EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Letter of Intent to the ISOLDE and Neutron Time-of-Flight Committee

Feasibility studies towards the systematic investigation of the β -delayed fission in the neutron-rich actinides. Part I: 230,232,234 Fr and 230,232,234 Ac

May 13, 2020

A.N. Andreyev^{1,16}, B. Andel², S. Antalic³, A. E. Barzakh⁴, T. Berry⁵, M. J. G. Borge⁶, J. A. Briz⁶, A. Broniš³, T. E. Cocolios², K. Chrysalidis⁷, J. G. Cubiss¹, H. De Witte², K. Dockx², D. V. Fedorov⁴, V. N. Fedosseev⁷, L. M. Fraile⁸, L. Gaffney⁹, G. Georgiev¹⁰, P. T. Greenlees¹¹, L. J. Harkness-Brennan⁹, R. Heinke², A. Illana^{11,23}, J. Johnson², D. T. Joss⁹, D. S. Judson⁹, U. Koester¹², J. Konki¹¹, J. Kurcewicz⁷, I. Lazarus¹³, R. Lică¹⁴, M. Madurga⁷, N. Marginean¹⁴, B. A. Marsh⁷, C. Mihai¹⁴, P. L. Molkanov⁴, P. Mosat³, E. Nacher¹⁵, A. Negret¹⁴, K. Nishio¹⁶, R. D. Page⁹, S. Pascu¹⁴, A. Perea⁶, V. Pucknell¹³, P. Rahkila¹¹, E. Rapisarda⁷, S. Rothe⁷, M. D. Seliverstov⁴, A. Stott¹, C. Sotty¹⁴, M. Stryjczyk², O. Tengblad⁶, I. Tsekhanovich¹⁷, P. Van Duppen², V. Vedia⁸, R. Wadsworth¹, N. Warr¹⁸, S. G. Wilkins⁷, Y. Watanabe¹⁹, Y. Hirayama¹⁹, M. Mukai²⁰, S. Iimura²⁰, H. Watanabe²¹, A. Algora¹⁵, P. Jones²²

¹Department of Physics, University of York, Heslington, York, YO10 5DD, United Kingdom

 $^2K\!U$ Leuven, Instituut voor Kern- en Stralingsfysica, 3001 Leuven, Belgium

³Department of Nuclear Physics and Biophysics, Comenius University in Bratislava, 84248 Bratislava, Slovakia

⁴Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, 188300 Gatchina, Russia

⁵Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom

⁶Instituto de Estructura de la Materia, CSIC, Serrano 113 bis, E-28006 Madrid, Spain

⁷CERN, CH-1211 Geneve 23, Switzerland

⁸Grupo de Física Nuclear, Universidad Complutense de Madrid, 28040, Madrid, Spain

⁹Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE, United Kingdom

¹⁰IJC Lab, CNRS-IN2P3, Université Paris-Sud, Université Paris-Saclay, Orsay, France
 ¹¹University of Jyväskylä, Department of Physics, P.O. Box 35, FI-40014, Jyväskylä, Finland
 ¹²ILL, Grenoble, France

¹³STFC Daresbury, Daresbury, Warrington WA4 4AD, United Kingdom

 14 "Horia Hulubei" National Institute for R & D in Physics and Nuclear Engineering, RO-077125 Bucharest, Romania

¹⁵Instituto de Física Corpuscular, CSIC - Universidad de Valencia, E-46980, Valencia, Spain ¹⁶Advanced Science Research Center, JAEA, Tokai, Ibaraki 319-1195, Japan

¹⁷CENBG, Bordeaux, France

¹⁸Institut für Kernphysik, Universität zu Köln, 50937 Köln, Germany
¹⁹Wako Nuclear Science Center (WNSC), IPNS, KEK, Wako, Saitama 351-0198, Japan
²⁰Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198, Japan
²¹Beihang University, Beijing, China
²²iThemba LABS, Cape Town, South Africa
²³Helsinki Institute of Physics, Helsinki, Finland

