EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Proposal to the ISOLDE and Neutron Time-of-Flight Committee

Laser assisted studies of β -delayed fission in 178,176 Au and of the structure of 175 Au

May 13, 2020

B. Andel^{1,2}, A. N. Andreyev³, S. Antalic², A. E. Barzakh⁴, T. Berry⁵, M. J. G. Borge⁶,
J. A. Briz⁶, A. Broniš², T. E. Cocolios¹, K. Chrysalidis⁷, J. G. Cubiss³, H. De Witte¹,
K. Dockx¹, D. V. Fedorov⁴, V. N. Fedosseev⁷, L. M. Fraile⁸, H. O. U. Fynbo⁹,
P. T. Greenlees¹⁰, L. J. Harkness-Brennan¹¹, R. Heinke¹, J. Johnson¹, D. T. Joss¹¹,
D. S. Judson¹¹, J. Konki¹⁰, J. Kurcewicz⁷, I. Lazarus¹², R. Lică¹³, M. Madurga⁷,
N. Marginean¹³, B. A. Marsh⁷, C. Mihai¹³, P. L. Molkanov⁴, P. Mosat², E. Nacher¹⁴,
A. Negret¹³, K. Nishio¹⁵, R. D. Page¹¹, S. Pascu¹³, A. Perea⁶, V. Pucknell¹²,
P. Rahkila¹⁰, E. Rapisarda⁷, M. D. Seliverstov⁴, A. Sott³, C. Sotty¹³, P. Spagnoletti¹⁶,
M. Stryjczyk¹, O. Tengblad⁶, I. Tsekhanovich¹⁷, P. Van Duppen¹, V. Vedia⁸,

R. Wadsworth³, N. Warr¹⁸, and S. G. Wilkins⁷

¹KU Leuven, Instituut voor Kern- en Stralingsfysica, 3001 Leuven, Belgium

²Department of Nuclear Physics and Biophysics, Comenius University in Bratislava, 84248 Bratislava, Slovakia

- ³Department of Physics, University of York, Heslington, York, YO10 5DD, United Kingdom
- ⁴Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, 188300 Gatchina, Russia

⁵Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom

- ⁶Instituto de Estructura de la Materia, CSIC, Serrano 113 bis, E-28006 Madrid, Spain ⁷CERN, CH-1211 Geneve 23, Switzerland
- ⁸Grupo de Física Nuclear, Universidad Complutense de Madrid, 28040, Madrid, Spain
- ⁹Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
- ¹⁰ University of Jyväskylä, Department of Physics, P.O. Box 35, FI-40014, Jyväskylä, Finland
- ¹¹Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE, United Kingdom

¹²STFC Daresbury, Daresbury, Warrington WA4 4AD, United Kingdom

- ¹⁴Instituto de Física Corpuscular, CSIC Universidad de Valencia, E-46980, Valencia, Spain
 ¹⁵Advanced Science Research Center, JAEA, Tokai, Ibaraki 319-1195, Japan
- ¹⁶Simon Fraser University, Burnaby, Canada
- ¹⁷CENBG, Bordeaux, France

 $^{^{13}}$ "Horia Hulubei" National Institute for R & D in Physics and Nuclear Engineering, RO-077125 Bucharest, Romania

¹⁸Institut für Kernphysik, Universität zu Köln, 50937 Köln, Germany

Spokespersons: B. Andel [boris.andel@kuleuven.be] A. N. Andreyev [andrei.andreyev@york.ac.uk] A. E. Barzakh [barzakh@mail.ru] J. G. Cubiss [james.cubiss@york.ac.uk] P. Van Duppen [piet.vanduppen@kuleuven.be]

Contact person: R. Lică [razvan.lica@cern.ch]

