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Introduction

A new interdisciplinary research topic that goes by the name of Quantum Machine Learning
(QML) has recently begun to explore the interplay of ideas from quantum computing and
machine learning.
For example, QML investigates whether quantum computers can speed up the time it takes
to train or evaluate a machine learning model. On the other hand, the QML community
leverages techniques from machine learning to devise new quantum error-correcting codes,
estimate the properties of quantum systems, or develop new quantum algorithms.
The state of the art of Quantum Machine Learning has as main highlight the development
of algorithms that have been proven to have a quantum advantage in computational com-
plexity over classical algorithms.
However, these algorithms require a fault-tolerant quantum computer, which is able to con-
tinuously correct errors that arise during computation, ensuring the stability and reliability
of the quantum processes over extended periods. As we are still many years away from fault
tolerant quantum computation, the QML community has developed a great interest toward
possible applications of current and near-term quantum devices (NISQ devices), which
are not capable of continuous quantum error correction. In particular, the QML research
community has developed a new class of quantum procedures called variational quantum
algorithms (VQA) to take advantage of current and near-term quantum hardware (figure 1).

A VQA is a hybrid quantum-classical algorithm that employs a Parametrized Quantum
Circuit (PQC) U(θ), where θ represents a set of tunable parameters. These parameters are
adjusted to enhance the algorithm’s performance for completing a specific task. By measur-
ing the PQC, valuable information is extracted and used to evaluate a loss function. This
loss function is then minimized, and the optimization procedure suggests improved candi-
dates for the parameters θ, starting from random or pre-trained initial values. The crucial
point to emphasize of a VQA is that the PQC can be executed on current quantum devices,
while the computational demanding task of optimizing the loss function is performed by a
classical computer, which is far more reliable then NISQ devices. Many different VQAs have
been designed to tackle standard machine learning tasks, such as classification, regression
or optimization.
The main objective of my CERN’ project was to develop a novel image classification PQC,
which we named block re-uploading, and to investigate its properties (figure 2).
Specifically, we examined three key properties of the block re-uploading PQC (which are
fundamental to all PQCs): generalization1, expressivity2 and trainability3.

1Generalization refers to a model’s ability to perform well on unseen data, demonstrating its effectiveness
beyond the training set.

2Expressivity measures a PQC’s ability to adapt and perform across various types of datasets.
3Trainability assesses how easy or difficult it is to train a PQC.



Figure 1: Schematic representation of a VQA. A VQA has different components: the first
one is the encoding block, which is responsible for encoding the data of a certain problem in
the circuit; the second one is the PQC, which has parameters that will be tuned to improve
the performance of the algorithm; the third one is the decoding block, which consists of
measuring an observable to extract information from the circuit that is used to evaluate a
cost function. The PQC is executed on a NISQ device, while the minimization procedure of
the cost function (which leads to the update of the parameters) is performed by a classical
computer

Block re-uploading architecture

This block re-uploading is a new quantum machine learning algorithm inspired by classical
convolutional neural networks and its main goal is to classify images. Images are composed
of pixels, and each pixel is typically represented as a vector of three values corresponding
to the intensity of the primary colors: red, green, and blue (RGB). Each of these values
typically ranges from 0 to 255 in an 8-bit color depth image, which is common in digital
images.
It is essential to observe that not all the information contained in an image is essential for
classification purposes. Indeed, many preprocessing techniques, such as PCA, have been
used in the literature to reduce the amount of information fed into a (quantum) neural
network.
to preserve information redundancy in the images and maintain the full dimensionality of
the dataset.

The fundamental idea behind the block re-uploading algorithm is based on the observa-
tion that neighboring pixels in an image are highly correlated. Consequently, we chose to
divide each image into blocks and upload each block onto a separate qubit (figure 2).
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Figure 2: An image with even width and height can be divided into exactly four equal
blocks. Each block will then be encoded onto a separate qubit. As we will explain in
the next paragraph the block re-uploading architecture has three components per layer:
embedding circuit, entanglement circuit, pooling circuit.