Spokespersons: A. N. Andreyev [andrei.andreyev@york.ac.uk] B. Andel [boris.andel@kuleuven.be] A. E. Barzakh [barzakh@mail.ru] P. Van Duppen [piet.vanduppen@kuleuven.be] Contact persons: S. Rothe [Sebastian.Rothe@cern.ch] R. Lică [razvan.lica@cern.ch]

Abstract: The β -delayed fission (β DF) can provide wealth of information on lowenergy fission of exotic isotopes and has an important impact on production of elements via the astrophysical r-process on the neutron-rich side of the Nuclidic Chart. At present, the β DF was only reported for five neutron-rich isotopes ^{228,230}Ac, ^{236,238}Pa and ^{256m}Es.</sup> All these measurements suffered from the impossibility to create a pure sample, which made specific A and Z assignments difficult, and caused complex background conditions.

The availability of mass-separated and laser-ionized beams of elements Ac, Pa and Np and surface-ionized Fr provides a crucial opportunity for the β DF investigations at ISOLDE. This LoI aims to initiate a unique programme of β DF and nuclear spectroscopic studies in this region, not paralleled by any facilities worldwide. A multi-step approach is considered within this programme, which requires several technical developments, including possible use of the Pa and Np molecular beams foreseen by the LISA (Laser Ionisation and Spectroscopy of the Actinides) Marie Sklodowska-Curie Innovative Training Network.

The project will run over several years and will involve a number of separate experiments. As a first step in this programme we wish to proceed with the feasibility β DF studies of the most neutron-rich Fr and Ac isotopes. The requested beam time will be used to test the yields, beam purity, possible use of molecular beams, background conditions and to perform the first identification of β DF in ^{230,232}Fr and in ^{232,234}Ac. Upon a successful completion of the first step, a dedicated proposal for detailed studies in this region will follow.

Requested shifts: If performed as a standalone experiment: 5 shifts with UC_x target, in a single run: 1 shift for Ac laser tuning, 3 shifts for 230,232,234 Ac, and 1 shift for 230,232,234 Fr measurements. The experiment will be carried out at the ISOLDE Decay Station (IDS).

1 Motivation

With this LoI, we propose to initiate an extended programme to study β -delayed fission and nuclear spectroscopic properties of very neutron-rich Fr-Ac-Pa-Np nuclei, up to the present limit of their knowledge for some isotopic chains.

An overarching goal of this programme is to provide low-energy fission data for very exotic nuclei, whose fission studies are difficult or impossible by other presently-available techniques. Such data include e.g. fission probabilities, branching ratios, fission fragments mass distributions (FFMD) and charge distributions, γ -ray and neutron multiplicities.

In the last decade, our collaboration has performed a series of successful β^+ /EC-delayed fission (ECDF) studies at ISOLDE for an extended region of the odd-odd neutron-deficient isotopes¹ of Tl, Bi, At and Fr [1, 2, 3, 4, 5, 6, 7, 8], see also reviews [9, 10]. Combined with the data in the heavy neutron-deficient actinides, a consistent picture of β^+ /ECDF starts to emerge for the *neutron-deficient* nuclei (in total 24 cases) as summarized in [10].

In contrast to this, the fission knowledge is very sparse on the neutron-rich side, which is relevant to the fission termination and re-cycling in the r-process [11, 12, 13, 14]. This limitation is due to the experimental difficulties to access the nuclei in this region.

Figure 1: a) Primary fission barriers for the uranium isotopic chain, calculated with the various models [16]. Neutron closed shells at N = 126, 184 are indicated by vertical dashed lines, experimental values by solid circles. b) Examples of three different theoretical FFMDs assumed for fission of ²⁷⁴Pu [12].