Abstract: The gold isotopes (Au, Z = 79) are especially well suited for the study of β -delayed fission (β DF) and shape coexistence in exotic nuclei. The proposed measurements aim at the identification of β DF in ^{178,176}Au, employing RILIS-ionized isomerically separated beams of their high- and low-spin states, thus allowing studies of scarcely-known spin-dependence of fission properties. The measurement of fission fragment energies of ¹⁷⁸Pt (β -decay daughter of ¹⁷⁸Au) will allow the predicted island of fragment mass asymmetry below Z = 82 to be probed. The proposed investigation of the hyperfine structure (hfs) and isotope shift of ¹⁷⁵Au ground state (gs) will provide the first information on its mean-square charge radius and g-factor, which will allow us to determine its configuration. The character of this state is of high interest, since according to the spherical shell model, a $\pi 2d_{3/2}$ configuration is expected, while the trend in g-factors of ^{177,179}Au^{gs} and unhindered α decay of ¹⁷⁹Tl^{gs} \rightarrow ¹⁷⁵Au^{gs} suggest a nearly pure intruder $\pi 3s_{1/2}$ state. The latter configuration in ¹⁷⁵Au^{gs} would indicate a rearranging of spherical shell model states in the lightest gold isotopes.

Requested shifts: 14 shifts with UC_x target (in a single run)

1 β -delayed fission of ¹⁷⁸Au^{gs,is} and ¹⁷⁶Au^{gs,is}

1.1 Motivation and goals

Beta-delayed fission (β DF) provides wealth of information on low-energy fission of exotic isotopes [1] and has an important impact on the production of elements in nucleosynthesis [2, 3]. Both the β DF probability ($P_{\beta DF}$) and the fission fragment mass distributions (FFMDs) play an important role in the final abundancies of isotopes via fission recycling in the *r*-process [4]. However, neutron-rich nuclei crucial for *r*-process are currently inaccessible for experimental studies. Therefore, to guide and validate theoretical fission developments in these unknown regions, β DF can be studied in more accessible, neutrondeficient regions of the nuclear chart. Nonetheless, the experimental information, which could help to benchmark models, remains scarce. For example, the specific $P_{\beta DF}$ value was determined only for 17 cases [5, 6] and FFMDs were reported for 12 nuclei [7, 8] so far.

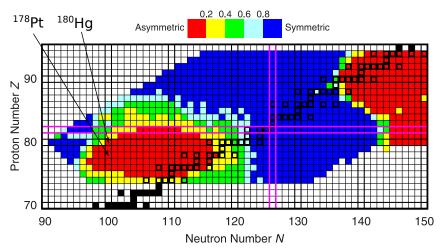


Figure 1: The predictions of asymmetric and symmetric low-energy fission for nuclei with Z = 70-95, taken from [12]. The two regions of asymmetric fission are shown in red: the classical asymmetric fission in heavy actinides is in the top-right corner, the newly-established region below Z = 82 is in the bottom-left with an area of symmetric fission in between (blue). The asymmetrically fissioning ¹⁸⁰Hg is situated at the predicted border of the new region of asymmetry, while ¹⁷⁸Pt is located farther inside the region (both isotopes are marked by arrows).

In the neutron-deficient lead region, βDF measurements performed by our collaboration at ISOLDE established a new region of asymmetric fission through the surprising discovery of asymmetric mass split ^{180,178}Hg, of β -decay ^{180,178}Tl daughters of [9, 10, 11].This discovery generated a high interest from the theory side [7]. Figure. 1 shows global FFMD calculations from Ref. [12], which predicted the existence of a broad, new region of asymmetric fission below Z = 82.

Experimentally, the extent of this island of asymmetry below 180,178 Hg (Z = 80) remains unknown. Information is only available for fission at higher excitation energies ($E^* = 40-$ 60 MeV) from complete-fusion reaction experiments, where competition of symmetric and asymmetric fission was observed for the compound nuclei 179 Au [13] and 178 Pt [14]. A predominant asymmetric component in FFMD of 178 Pt, which still survives at high E^* values [14], suggests that low-energy fission such as β DF (with $E^* \leq 10$ MeV) can be expected to be fully asymmetric.

