystal actually reduce the 

undercooling available for grain initiation, and the grain initiation should occur only on the particles 

outside the diffusional zone.  
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An analytical model has been developed to predict the grain size solidified under an isothermal 

condition. This analytical model revealed that the relationship between l  and 1/Q can be described 

as QVTDfl re

3/1

sr3/2 , where fsr, ΔTre and V  are all closely related to 1/Q. As a result, the 

grain size can be simply related to (1/Q)
1/3

 through a single parameter K. Comparison with the 

experimental data from the literature has confirmed that the 1/3 power law describes the 

experimental grain size more accurately than the conventional linear relationship. 
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Tables: 

 

Table 1 Physical properties used in the calculations. 

Alloys AZ91 CP Al 

Gibbs-Thomson parameter,  ( K m) 1.48 10
-7 [29]

 1.42 10
-7 [30,31]

 

Solute diffusivity in melt, D (m
2
/s) 2.7 10

-9 [29]
 2.52 10

-9 [32]
 

Liquidus slope, m (K/wt%) -6.87 
[1]

 -25.63 
[33]

 

Equilibrium partition coefficient, k 0.37 
[1]

 7 
[33]

 

 

Table 2 Summary of experimental and calculated results for four sets of alloy and processing 

conditions in the isothermal melts. 

Alloys AZ91  AZ91 CP Al  Al-0.4wt%Ti  

Process condition Melt shearing Melt shearing 1 p.p.t. Al-5Ti-1B - 

T  (K/s) 0.22 3.5 3.5 1.5 

fsr   1.5×10
-4 [28]

 6.4×10
-4 b

 1.5×10
-4 [26]

 ~10
-4 [9]

  

l  (mm) 1.21 
[28]

  0.178 
b
 0.103 

[26]
 0.203 

[9]
 

Ng (mm
-3

) 0.35 88.7 458 60 

Cs (wt%) 3.33 3.33 0.09 2.8 

C0 (wt%) 9.0 9.0 0.012 0.4 

Ci (%) 9.04 
a
 9.01 

a
 0.0111 0.3966 

ΔTs (K) 0.28 0.07 0.023 0.086 

cT (K) 0.0063 0.025 0.066 0.0098 

ΔTre (K) 0.62 1.08 0.2 1.45 
a
 Only diffusion of Al atoms is considered. 

b
 Calculated using free growth modelling with the approaches available in Ref. [28] 

 

Table 3 The variation of Ts and Tre at recalescence against the cooling rate for the intensively 

sheared AZ91 alloy melt.  

T  (K/s) 0.1 1 10 100 1000 

fsr   1.4×10
-4

 2.5×10
-4

 1.05×10
-3

 1.52×10
-3

 1.72×10
-3

 

l  (mm) 1.0887 0.267 0.0603 0.0206 0.00774 

Ng (mm
-3

) 0.387 26.3 2280 57196 1078319 

Cs (wt%) 3.33 3.33 3.33 3.3 3.3 

C0 (wt%) 9 9 9 9 9 

Ci (%) 9.016 9.006 9.005 9.005 9.006 

ΔTs (K) 0.11 0.04 0.03 0.03 0.04 

ΔTre (K) 0.63 0.88 1.32 1.87 2.75 

 

Table 4 The grain sizes calculated with the present model. 

 AZ91 AZ91 CP Al  

Grain refinement 
Melt 

shearing 

Melt 

shearing 

1 p.p.t. Al-

5Ti-1B 

Solidification 

conditions 
Isothermal Isothermal Isothermal 

T  (K/s) 0.22 3.5 3.5 

ΔTre (K) 0.62 
[28]

 1.08 
a
 0.2 

[26]
 

fsr  1.5×10
-4 [28]

 6.4×10
-4 a

 1.5×10
-4 [26]

 

l (mm) (this model) 1.51 0.163 0.146 

l (mm) (previous data) 1.21 
[28]

 0.178 
a
 0.103 

[26]
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a
 Calculated using free growth modelling with the approaches available in Ref. [28] 
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Figure captions: 

 

Fig. 1 Measured cooling curve for the AZ91 alloy melt with intensive melt shearing. The cooling 

curve exhibits pronounced recalescence, in which Tf corresponds to the temperature at the moment 

of recalescence and Tg the thermal plateau after recalescence. The maximum undercooling ΔTre at 

recalescence is estimated by the value of Tg-Tf. The measured cooling rate near the liquidus Tl is 

0.22 K/s, and ΔTre is 0.62 K. 

 

Fig. 2 An illustration of a growing grain (S) in an isothermal melt (L). r is the radius of the growing 

grain, and D/V is the characteristic width of the concentration profile in the liquid ahead of the 

solid/liquid (S/L) interface. This assumes that the solute atoms rejected by the solid diffuse only 

into the region between r and r+D/V. 

 

Fig. 3 Schematic representation of the concentration profile. Cs and Ci are the solute concentrations 

of the solid and liquid, respectively, at the S/L interface. For simplicity, the solute content in the 

bulk solid is considered to be uniform and approximate to Cs=kC0 at the initial stage of 

solidification. At this stage the solute profile in the liquid can be well approximated by a straight 

line: x
VD

CC
CxC

/

0i

i . 

 

Fig. 4 Schematic representation of the liquidus (Tl) and local temperature (Tlc) profiles ahead of a 

growing crystal in an isothermal melt. ΔT is the local thermal undercooling, ΔTs the solutal 

undercooling, and ΔTkc the sum of kinetic and curvature undercoolings. ΔTs reduced the available 

undercooling for nucleation of the remaining particles ahead of a growing crystal. 

 

Fig. 5 Schematic cooling curves for the isothermal melts with low and high Q, respectively. In the 

melt with low Q, the largest particle starts grain initiation at the point A of the cooling curve at 

which the temperature is denoted by Ts, and the grain initiation is finished at B (Tf) due to the 

occurrence of recalescence. The high Q implies a slower latent heat release and larger ΔTre, as 

indicated by the cooling curve with high Q, and therefore leads to a finer grain size.  

 

Fig. 6 The plots of (a) the solid fraction fsr, (b) ΔTre and (c) average growth velocity V  at 

recalescence against 1/Q for intensively sheared Mg-Al binary alloy melts, calculated using the 

approaches available in Ref. [28]. It can be seen that the values of fsr, ΔTre and V  are related to 1/Q. 

The fitted curves give a power of -0.71, -0.71 and 0.14 to 1/Q for fsr, ΔTre and V , respectively. 

 

Fig. 7 Comparison of experimentally determined grain size data against 1/Q for binary Al-Zn and 

Al-Si binary alloys [36] with the prediction from equation (25). The fitted (solid) curves with 

equation (25) show a good agreement with the experimental data. 

 

Fig. 8 Comparison of experimentally determined grain size data against 1/Q for Al wrought alloys 

with additions of 0.005 pct TiB2 at various titanium levels [22] with the prediction (solid curve) 

from equation (25). This indicates that the experimental data can be well described by the 

relationship of l (1/Q)
1/3

. 
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