The need for new data in this region is highlighted by Fig. 1. It presents the two main difficulties of the modern theoretical fission calculations, to predict the fission properties of nuclides with the N/Z ratios very different from the classical region of fission in e.g. uranium nuclei. Fig. 1a) shows that different calculations reproduce quite well the experimentally-deduced fission barrier heights for e.g. $^{232-238}$ U (N = 140-146) isotopes in the vicinity of the β -stability line. The latter is because the parameters of such models are typically fitted to the known properties of nuclei in this region. However, the predictions strongly disagree for the very neutron-rich isotopes around e.g. 276 U (N = 184), with a spread of calculated values of up to 10 MeV between the models, which shows their

¹We remind that due to the energy considerations, only odd-odd isotopes are expected to have a measurable β DF mode, which is the case for all observed cases so far, see details in [9]. The Ra precursors, mentioned in the text, cannot have β DF, due to unfavourable energy balance.

deficiencies in respect of the isospin dependence. Such a difference in the fission barriers will directly influence the outcome of the fission termination in the r-process, whereby the probabilities of all three contributing fission mechanisms (spontaneous, β DF and neutron-induced) will be either strongly enhanced or suppressed [11, 12, 13, 14]. Fig. 1b) presents the typical theoretical FFMDs assumed by several commonly-used astrophysical network calculations for the case of very neutron-rich ²⁷⁴Pu, which leads to quite different final elemental abundances via the fission re-cycling, see details in [12]. Since recently, the importance of fission data for the final r-process outcome is strongly emphasized in the literature [12, 13, 14], in addition to the need for the improved knowledge of other three experimental quantities which are typically discussed by the community: masses, half-lives and neutron-capture cross sections.

In particular, the β DF can provide wealth of information on low-energy fission of exotic isotopes [9] and has an important impact on production of elements in the nucleosynthesis [11, 17]. Both the β DF probability ($P_{\beta DF}$) and the FFMDs play an important role in final abundances of isotopes via fission recycling in the r-process [12, 13, 14].

Importantly, one can expect specific differences between the β^+ /ECDF and β^- -delayed fission on the neutron-deficient and neutron-rich sides, respectively. Indeed, the two processes can have a different energy balance, due to the differences in e.g. neutron separation energies, fission barrier heights, β -decay strength functions. The structure of the fission barrier itself is known to be very different in the two regions, with a common occurrence of a complex double-humped barrier in the heavy actinides. A recent attempt to account for the latter was presented in a phenomenological β DF study [18]. The measurements of the $P_{\beta \text{DF}}$ values, which depend exponentially on the difference $Q_{\beta}(\text{Parent})-B_f(\text{Daughter})$, allows to estimate the height of the fission barriers, see e.g. [2] and references therein, thus to judge on the validity of different theoretical models.

2 Goals of this LoI

The main goal of this LoI is to initiate the systematic studies of the most neutronrich isotopes 230,232 Fr and 230,232,234 Ac, which are expected to exhibit β DF, and which are relatively easily accessible at ISOLDE. Specific tasks include: the confirmation of the β DF in 230 Ac and its identification in 232,234 Ac and in 230,232 Fr; the investigation of production yields, beam purity and background conditions; tests of the most optimal detection system for the measurements of low β DF branching ratios.

As a by-product of this program, not requiring additional beam time, we will obtain extensive β -decay data for some of these isotopes, some of which were only studied in a single experiment [19, 20]. This will include the use of fast-timing technique, to get first life-time data on a large number of excited states in the daughter Ra and Th isotopes.

2.1 Earlier data for β DF of 228,230,232 Ac [21, 22, 23]

So far, the only evidence of β DF in actinium isotopes was claimed for ^{228,230}Ac [21, 22]. This was achieved via a complex chemical separation of an ²³⁰Ra precursor (half-life of ≈ 1.5 h) from the transfer products in the ¹⁸O+²³²Th reaction [21], or from the products

Figure 2: The known $P_{\beta DF}$ values for the neutron-rich isotopes ^{228,230}Ac, ^{236,238}Pa and ^{256m}Es as a function of $Q_{\beta}(Parent) - B_f(Daughter)$. The fission barrier heights, B_f , are taken from a) TF model [27] and b) FRLDM [28]. Experimental Q_{β} values are from [29]. Solid blue lines show a linear extrapolation from the $P_{\beta DF}$ values for ^{228,230}Ac only, the red lines are the fit to all five known $P_{\beta DF}$ values with equal weights to all points, see text for details. The disparity in the gradients for the extrapolations and fits, and thus the extracted $P_{\beta DF}(^{232,234}Ac)$ values, is due to a difference in the predicted TF and FRLDM fission barriers. The dashed vertical lines show $Q_{\beta} - B_f$ values for ^{232,234}Ac within the respective models.

of the decay chain of ²³²Th for the case of long-lived $(T_{1/2} \approx 6 \text{ years})$ ²²⁸Ra [22]. The fission observation was performed with the mica detectors, which are only sensitive to fission event as such, but cannot provide energy or time information. Furthermore, the chemical separation used could not provide clean sources, neither it removed some of the reaction or decay products, which could contribute to the fission background.

