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ABSTRACT

Supergauge transformations are defined
in four space - time dimensions. Their commu-
tators are shown to generate V5 transform—-
ations and conformal transformations. Various
kinds of multiplets are described and examples
of their combinations to new representations
are given. The relevance of supergauge trans-—
formations for Lagrangian field theory is
explained. Finally, the abstract group theoretic

structure is discussed.
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INTRODUCT ION

Supergauge transformations have been studied until now in
dual models, especially in their formulation as two-dimen-

sional field theories |[1,2,3,4

. They transform scalar (in
general tensor) fields into spinors and boson fields into
fermion fields. This is possible because the parameters of
the supergauge transformation are themselves totally anti-
commuting spinors. The commutator of two infinitesimal super-
gauge transformations is a conformal transformation in two
dimensions. Invariance under supergaudge transformations is
closely connected to the absence of ghost states in the two

dimensional field theory.

It is natural to ask whether one can define supergauge
transformations in four dimensional space-time. In this
paper we show that this is indeed possible, although the
generalization from two to four dimensions is not completely
straight forward and presents some interesting new features.
In four dimensions the commutator of two infinitesimal super-
gauge transformations turns out to be a combination of a
conformal transformation and a Yg transformation. Supergauge
transformations can be represented on multiplets of fields,
a given multiplet containing some tensors and some spinors.

Examples of such representations are given in section 3.
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A representation is characterized not only by a given multi-
plet of fields but also by a weicht, much as an ordinary
tensor representation corresponds to a tensor density havina
a given index structure as well as a certain weight. Repre-
sentations for supergauges can be combined into other repre-
sentations, as exemplified in section 3. Using the multiplet
of a representation one can construct an invariant Lagranagian.
More precisely, the Lagrangian transforms by a total deriva-
tive as one of the members of a supergauge density; the four-
dimensional action integral is invariant. Two examples of this
are shown in section 4. The examples cgiven in this paper are
the simplest cases of a "tensor" calculus which generalizes
to supergauge transformations the ordinary tensor calculus of

coordinate transformations.

From any particular representation one can abstract the
"group" structure containing the supergauge transformations,
the Conformal transformations and the Ys transformations.
Actually the corresponding algebraic structure is not a group
or a Lie algebra in the ¢onventiona1 sense, since the para-
meters of a sﬁpergauqe transformation are not c-numbers but
rather completely anticommutinc quantities belonaging to a
Grassmann algebra. Nevertheless, one can find the parameter
composition law and verify that it satisfies the Jécobi

identity. This .is done’in section 5.
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The Ladrangian example aiven in this paper is a free field
theory. Nevertheless it is possible, by combining represent-
ations, to construct interacting field theories invariant
under supergauge transformations and consequently under con-
formal and Yg transformations. Supercauge transformations
should prove a useful tool for the study of theories with
massless particles or in the approximation in which the mass
can be neglected. They may also provide a natural way for the
formulation of hicher internal symmetries linking mesons and
baryons. We hope to come back to these questions in a later

publication.

In two dimensions it is possible to define 5! generalized
superqauce transformations which have as commutator general
coordinate transformations, rather than conformal transform-
ations. It is likely that such generalized superqaﬁge trans-
formations exist also in four-dimensional space time. Their
commutatdrs would generate an algebra containing that of
general (Einstein) coordinate transformations. We are planning
to come back at some later time to this very interesting

question.
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CONDITIONS ON THE PARAMETERS

It is convenient to study separately in this section the
properties of the infinitesimal parameters of a supercauge
transformation. As we shall see, they will be Majorana

spinors a(x) subject to the condition

(5 #fe g pped ") o0

This equation resembles the condition on the infinitesimal

parameters .g ,l. of a conformal transformation

/-?v'*) %/. 7,4\() ? a

and indeed, if @y and ay satisfy (1), then

Jp— (3)
Sl dp e

satisfies (2). It is well known that (2) can be solved ex-

plicitly; the same is true for (1).

First multiply (1) with y“ obtaining

! A (a)
)/(O(. 3‘2""' X/g JH )AOC .



From this, multiplying by 3% , it follows

Do = 0,

Then, multiplying (4) with vy~ 3 , we find that

glurvava(_-: 0.