Our main goal was to investigate the Depth vs Width trade-off. The Depth vs Width
trade-off can be more explicitly referred to as the Sequential vs Parallel uploading trade-off.
If we do not split the image into blocks, the entire image will be encoded into a single qubit,
resulting in sequential distribution of information across the quantum circuit. In contrast,
if we divide the image into blocks and encode each block onto a separate qubit, the in-
formation will be distributed both sequentially and in parallel. As the number of blocks
increases, the distribution of information becomes progressively more parallel, reaching the
limit where each block consists of a single pixel. This trade-off raises the natural ques-
tions: which distribution is better? Sequential or parallel?. As is common when evaluating
trade-offs, the optimal solution often lies between the two extremes. Therefore, we predict
that the best approach to distributing information across the quantum circuit will involve
a balanced mix of sequential and parallel encoding.

The block re-uploading algorithm is a layered algorithm and each layer has three com-
ponents: an embedding circuit, an entanglement structure and a pooling circuit (figure
4).
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Figure 4: A four qubits and two layers block re-uploading architecture. Each layer has three
components: an embedding circuit, an entanglement structure and a pooling circuit. Layers
are separated by another entanglement structure.

Embedding The embedding component is responsible to encode each block of an image
onto a different qubit of the quantum circuit (figure 5).
For instance, an 8 × 8 image can be divided in 4 identical 4 × 4 blocks. Therefore, each
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Figure 3: This figure shows three possible splitting of a 4× 4 image and the corresponding
circuit. If the image is not divided into blocks, it will be uploaded to a single qubit, rep-
resenting a fully-sequential approach. Dividing the image into 4 blocks results in a 4-qubit
architecture, positioning it roughly at the midpoint of the sequential-parallel spectrum. If
the image is divided into 16 blocks, each block will contain only 1 pixel. This scenario
exemplifies the fully-parallel uploading limit, as each pixel is assigned to a separate qubit.

4 × 4 block is a 16 dimensional vector which requires
⌈
d
3

⌉
=

⌈
16
3

⌉
= 6 unitary matrices to

be encoded onto a qubit. In particular, each block needs 16 rotation gates, one per pixel.
Therefore, the unitary matrices necessary to encode a block x = (x1, x2, ..., x16) will be:

U1
1 (ϕ1) = U1(x,θ1) = RZ(ϕ1,1)RY (ϕ1,2)RZ(ϕ1,3) (1)

U1
2 (ϕ2) = U2(x,θ2) = RZ(ϕ2,1)RY (ϕ2,2)RZ(ϕ2,3) (2)

... (3)

U1
6 (ϕ6) = U1(x,θ6) = RZ(ϕ6,1)RY (ϕ6,2)RZ(ϕ6,3) (4)

where θi = (wi,1, wi,2, wi,3, bi,1). The angles will be defined as a linear combination of
pixels and weights, for example ϕ1:



ϕ1,1 = x1 · w1,1 + b1,1 (5)

ϕ1,2 = x2 · w1,2 + b1,2 (6)

ϕ1,3 = x3 · w1,3 + b1,3 (7)

(8)
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Figure 5: Embedding circuit for an 8× 8 image divided in 4 identical 4× 4 blocks.

Entanglement structure Since each block is correlated with its neighboring blocks,
we decided to use an entanglement structure in which entangling gates create connections
between adjacent blocks (figure 6). We chose CZ, as the only entangling gate. Therefore,
the entanglement structure aims to ensure that each qubit shares information only with
qubits that contain related information.

Figure 6: Entanglement structure for an image divided in 4 blocks. The first qubit will
communicate with the second one and the third one, as the first block is adjacent to the
second and the third one. Then, the second block will be connected to the fourth one and
the third to fourth one.