The proposed β DF studies of ¹⁷⁸Au will provide the low-energy fission data for ¹⁷⁸Pt (β -decay daughter of ¹⁷⁸Au), which will probe deeper into the predicted island of asymmetric

fission. We will identify and study β DF separately for the ground (gs) and isomeric (is) state in ¹⁷⁸Au and in ¹⁷⁶Au by employing isomerically separated beams supplied by RILIS at ISOLDE. Our recent experiment demonstrated that the ground and isomeric states in ^{178,176}Au are well separeted in hyperfine spectrum (hfs) [15, 16] and their selective ionization can be achieved even in broadband mode of RILIS (example of hfs for ¹⁷⁸Au is shown in Fig. 2). Thus, there will be no loss in production yields, typical for the use of higher-resolution narrowband mode. Spins $I(^{178}\text{Au}^{\text{gs}}) = (2, 3), I(^{178}\text{Au}^{\text{is}}) = (7, 8)$ and β -decay branching ratios for ¹⁷⁸Au^{gs,is}, ¹⁷⁶Au^{gs,is} were also deduced [15, 16].

To estimate the expected fission rate, we used the systematics of known $P_{\beta \text{DF}}$ values as a function of the difference $Q_{\beta} - B_f$ (Fig. 3), where Q_{β} is the Q value of the β decay of the mother and B_f is the fission barrier height of the daughter nucleus. Two widely used approaches for B_f calculations, the Thomas-Fermi model (TF) [18] and Finite-Range Liquid-Drop Model (FRLDM) [19], were employed and systematics based on them show an exponential dependence. However, estimates based on the two systematics lead to almost 3 orders-of-magnitude difference in expected fission fragment (FF) yields for ¹⁷⁸Au^{gs,is} (Table 1). The proposed β DF measurement will therefore provide unique op

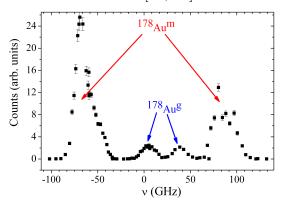


Figure 2: Example of hfs for 178 Au measured in broadband mode. Components belonging to ground (178 Au^g) and isomeric state (178 Au^m) are well separated. Similar well separated pattern was measured also for 176 Au^{gs,is}.

measurement will therefore provide unique opportunity to resolve validity of these vastly different predictions and the measurements of $P_{\beta \text{DF}}$ alone will allow us to estimate the fission barrier of ^{176,178}Pt, as demonstrated in [17] and references therein.

If the FF yields for β DF of ¹⁷⁸Au^{gs,is} lie between TF and FRLDM estimates, we will collect $\gtrsim 100$ FFs for each of the states, which should be sufficient to deduce whether the FFMD is symmetric or asymmetric. This is based on the fact that the inverse ratio

Figure 3: Systematics of $P_{\beta \text{DF}}$ values as a function of $Q_{\beta} - B_f$, where the B_f values are taken from TF model [18] (a) and FRLDM [19] (b). Q_{β} values are taken from [20]. Solid red lines show fits to the data with equal weights to all points, dashed vertical lines show $Q_{\beta} - B_f$ values for ¹⁷⁸Au and ¹⁷⁶Au. The systematics only include $P_{\beta \text{DF}}$ values for cases considered as reliable in [1, 5] and newer values from [6].

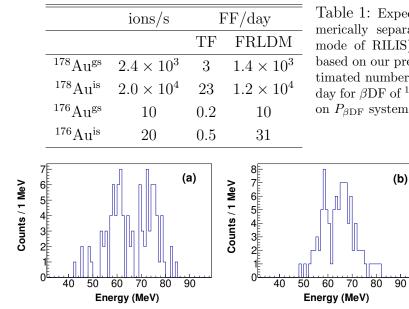


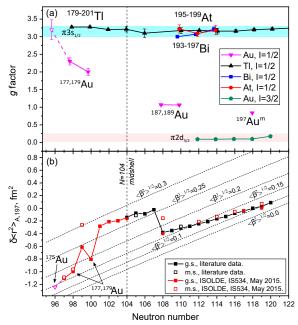
Table 1: Expected implantation rate of isomerically separated ions (using broadband mode of RILIS) at the experimental setup based on our previous measurements, and estimated numbers of FFs detected at IDS per day for β DF of ¹⁷⁸Au^{gs,is} and ¹⁷⁶Au^{gs,is} based on P_{β DF systematics (Fig. 3).