Therefore, always from (4),

?/,'BVOC = Q;

o is at most linear in x . Imposing (4) once more, it follows

that
ol = 0(‘0’-}-1}‘)(,‘0(“) (5)

where a and are x independent spinors.

*1
The forms (1) and (4) of the condition on o are equivalent. It

is easy to see that a third ecuivalent form, sometimes more

[T e sz O =00

Observe that, if one assumes that a, and in (3) both

1 )
have the form (5), f/l takes the form, well known for a con-



formal transformation,

’fﬂ: ¥ /w,.X +€xﬂ+a/".x - 2K, X

— fo, 0
caﬁ‘ :Z L'c!: ))c}‘ l )
-, 09) )
== Oy, F (=8 8p) 2
t0) ,
(bnle-0edp))”

E=2e(d ety LTt [")

-la(.

- [ (0
/u-lco(”d’;‘, )

For later use we calculate the expression
7::;2,4, fof 7 ¢ ;ag 47« . )

Using the explicit form for ay and a, one finds



peaifafMp a2 o)

Therefore ? is x-independent.



3. SUPERGAUGE TRANSFORMATIONS

Consider a multiplet consistinag of a Majorana spinor v
and four scalar fields A,B,F and G. Let us define an infini-

tesimal supergauge transformation by

SA =iV
YB =it

7YV = a'(A-J}B)[/“d +
+ N (A‘IS'B)J/"%"L + Fol ¢ C{[,—Q

(8)

TE=i2 gt +i(n-3)%x(r Yt
JG=¢ 201t +itn-1) 3,2]5[/'#'
where the parameter o(x) is an infinitesimal spinor which anti

commutes with itself and with ﬂ* and commutes with the other

fields. Furthermore o satisfies the differential equation



discussed in the previous section. The number n is arbitrary
(it need not be an integer) and gives the weicht of the multi-
plet. We say of a multiplet transforming as in (8) that it be-

longs to a scalar representation of weight n.

The supergauge transformations generate a closed algebraic
structure, similar to a Lie algebra. To see this, let us
evaluate the commutator of two infinitesimal supergauge trans-
formations 61 and 62 , of parameters oy and ay -
with the scalar field A we have

5,5 AecZ () = i u(A- I B) e

Starting

+m(A- J‘sB)[/“Q,.ocz +Fet,+ G s,

-

If we use the relations

L A, = dyd, L I, fe o,

we see that the fields F and G drop out in the commutator

(68 §, = & 62)A . On the other hand, using

2 1 1



...lo_

oL Fpuely == % fp
[Pt~ o (7 = Y0 (g0

(5,5,-5,0,)A= §/2A+325/A +2p B

where, as in the previous section,

‘;:’t'=»jz'£ :;;‘d;ﬂl“:a.
YRR T Y (A ACIC RNy A /oY

For the other fields the result is

[L51B=F/9.B +32%/B- npA
[0, 53¢ = /ot (G435 )25 4 +

13 (T -2 ) Z7 Y - (2-=) 24T
[%,0]F = Tro.F+(5+5 )%/ Fe(3-7)2G
[%.9.16= /9.6 +( 3+3)2Y/a-(3-%)7 F,
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where

v ] v
Sl =L (8FE-yoer) .
Remember that ? is independent of x.
The commutator of two supergauge transformations is a con-
formal transformation combined with a 0 transformation on‘*’
and a mixing of A with B and of F with G . It is also easy to
verify that the commutator of a conformal transformation with
a supergauge transformation or of a Ys transformation with a
supergauge transformation are again supercauce transformations.

In this sense the algebra closes.

To explain further how the above result for the commutator
emerges, we indicate here as an example the evaluation of some

terms of the commutator on’f . One has
LI t=¢ 9/,,(&3) 14, - e’a'(;'zJJ.«r) led’ et
+en (V) [/ uet, - in(2, [,-‘r)[;[/'%et;r
+E(A Y PNt viln -;-;)(«’;?,j-‘ta (a7
HR o IF Q) [, + (o - L) PR,
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Let us consider separately the terms with derivatives of ﬁf’.