For ²²⁸Ac, 17 fission events were reported during 720 days of measurements (thus a very low fission rate of 1 fission event in ≈ 40 days), resulting in a value of $P_{\beta DF}(^{228}\text{Ac})=5(2)\times10^{-12}$ [22], being the lowest ever reported β DF probability. For, ²³⁰Ac, based on 2 observed fission events, a value of $P_{\beta DF}(^{230}\text{Ac})=1.19(40)\times10^{-8}$ was tentatively deduced [21]. In our opinion, due to the absence of A, Z or half-life identification in these experiments, doubts may be raised with respect to the validity of these results and their assignment to a specific isotope, thus it is important to check these data.

No β DF was observed for ²³²Ac [23], with an upper limit of $P_{\beta DF}(^{232}Ac) < 10^{-6}$ reported.

2.2 Fission yield estimation for ^{230,232,234}Ac

At ISOLDE, the β DF of mass-separated isotopes ^{230,232,234}Ac can be studied following their direct production with laser ionization, see also the concurrent proposal aimed at the Ac charge radii measurements by R. Heinke *et al.* [24]. These isotopes will also be produced via the β decay of the surface-ionized isobaric Ra precursors. In our short test in 2018 of the ²¹³Ra¹⁹F molecular beam, we obtained a yield of ²³²Ra as $\approx 2 \times 10^4$ ions/ μ C, which is comparable to 5.6×10^4 ions/ μ C quoted at the ISOLDE web-page [15], albeit for the SC-based experiment. The expected rate for the yet unmeasured ²³⁴Ra, which will contribute to ²³⁴Ac, was extrapolated from the lighter Ra isotopes based on their relative production cross-sections from the ABRABLA calculations and a conservative estimate of the ratio of decay losses of ^{232,234}Ra due to the difference in their half lives. The expected Ac decay rates are shown in Table 1. One of the aims of this LoI is to check these yields.

Table 1: Expected Ac decay rates, recalculated from the Ac proposal [24] and including the Ac production via the surface-ionised Ra precursors for 1 μ A proton beam intensity. The 3rd column: the β DF probabilities for ^{232,234}Ac extrapolated from the data for ^{228,230}Ac for the TF and FRLDM approaches, see Fig. 2. The last column: the respective numbers of observed fission events. For ²³⁰Ac, a measured $P_{\beta DF}$ is used, taken from [21]. The fission rate estimates include the $\approx 40\%$ singles fission detection efficiency of IDS.

Isotope, $T_{1/2}$	Ac decays/s	$P_{\beta \rm DF}(^{232,234}{\rm Ac})$		F	FF/shift	
		TF	FRLDM	TF	FRLDM	
232 Ac, 119(5) s	2×10^4	4.2×10^{-6}	8.6×10^{-7}	1000	200	
$^{234}Ac 44(7) s$	2×10^2	4.3×10^{-4}	1.2×10^{-5}	1000	30	
	Ac decays/s	$P_{\beta \rm DF}(^{230}{\rm Ac})$ [21]		F	FF/shift	
230 Ac, 122(3) s	1×10^5	$1.19(40) \times 10^{-8}$			14	

²³⁰Ac fission yield estimate. Based on the ²³⁰Ac decay rate shown in Table 1 (which includes its direct production via laser-ionization and indirect production via surfaceionized precursors ²³⁰Fr,Ra) and by using the published $P_{\beta DF}$ value for ²³⁰Ac from [21], an observed β DF rate of \approx 14 fission/shift can be estimated. A rather small number of fission events makes this part of the experiment quite difficult, but on the other hand it constitutes a crucial check of the previous results from [21]. We request one full shift for this important measurement for ²³⁰Ac.