Figure 4: Distribution of 100 randomly selected FF energies from (a) data for ¹⁸⁰Tl β DF [10] and (b) Gaussian distribution to simulate symmetric fission.

of FF energies is proportional to ratio of their masses. To illustrate this, Fig. 4(a) shows an example of energy distribution for 100 randomly selected FF events from ¹⁸⁰Tl β DF data [10] (asymmetric fission) and Fig. 4(b) shows 100 randomly selected events from single Gaussian distribution with FWHM = 15 MeV (to simulate symmetric fission). The FWHM of peaks for full statistics of ¹⁸⁰Tl β DF was ≈ 11.5 MeV [10].

By measuring β DF for isomerically separated ¹⁷⁸Au^{gs} and ¹⁷⁸Au^{is}, we aim to also study the poorly known spin-dependence of fission, both by determination of $P_{\beta \text{DF}}$ values and by characterizing the FFMD in each case. Recently, we performed similar β DF investigation with the use of isomerically separated beams of ¹⁸⁸Bi^{gs,is} [8].

Additionally, we will attempt to identify β DF also for ¹⁷⁶Au^{gs,is}, again employing isomerically separated beams, and to determine respective $P_{\beta \text{DF}}$ values. For these states, FF yield estimates based on the two models differ by almost 2 orders of magnitude (Table 1), therefore even with low statistics it would still be possible to test the models.


1.2 Beam request

Considering the estimated yields (Table 1), we request 5 shifts for β DF measurement of ¹⁷⁸Au^{gs}, 2 shifts for β DF study of ¹⁷⁸Au^{is} and 3 shifts for identification of β DF in ¹⁷⁶Au^{gs,is}. We will determine P_{β DF values for investigated states and measure FF energies from which we can deduce if FFMD of ¹⁷⁸Pt is symmetric or asymmetric, provided sufficient statistics are collected. The detection setup is described in Sec. 3.

2 Laser spectroscopy of ¹⁷⁵Au

2.1 Motivation and goals

Previously, our collaboration performed a successful IS534 campaign of isotope shift (IS) and hfs measurements of neutron-deficient isotopes $^{176-183}$ Au, using the in-source laser

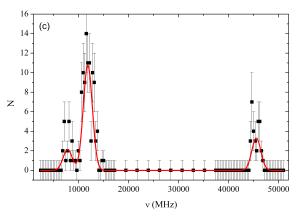


Figure 5: (a) Nuclear g-factors, for I = 1/2ground and isomeric states of isotopes surrounding the Z = 82 shell closure, along with the I = 1/2(pink, downwards triangles) and I = 3/2 (green diamonds) states in gold isotopes. The blue and pink shaded regions represent the approximate g-factor values for near-pure $\pi 3s_{1/2}$ and $\pi 2d_{3/2}$ states, re-

spectively. Values for $g(^{177,179}Au^{gs})$ are from our recent work [22] and a hollow triangle shows expected value (with 9% uncertainty) for pure $\pi 3s_{1/2}$ configuration of $^{175}Au^{gs}$. (b) Changes in mean-square charge radii of gold isotopes, as a function of neutron number, taken from [27]. (c) An arbitrary subset of the experimental hfs for $^{177}Au^{gs}$ [22] with reduced statistics, similar to those expected from the measurement of $^{175}Au^{gs}$. The data are fitted with Voigt profiles (red line).

spectroscopy technique [21]. Some of the results were presented in recent publications [22, 23, 24]. The aim of this part of the experiment will be to measure the IS and hfs of 175 Au^{gs} (and thus, the *g*-factor) in order to probe the purity of its configuration.

According to the spherical shell model, odd-A gold isotopes are expected to have $I^{\pi} = 3/2^+$ ground states as the 79th proton should occupy the $\pi 2d_{3/2}$ orbital. This was confirmed in ^{191,193,195,197}Au^{gs}, which have nearly spherical shapes and pure $\pi 2d_{3/2}$ configurations as shown in Fig. 5(a) (see [22] and references therein). However, the ground states of ^{187,189}Au were found to have $I^{\pi} = 1/2^+$ with mixed $\pi 3s_{1/2}/\pi 2d_{3/2}$ configurations, as evidenced by their *g*-factors which lie between the values for pure $\pi 3s_{1/2}$ and $\pi 2d_{3/2}$ single-particle states, see Fig. 5(a).