(LX) [P LT +
+ i(zelr’p"f}do * '.('zc J:(Tf'?.."f')lrda

Using the rearrangement formula of the appendix, the first of

these terms can be transformed as

., o ; A
(L34, = - (2, D A
where we imply summation over all sixteen matrices 1y, .

Similarly, for the other terms,

-i(z, R (3, 0 ) G AT 12
5(2a1’€-*)4:= ‘é(zafAd')[A[/%Af

(Rl 0o -5 G bas) o] 21

For the commutator (62 61 - 61 62)ﬁf , in all these terms

. ~
@, Yp @y 1is replaced by :E(Y A~ yA) ay - Therefore only

Ya =Y, and - YA = Yy Y (v < 0 ) survive. If we take the
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latter, the four terms cancel each other. If we take the former

we obtain finally the contribution to the commutator

- p )P I) ot = 27 4, y/t, 9t

The other terms in the commutator on "l' are evaluated in a
similar way. In the rest of this paper we shall not give all
the details of the calculations, which are often long and
rather tedious. They are based on the well known properties of

the y matrices and on the rearrangement formula collected in

the appendix.

Two supergauge representations can be combined to a third.
Let the fields Al' Bl,‘fa, Fl' G1 belona tc a scalar re-
presentation of weight n, , as described above, and let the
fields BA,, By, T,y For G, belong to a scalar representation

of veidht n, . The new multiplet A,8hF,G defined by
A-A.A,-B,3,
B=Q,B,+8,A,
¥ = (A8 ) +(Ra- 8 B, )Y,
F:F,A,+F,A,+GB +G;B,- ¥,

G A+ GA - B - AB, i 1oy,

<



belongs to a scalar representation of weight n, + n, which

1

means that it transforms like (8) with n = n, + n

1 5 * This can

VA=A, 3% rAi3Y-B,i G - By id)t
2 ;Z(Antfﬂaﬂfn' Bl[ft-ga "“l’,)s r&v

Similarly for the other fields. For the spinor field one must
use the rearrangement formula described in the appendix. The
combination of two scalar representations into a third

scalar representation just described gives only the simplest
example of a generalized tensor calculus for supergauge trans-
formations, the theory of which we have not yet fully developd.
It is clearly the main tool for the construction of invariant

interactions.

Before closing this section we give another example of re-
presentation. Let us consider a multiplet consisting of four
scalar fields D,C,M,N, of the vector field ‘1% and of the
two spinor fields x and 1A . We call it a vector multiplet,
because of the presence in it of the vector field 'um . We
shall say that this vector multiplet transforms according to a
vector representation of weight n if, under a supergauge trans-

formation,
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JD= ;Z[;(f%k +-z-‘-(«-n)'.)>“2&l/"k +
+ im-1) /X Jg 9,. X
JC = ;2[,7(
TM=iaA+id g X » £(m-3)2. 3 yF X
TN=id [+ 44,[1"‘},)( +:'3'(""3)?~:1"ff'{
)-0,‘: il{raf.'zz;x‘, 1, & X .
J Xz Jz"%a-g‘clrfﬂd-é(u-.) CJ;[/';Z.az +
+(M+ eV )L
JA £-3(09,-0,0, )/ +Dret +(n-1)0/ Q. ol *
*5Mm-)(A-(c¥) Pt -(u-09/C e 0, of

Just as for the scalar representation, also for the vector

representation one can calculate the commutator of two in-

finitesimal supercauges. One finds
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[99,10=€/9D+2me)2.5/0 + $(n-1)0 7/'59,5
(7. ]c: ‘f/“gc 4% (m-1)0 ‘f/"c
[G.51M= 99N+ 5 2.5/ M+ 3 9 ¥
DA eV -aylw - 29M
;7,30 =9/ 90, +3,5/°0,+ L w8, {/'v,
[0,71% =379+ L(n-1)29/ R +
1i(20-35) 2 A 29 1 X
C’;.J‘.],\sffgu-!(mi)gfq ,
G CAR)IE A Ly A