 $P_{\beta DF}$ and fission rate estimates for 232,234 Ac were made based on two approaches: either via a direct extrapolation from the measured $P_{\beta DF}$ data for 228,230 Ac from [21, 22] or by also including the known data for 236,238 Pa [25] and 256m Es [26]. To check the sensitivity of the results, two widely-used fission models were exploited: the TF [27] and FRLDM [28], which predict quite different fission barrier heights.

In the first approach, by linearly-extrapolating the $P_{\beta DF}$ values from ^{228,230}Ac to ^{232,234}Ac, as shown by the blue lines in Fig. 2, the $P_{\beta DF}(^{232,234}Ac)$ values were obtained for the TF and FRLDM models, and respective expected numbers of fission events were calculated (see Table 1). Expected statistics for ^{232,234}Ac (several tens to a thousand of fissions per shift within either TF or FRLDM approaches) should be enough for the first identification of β DF occurrence in these isotopes².

In the second approach, we used a weighted fit to the five known $P_{\beta DF}$ values, see the red lines in Fig. 2. However, we stress that only a handful of fission events was observed in a complex β DF evaluation for ^{236,238}Pa, with an order of magnitude uncertainty [25]. Only two β DF events were tentatively attributed to ^{256m}Es, with no uncertainty quoted [26]. This emphasized the difficulties of the previous experiments and the need for the re-investigation of these isotopes³.

Based on a highly-tentative fit, the $P_{\beta DF}(^{232,234}\text{Ac})$ become up to two orders of magnitude lower, leading to respective fission yield reductions. However, even with such lower

²For a reference, the observed fission rate in our β DF study of ¹⁸⁰Tl was ≈ 10 fissions/h. [1].

³We mention that ^{236,238}Pa and some other Pa isotopes could become available for the future β DF studies at ISOLDE following the technical developments within the EU-LISA network.

fission rates, we expect to get at least a few fission events for these isotopes, to establish the presence of their β DF. Furthermore, based on the difference in the predicted fission yields between the TF and FRLDM approaches, a conclusion on their validity for this case could also be made.

A large uncertainty between the fission rate estimations by the two approaches prohibits us from proceeding with a Proposal, that is why we first wish to perform a test measurement within this LoI. Two shifts are asked for the measurements for ^{232,234}Ac.

3 Tests for β DF in ^{230,232}Fr and for the first production of ²³⁴Fr

The surface-ionized isotopes 230,232 Fr (half-lives $\approx 5-20$ s) should also posses a β DF branch. Due to absence of reliable β DF systematics in this region (see the discussion of Fig. 2), any $P_{\beta DF}$ estimates for these isotopes would be too tentative, thus we need to perform a test before we consider a full proposal. Due to their shorter half-life values in comparison with the isobaric Ac's and Ra's, Fr decay can be studied in clean conditions with a properly selected faster implantation-decay tape cycling of IDS. The published yields of 230,232 Fr are $\approx 10^5$ and $\approx 3 \times 10^3 \text{ ions}/\mu \text{C}$ [20], and $\approx 2(1) \times 10^3 \text{ ions/s for } {}^{233}$ Fr [30]. Based on these yields, we can reach a level of $P_{\beta DF} \approx 10^{-9}$ and $\approx 10^{-7}$ in a 1-hour run for 230,232 Fr, respectively. These values are lower by at least an order of magnitude than the rather high upper limits reported in [23]. We request one shift in total for 230,232 Fr and for a production test of the yet unknown 234 Fr.

4 A future extension towards Pa and Np beams

This LoI will contribute towards a possible follow-up extended programme to investigate the β DF and nuclear spectroscopy properties of the scarcely-studied neutron-rich Pa and Np isotopes. As mentioned earlier, β DF was claimed for ^{236,238}Pa in the 1980s [25], but the data are very uncertain and needs to be re-investigated. The β DF of ²²⁸Np was identified by Dubna and Berkeley experiments, respectively, see overview [9]. Thus, the extension of the studies to the Pa and Np species at ISOLDE would be of a great interest. This goal, however, requires a dedicated beam development program for such beams, which is foreseen by the activities within the LISA network. Molecular Pa and Np beams, as well as their laser ionization will be investigated.