In our IS534 studies of ^{177,179}Au^{gs} (N = 98, 100) we determined $I(^{177,179}Au^{gs}) = 1/2$ for the first time. Furthermore, we found that like ^{187,189}Au, $g(1/2^+, ^{177,179}Au^{gs})$ indicate a similar, mixed $\pi 3s_{1/2}/\pi 2d_{3/2}$ nature, with a trend towards a purer $\pi 3s_{1/2}$ configuration with decreasing neutron number [22]. The mixed ¹⁷⁷Au ground state is also evidenced by the hindered nature of the ¹⁸¹Tl($I^{\pi} = 1/2^+, \pi 3s_{1/2}$) $\rightarrow^{177}Au^{gs}(I^{\pi} = 1/2^+, \pi 3s_{1/2}/\pi 2d_{3/2})$ α decay [22].

Compared to ¹⁸¹Tl decay, the unhindered ¹⁷⁹Tl($I^{\pi} = 1/2^+, \pi 3s_{1/2}$) \rightarrow^{175} Au^{gs} α decay suggests a pure $\pi 3s_{1/2}$ ground state configuration in ¹⁷⁵Au [25]. This assignment cannot be explained by spherical shell model considerations alone, or by the Nilsson model where a $1/2^+[411]$ ($3/2^+[402]$) ground state with a dominant $d_{3/2}$ component, at small oblate (prolate) deformation would be expected. Thus, a pure $\pi 3s_{1/2}$ ground-state configuration in ¹⁷⁵Au would indicate a rearranging of spherical shell model states in the lightest gold isotopes, far from stability. The expected g-factor for such a pure $\pi 3s_{1/2}$ configuration in $^{175}\text{Au}^{\text{gs}}$ is shown by the hollow, pink triangle in Fig. 5(a). To further describe the structure of $^{175}\text{Au}^{\text{gs}}$ we need also information about the deformation of this nucleus, which was not measured until now and will be provided by an IS measurement, as was done for heavier gold isotopes [Fig. 5(b)]. Therefore, it is of great importance to perform hfs and IS measurements on $^{175}\text{Au}^{\text{gs}}$ in order to deduce its g-factor and charge radius.

2.2 Beam request

We will use the same three-step RILIS ionization process employed in our previous studies [22]. Based on an extrapolation of the production yields observed in ^{176–178}Au and the half-life of ¹⁷⁵Au^{gs} ($T_{1/2} = 207(7)$ ms [25]), we estimate an implantation rate of \approx 0.3 ions/s, which is higher than the lowest rate that we have successfully investigated previously (≈ 0.1 ions/s for ¹⁷⁷Hg [26]). Thus, a single hfs scan containing 100 points with a maximum of 15 counts in the peak would require an \approx 4-hour period, with 4 shifts needed to complete 3 full scans. This also includes preliminary RILIS scans in broadband mode in order to locate the hfs of ¹⁷⁵Au (1 shift) and then the setup and optimization of RILIS in narrowband mode (1 shift), and reference scans of ^{177,197}Au to optimize and verify the data taking system. The detection setup is described in Sec. 3.

In order to test the feasibility of analyzing the expected data, we downscaled the statistics of two of our ¹⁷⁷Au^{gs} hfs scans from [22] to approximately 15 counts in the peak and fitted them independently. An example of one of the fits is shown in Fig. 5(c). Based on this procedure we estimate that our result for g-factor of ¹⁷⁵Au^{gs} will have an uncertainty of $\approx 9\%$, as shown in Fig. 5(a), which is sufficient for determination of its configuration.