+ () OFLpX

(11)
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Observe that, except for n =1 , the transformation law for D
and for » 1is not simply that of a conformal transformation,
but has additional terms containing D f/‘ . In the next
section we shall see that, for the case of D, this corresponds
to the very well known fact that the free Laagrancgian for a
scalar field does not transform simply as a density under con-
formal transformations. The additional term corresponds exact-
ly to the additional term in 6D above. These additional
terms do not alter the algebraic structure described in

section 5.
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4., TWO LAGRANGIAN EXAMPLES

% . It consists of
1

fields A,B,“F,F,G transforming as in (8) with n = 5 -

Consider a scalar multiplet of weight

We claim that the Lagrangian

L=-1 0.0 O A-LBUMB-LFPT4(F56) 7

gives rise to an invariant action integral. The Lacgrangian is
not itself invariant. Rather, it is one of the members of a
multiplet and it changes by a total derivative under a super-
gauge transformation. Observe that the above Lagrangian is
essentially the sum of the free Lagrangians for the fields
A,B and ‘f’ . The variational equations for the fields F and
G are simply F = o and G = o . Nevertheless, the fields F
and G are essential for the transformation properties and
especially for the closing of the commutator alogebra des-

cribed in section 3.

The multiplet to which the above Lagrangian (12) belongs
is simply a vector multiplet of weight 3. Indeed one can
verify that, when the fields A,B,’P,F and G transform
according to (8) with n = % (scalar representation of
weight %), then the fields D,C etc. defined by



)=2 L

C=1(A%+BY)

M=AG +BF

N=BG-AF

2,:89.A-A9B -1 Flegp
X =R-|<A

A {GfF =10, (B-gcA) Y

(13)

transform according to a vector representation of weiaght 3
(given by (10) with n = 3). The first of these fields is

twice the Lagrangian. It follows, in particular, that

SL=io (2geplas2 ¥ age )
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and the four-dimensional action intearal is invariant. Here we
have used the fact that second derivatives of o vanish. The
above formulas (13) give an example of how, startina from a
representation, one can construct a new one. In (13) de-
rivatives of the fields occurr, while in our earlier example
(9) (in which the two representations could be taken to be

identical) the fields occurred without derivatives.

Having treated the Lagrancian for a scalar multiplet, one
may ask whether one can construct a Lagrangian for a vector
multiplet. The answer is affirmative. Let the fields
D‘,C,M,N,Uu, y and ) belong to a vector multiplet of weight
n =1 (representation given by (10) with n = 1) . Then the

fields A,B etc. defined by

(‘A‘ + zl vf“’ xr’v/\ (14)

D vl”wi;f?,a-:b‘



‘Zifav /k v

¢-
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transform according to scalar representation of weight %

(given by (8) for n = ) . Here

Njw o

-9, Coraa” 1

Now

F;—

L ]
) ’ v T ’ >
“iFe-tv 9r-taffoA +3D
2 4 rv 2 /s
is essentially the sum of the free Lagranaians for the vector
field ‘ﬁ; and for the spinor field ) , the extra term % D2

giving as variational equation simply D = O. Accordina to (8)

with n = % '

T = -2 0, (dpret)

and the action inteqral is invariant. Observe that in (14) the
other fields of the vector multiplet, namely C,N,M and x .
do not occur. This can happen because, for n =1 , none of
them enters in the transformation laws of ) and D , and ¥
enters in that of ‘ﬂ% but only in a gaudge transfo;mation. In
fact, when n =1 , one can restrict the vector multiplet to
the fields v _ ¥ and D , drop the additional fields, and
write the transformation law for the restricted vector multi-

plet simply as



- 22 -

Now, of course, one must impose the restriction

9l * %%t 900,59
et p® op
which, however, is respected by the supergauge transformation.
For n # 1, on the other hand, the other fields of the vector
multiplet are necessary to give the correct definition of the
vector representation and, in partiéular, for the closing of

the commutator alcebra.

The two Lacgrangian examples given in this section show that
Lagrancians givino rise to action integrals invariant under
supergauge transformations can belong to different represent-
ations. Here we found that the Lagrangian for a scalar multi-

plet is a member of a vector multiplet while the Lagrangian
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for a vector multiplet is a member of a scalar multiplet. In
both cases the weight is such that the Lagranagian transforms
by the addition of a total derivative. Presumably the same
applies in the case of invariant interactions, and they also

can belong to different types of multiplets.