5 Detection setup

The β DF measurements will be performed with the IDS setup in its standard configuration, which includes a tape station and 4 HPGe clover detectors. An annular silicon detector, or an array of several solar cell detectors, which are less sensitive to the radiation damage, will be installed in front of the implantation tape for measurement of singles α particles and fission fragments with geometric efficiencies of $\approx 20\%$ and of $\approx 40\%$, respectively, in a configuration reminiscent of our previous work with the Windmill. A twice higher detection efficiency for fission fragments is because each fission event produces two fission fragments. A plastic scintillator detector will be placed behind the tape to register β particles and allow β -fission and β - γ coincidences The fast-timing LaBr₃ detectors will be also used for concurrent lifetimes measurements for excited states populated in β decays of Fr and Ac isotopes and their daughter nuclides as a by-product during the β DF runs (no extra beam time required).

Summary of requested shifts: If performed as a standalone experiment: 5 shifts with UC_x target, in a single run: 1 shift for Ac laser tuning, 3 shifts for 230,232,234 Ac, and 1 shift for 230,232,234 Fr measurements. Otherwise, we request 4 shifts, if the Ac experiment [24] is accepted, and both experiments are combined together.

Upon the completion of the aforementioned tests, we plan to submit a proposal on the isotopes for which a complete investigation, including the measurement of the fission fragment mass and energy distribution with coincidence measurements, could be performed.

References

- [1] A. N. Andreyev *et al.*, Phys. Rev. Lett. **105**, 252502 (2010).
- [2] M. Veselský et al., Phys. Rev. C 86, 024308 (2012).
- [3] J. Elseviers *et al.*, Phys. Rev. C 88, 044321 (2013).
- [4] V. Liberati *et al.*, Phys. Rev. C 88, 044322 (2013).
- [5] L. Ghys *et al.*, Phys. Rev. C **90**, 041301(R) (2014).
- [6] L. Ghys *et al.*, Phys. Rev. C **91**, 044314 (2015).
- [7] V. L. Truesdale *et al.*, Phys. Rev. C **94**, 034308 (2016).
- [8] B. Andel *et al.*, β -delayed fission of isomers in ¹⁸⁸Bi. Accepted to Phys. Rev. C (2020).
- [9] A. N. Andreyev *et al.*, Rev. Mod. Phys. **85**, 1541 (2013).
- [10] A. N. Andreyev, K. Nishio, and K.-H. Schmidt, Rep. Prog. Phys. 81, 016301 (2018).
- [11] I. V. Panov *et al.*, Nucl. Phys. A **747**, 633 (2005).
- [12] M. Eichler *et al.*, The Astrophysical Journal **808**, 30 (2015).
- [13] S. Shibagaki et al., The Astrophysical Journal, 816, 79 (2016).
- [14] T. Kajino, G.J. Mathews, Rep. Prog. Phys. 80, 084901 (2017).
- [15] ISOLDE yield table: http://isoyields-classic.web.cern.ch/radium_isotopes.html.
- [16] A. Mamdouh *et al.*, Nucl. Phys. A **679**, 337 (2001).
- [17] S. Goriely *et al.*, Phys. Rev. Lett. **111**, 242502 (2013).
- [18] J. Khuyagbaatar, Eur. Phys. J. A 55, 134 (2019).
- [19] K.-L. Gippert *et al.*, Nucl. Phys. A **453**, 1 (1986).
- [20] K. Peräjärvi et al., Eur. Phys. J. A 21, 7 (2004).