3 Detection setup

Both the β DF and hfs measurements will be performed at the IDS setup, for which the standard configuration consists of a tape station and 4 HPGe clover detectors. An annular silicon detector will be installed in front of the implantation tape for measurement of α particles and FFs with a geometric efficiency of $\approx 20\%$ in a configuration reminiscent of the previous work with the Windmill setup [10]. A plastic scintillator detector will be placed behind the tape to register β particles. The chamber will be surrounded by fast-timing LaBr₃ detectors to measure lifetimes of levels populated in β decays ¹⁷⁸Au \rightarrow ¹⁷⁸Pt as a by-product during the β DF run (no extra beam time required). Most importantly, a lifetime measurement of the 0^+_2 state in ¹⁷⁸Pt would allow direct information on the mixing of the two coexisting structures - 0^+_1 and 0^+_2 states to be accessed.

Additionally, an α -decay setup as designed for IS637 will be installed at LA1 and in the case of high fission yields ($\gtrsim 100$ FFs per shift) it will be used for FFMD measurements in the β DF part of this proposal. The setup contains a movable ladder with 10 thin (20 μ g/cm²) carbon foils, which are transparent for α particles and FFs, and two silicon detectors surrounding the foil at implantation position (the detector closer to beamline is annular). The combined geometric efficiency of the two detectors is $\approx 55\%$. The configuration enables detection of FF coincidences, which is necessary for a full FFMD determination as performed in earlier Windmill experiments (see for example Ref. [10]).

Summary of requested shifts: 10 shifts for 178,176 Au β DF studies and 4 shifts for 175 Au laser spectroscopy with RILIS. In total, 14 shifts employing UC_x target.

References

- [1] A. N. Andreyev et al., Rev. Mod. Phys. 85, 1541 (2013).
- [2] S. Goriely *et al.*, Phys. Rev. Lett. **111**, 242502 (2013).
- [3] I. V. Panov *et al.*, Nucl. Phys. A **747**, 633 (2005).
- [4] M. Eichler *et al.*, The Astrophysical Journal **808**, 30 (2015).
- [5] L. Ghys *et al.*, Phys. Rev. C **91**, 044314 (2015).
- [6] J. Konki *et al.*, Phys. Lett. B **764**, 265 (2017).
- [7] A. N. Andreyev, K. Nishio, and K.-H. Schmidt, Rep. Prog. Phys. 81, 016301 (2018).
- [8] B. Andel *et al.*, β -delayed fission of isomers in ¹⁸⁸Bi. Accepted to Phys. Rev. C (2020).
- [9] A. N. Andreyev *et al.*, Phys. Rev. Lett. **105**, 252502 (2010).
- [10] J. Elseviers *et al.*, Phys. Rev. C 88, 044321 (2013).
- [11] V. Liberati *et al.*, Phys. Rev. C 88, 044322 (2013).
- [12] P. Möller and J. Randrup, Phys. Rev. C **91**, 044316 (2015).
- [13] R. Tripathi *et al.*, Phys. Rev. C **92**, 024610 (2015).
- [14] I. Tsekhanovich *et al.*, Phys. Lett. B **790**, 583 (2019).
- [15] J. G. Cubiss *et al.*, Laser-assisted studies of ¹⁷⁸Au. In preparation.
- [16] R. D. Harding et al., Laser-assisted decay spectroscopy of ^{176,177,179}Au. In preparation.
- [17] M. Veselský et al., Phys. Rev. C 86, 024308 (2012).
- [18] W. D. Myers and W. J. Światecki et al., Phys. Rev. C 60, 014606 (1999).
- [19] P. Möller *et al.*, Phys. Rev. C **79**, 064304 (2009).
- [20] M. Wang *et al.*, Chin. Phys. C **41**, 030003 (2017).
- [21] A. N. Andreyev et al., IS534 experiment, ISOLDE (2015).
- [22] J. G. Cubiss *et al.*, Phys. Lett. B **786**, 355 (2018).
- [23] A. E. Barzakh et al., Phys. Rev. C 101, 034308 (2020).
- [24] A. E. Barzakh *et al.*, Shape coexistence in ¹⁸⁷Au studied by laser spectroscopy. Submitted to Phys. Rev. C (2020).
- [25] A. N. Andreyev *et al.*, Phys. Rev. C 87, 054311 (2013).
- [26] S. Sels *et al.*, Phys. Rev. C **99**, 044306 (2019).
- [27] R. D. Harding *et al.*, Mean-square charge radii of gold isotopes. In preparation.