- 24 -

5. ALGEBRAIC STRUCTURE

- In this section‘wekabstract fror the transformation law
(8) for a scalar multiglet the composition law of the para-
meters. This is the analocue of finding the structure con-
stants of a Lie algebra, except that our algebraic structure
is a kind of generalized Lie algebra, because of the anti-

commutation property of the parameters o .

Under a combined supergauge, conformal and trans-

Ys
formation of parameters «a, E,'u ’ 7 , the particular members

A,B and ﬁf’ of the multiplet, for instance, transform as

TA=id¥+flo.A+ % 25/ +mpB
TB::':("J;?-L ‘f/':,}_B-r ’.;‘..,’3“')'/'8 -41?9
J=9.(A- JeB) )l ot + m(A-§:B) flo ot +

v F+ Qe+ TP+ (% +4)55 4+

+ 1 (3028 2L - )it
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Here the commuting parameters gu and 0‘2 are additional
parameters, independent of o . While 7 is x-independent, o
and Eu satisfy respectively (1) and (2). Ve can now evaluate
the commutator of two such transformations, the first 61 of
parameters @y glu, iL!, and the second 62 of parameters
Oy 52“,1?2 , for instance on the field A. One sees easily

that the commutator [62, 61] is again a transformation of the

same kind, with parameters «o,&, ? agiven by

oL = 7',‘8" dz-é 3“71’;(:.*7,; (e" ?IV = 9v 70/')5/':(2

+-3?,J}ole - ((1and2 MJM(WQ
v - o
?5‘?:"‘3;-7:"%.#%‘;:‘,"’2"('{ "(z (15)

9 1% e 1k, - i 8.3, (e f/,

This composition law for the parameters defines the algebraic
structure and is independent of the particular representation

from which we have abstracted it. Ve could have used, for in-
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stance, the vector representation (12) described in section 3.

: H : H
Clearly, if one exchanges ay 51 ,?1 with 0‘2'52 ,?2 ’

T a ,g", 12 change sign. A further condition which must be
satisfied is the Jacobi identity for the composition of three

transformations. For instance, if we define

3,125 ¢ &*3(:3/‘0( ~ 19,y oy
with o given by (15), it must be identically

-
-

73 712 +7’/23 * 72131

The same relation must be valid for 55 12 and de-

®3,12
fined in an analogous manner. The Jacobi identity can natural-
ly be expected to be satisfied, since we have derived the com-
position law from a particular representation, but we have

verified it directly, again usinc the formulas collected in

the appendix.

The fact that the conformal alcebra in four dimensions can
be extended to the algebraic structure described above, in-

cluding and supergaudge transformations, and that the en-

Vs
tire algebraic structure is generated by the supercauce trans-
formations, does not appear to have been realized before. It

is interesting in itself, irrespective of the field theoretic

applications we have in mind.
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6. APPENDIX

We use a Majorana representation. The four y matrices

have real elements and satisfy

Krb'v"’ xvx,-:z-?/uv

with‘z oo = " 1. The sixteen basic matrices Ya (A= 1,2,...16)
are 1, yg = Yo Yy Yy Y3 s Yup Y5 Yy Yy Yy (b < v) .
They are all real and Y52 = -1 , ysT =" Yg where T de-

notes the ordinary transposed of a matrix.

For any four by four matrix T define the adjoint

~ T
F=-Y.I " §o
Then, for any two hermitian anticommuting spinors ay and @y,

oz,r‘azz--'&zf‘o(, ; o Ly®

’

L~ 4 P> -
NowJ"A=ﬁ for 1, Ygr Y5 Y, while YA = T Ya for Yy

Yy Yv_ (v < v) .

The sixteen matrices have sguares equal to + 1 .

define YA so that Ya yA =+ 1 (no summation).

YA

For any Ya
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The following rearrangement formula is then valid

(3¥) 2y 5 Z (Ffacts) T

where ayr @y and ﬂf are any three spinors. The minus siagn

comes from the anticommutation property of the spinors.

vThe formulas collected in this appendix are sufficient to

derive all the results given in the text of this paper.
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