- [21] X. Yanbing *et al.*, Phys. Rev. C **74**, 047303 (2006).
- [22] Y. Shuanggui *et al.*, Eur. Phys. J. A **10**, 1 (2001).
- [23] K.A. Mezilev *et al.*, Z. Phys. A **337**, 109 (1990).
- [24] R. Heinke *et al.*, Proposal for Ac hfs measurements, submitted (2020).
- [25] Y. P. Gangrsky et al., Yad. Fiz. 27, 894 [Sov. J. Nucl. Phys. 27, 475 (1978)].
- [26] H. L. Hall *et al.*, Phys. Rev. C 39, 1866 (1989).
- [27] W. D. Myers and W. J. Światecki et al., Phys. Rev. C 60, 014606 (1999).
- [28] P. Möller et al., Phys. Rev. C 79, 064304 (2009).
- [29] M. Wang et al., Chin. Phys. C 41, 030003 (2017).
- [30] S. Kreim *et al.*, Phys. Rev. C **90**, 024301 (2014); and V. Manea (private communication).

Appendix

DESCRIPTION OF THE PROPOSED EXPERIMENT

The experimental setup comprises: (name the fixed-ISOLDE installations, as well as flexible elements of the experiment)

Part of the Availabi	ity Design and manufacturing
IDS 🛛 Existi	ag \boxtimes To be modified: Addition of annular Si detector or of an array of solar cells for α and fission frag- ment detection, and LaBr ₃ detectors for fast-timing measurement

HAZARDS GENERATED BY THE EXPERIMENT (if using fixed installation:) Hazards named in the document relevant for the fixed IDS installation.

Additional hazards:

Hazards	α /fission-decay setup	usual usage		
Thermodynamic and fluidic				
Pressure	[pressure][Bar], [vol-			
	ume][l]			
Vacuum	Standard ISOLDE vac-			
	uum			
Temperature	[temperature] [K]			
Heat transfer				
Thermal properties of				
materials				
Cryogenic fluid	[fluid], [pressure][Bar],			
	[volume][l]			
Electrical and electromagnetic				
Electricity	[voltage] [V], [cur-			
	rent][A]			
Static electricity				
Magnetic field	[magnetic field] [T]			
Batteries				
Capacitors				
Ionizing radiation				

IDS tape	The tape where the		
1	radioactive samples		
	are implanted could be		
	damaged or stuck some-		
	times. Should it break		
	and the IDS chamber		
	needs to be opened.		
	usual radioprotection		
	procedures need to be		
	followed.		
Beam particle type (e.	Fr. Ac beams		
p. jons. etc)			
Beam intensity	10^{3} -10 ⁵ ions/s		
Beam energy	30-60 keV		
Cooling liquids	[liquid]		
Gases	[gas]		
Calibration sources:			
Open source			
Sealed source	□ [ISO standard]		
Isotope	241 A m		
• Activity	50 Ba		
Use of activated mate	50 DQ		
vial			
• Description			
• Description			
• Dose rate on contact	[dose][m5v]		
and in 10 cm distance			
• Isotope			
• Activity			
Non-ionizing radiatio	n	[
Laser			
UV light			
Microwaves (300MHz-			
30 GHz)			
Radiofrequency (1-300			
MHz)			
Chemical		1	r
Toxic	[chemical agent], [quan-		
	tity]		
Harmful	[chem. agent], [quant.]		
CMR (carcinogens,	[chem. agent], [quant.]		
mutagens and sub-			
stances toxic to repro-			
duction)			
Corrosive	[chem. agent], [quant.]		
Irritant	[chem. agent], [quant.]		
Flammable	[chem. agent], [quant.]		

Oxidizing	[chem. agent], [quant.]	
Explosiveness	[chem. agent], [quant.]	
Asphyxiant	[chem. agent], [quant.]	
Dangerous for the envi-	[chem. agent], [quant.]	
ronment		
Mechanical		
Physical impact or me-	usual IDS chamber, sur-	
chanical energy (mov-	rounded by Clovers	
ing parts)		
Mechanical properties	[location]	
(Sharp, rough, slip-		
pery)		
Vibration	[location]	
Vehicles and Means of	[location]	
Transport		
Noise		
Frequency	[frequency],[Hz]	
Intensity		
Physical		
Confined spaces	[location]	
High workplaces	[location]	
Access to high work-	[location]	
places		
Obstructions in pas-	[location]	
sageways		
Manual handling	[location]	
Poor ergonomics	[location]	

Hazard identification:

Average electrical power requirements (excluding fixed ISOLDE-installation mentioned above): negligible