Appendix

DESCRIPTION OF THE PROPOSED EXPERIMENT

The experimental setup comprises: (name the fixed-ISOLDE installations, as well as flexible elements of the experiment)

Part of the	Availability	Design and manufacturing	
IDS	\boxtimes Existing	\boxtimes To be modified: Addition of annular Si detector	
		for α and fission fragment detection, and LaBr ₃	
		detectors for fast-timing measurement	
α -decay setup	\boxtimes Existing	\boxtimes To be used without any modification (as designed	
		for IS637)	

HAZARDS GENERATED BY THE EXPERIMENT (if using fixed installation:) Hazards named in the document relevant for the fixed IDS installation.

Additional hazards:

Hazards	α -decay setup	[Part 2 of experiment/ equipment]	[Part 3 of experiment/ equipment]		
Thermodynamic and	Thermodynamic and fluidic				
Pressure	[pressure][Bar], [vol- ume][l]				
Vacuum	Standard ISOLDE vac- uum				
Temperature	[temperature] [K]				
Heat transfer					
Thermal properties of materials					
Cryogenic fluid	[fluid], [pressure][Bar], [volume][l]				
Electrical and electromagnetic					
Electricity	[voltage] [V], [cur- rent][A]				
Static electricity					
Magnetic field	[magnetic field] [T]				
Batteries					
Capacitors					
Ionizing radiation					

Target material [C	The C foils where the		
foils]	radioactive samples		
10115]	are implanted are very		
	fragile. Should they		
	break upon opening		
	the α -decay setup, the		
	pieces are so light that		
	they would become airborne. Great care		
	must be taken when		
	opening the system and removing them		
	0		
	(slow pumping/venting		
	protective equipment:		
Deem particle toma (-	facial mask).		
Beam particle type (e,			
p, ions, etc) Beam intensity			
•			
Beam energy	[];;]		
Cooling liquids Gases	[liquid]		
	[gas]		
Calibration sources:			
Open source			
• Sealed source	$\Box [\text{ISO standard}]$		
• Isotope	²⁴¹ Am		
Activity	50 Bq		
Use of activated mate-			
rial:			
• Description			
• Dose rate on contact	[dose][mSV]		
and in 10 cm distance			
• Isotope			
Activity			
Non-ionizing radiatio	n		
Laser			
UV light			
Microwaves (300MHz-			
30 GHz)			
Radiofrequency (1-300			
MHz)			
Chemical			
Toxic	[chemical agent], [quan-		
	tity]		
Harmful	[chem. agent], [quant.]		

CMR (carcinogens,	[chem. agent], [quant.]			
mutagens and sub-				
stances toxic to repro-				
duction)				
Corrosive	[chem. agent], [quant.]			
Irritant	[chem. agent], [quant.]			
Flammable	[chem. agent], [quant.]			
Oxidizing	[chem. agent], [quant.]			
Explosiveness	[chem. agent], [quant.]			
Asphyxiant	[chem. agent], [quant.]			
Dangerous for the envi-	[chem. agent], [quant.]			
ronment				
Mechanical				
Physical impact or me-	The chamber of α -			
chanical energy (mov-	decay setup is heavy			
ing parts)	and needs to be han-			
	dled with care during			
	installation/removing			
Mechanical properties	[location]			
(Sharp, rough, slip-				
pery)				
Vibration	[location]			
Vehicles and Means of	[location]			
Transport				
Noise				
Frequency	[frequency],[Hz]			
Intensity				
Ū Ū	Physical			
Confined spaces	[location]			
High workplaces	[location]			
Access to high work-	[location]			
places				
Obstructions in pas-	[location]			
sageways				
Manual handling	[location]			
Poor ergonomics	[location]			

Hazard identification:

Average electrical power requirements (excluding fixed ISOLDE-installation mentioned above): negligible