Pooling In classical machine learning the pooling layers are used to make the network
less sensitive to small translations and distortions in the input data.
Therefore, we decided to mimic the pooling component of classical convolutional neural



networks, by adding an X rotation gate per qubit, whose angle is defined as the linear
combination of the max (or average) value of a block and weights (figure 7). Therefore, if
we consider again an 8× 8 image divided in 4 identical 4× 4 blocks:

x1 = (x1,1, x1,2, ..., x1,16) → max(x1) (9)

x2 = (x2,1, x2,2, ..., x2,16) → max(x2) (10)

x3 = (x3,1, x3,2, ..., x3,16) → max(x3) (11)

x4 = (x4,1, x4,2, ..., x4,16) → max(x4) (12)

(13)

the angles of the four X rotation gates will be:

ϕ1 = max(x1) · w1 + b1 (14)

ϕ2 = max(x2) · w2 + b2 (15)

ϕ3 = max(x3) · w3 + b3 (16)

ϕ4 = max(x4) · w4 + b4 (17)

(18)
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Figure 7: Pooling circuit for a 4 qubit architecture.

Numerical results

We conducted several numerical test on the block re-uploading architecture:

� Classification.
We conducted both binary and multi-class classification.

� Dataset.
We used both the MNIST digit and MNIST fashion datasets, which are both grayscale
28× 28 pixels images.



� Image size.
We used different down-scaling of the MNIST dataset: 8×8, 12×12, 14×14, 16×16,
18× 18.

� Decoding observable.
Every quantum machine learning algorithm has a decoding component at the end of
it, which consists in measuring an observable to extract information from the PQC.
The observable that we chose are: global Pauli Z, which is the tensor product of n
(number of qubits of the circuit) Pauli Z, local Pauli Z, which is only one Pauli Z.
Regarding the local Pauli Z measurement, in the block re-uploading architecture with
multiple qubits, we had the option to measure any qubit. However, we consistently
chose to measure only the first qubit.

� Architectures.
We studied the architecture shown in figure 4.

The following sections will discuss the generalization capabilities and the trainability of
the block re-uploading architecture.
I will limit my discussion only to 8× 8 images.

Local 8x8

By looking at figure 8, we can distinguish three different behaviours:

1. Deep-Narrow.
As the number of layers increases in narrow architectures (1, 2, or 3 qubits), their
capacity to generalize diminishes, leading to overfitting. This occurs because the
increase in layers corresponds to a rise in the number of trainable parameters.
As a result, the architecture becomes overparameterized, allowing it to capture even
minor fluctuations in the training dataset, which reduces its ability to generalize
effectively to new, unseen data.

2. Shallow-Wide.
As the number of qubits (width) increases both training and validation accuracy of
single-layer architectures (shallow) drop drastically. As the width of the architecture
increases, a greater degree of entanglement is required to effectively distribute infor-
mation across all qubits. However, shallow architectures lack sufficient entangling
gates to achieve this, resulting in an inability to fully capture and “understand” the
complete picture.
However, by comparing training and validation accuracy, although both decrease as
the width increases, there is no evidence of overfitting.
We can conclude that, as the architecture widens, entanglement becomes increasingly
crucial for the architecture to effectively ”understand” the image.

3. Proportionate.
In proportionate architectures (those that are neither shallow-wide nor deep-narrow)



overfitting tends to disappear. As the number of layers and qubits increases, the
block re-uploading introduces a richer set of entanglement structures, enabling more
effective information sharing across all qubits. This reduction in overfitting as en-
tanglement grows raises some natural questions: Could entanglement be a factor that
resists overfitting?, Might entanglement serve as a source of regularization?.
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Figure 8: This heatmap shows the training and validation accuracy for architectures with
1-15 qubits and 1-6 layers for the 8×8 down-scaled MNIST digits and fashion dataset using
a local Pauli Z.
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Figure 9: This figure illustrates the distribution of quantum states for an architecture with
1 qubit and 6 layers, both before and after training, in the task of classifying the digits 0 and
1 from the MNIST dataset. Before training, the predictions are uniformly distributed across
the Bloch sphere. However, after training, the architecture clearly distinguishes between
the zeros and ones, demonstrating its improved classification capability.

Trainability

We investigated the trainability (figures 10 and 11) of the block re-uploading architecture
this methodology:

� We fixed the size of the images: 8× 8;

� We fixed the number of layers: 1, 10, 15, 20, 40, 60, 80, 100;

� We fixed the number of qubits: 1, 2, 3, ..., 16;

� We sampled N (50) models, which means that we sampled N different times the
parameters θ of the model (uniform and gaussian initialization);

� We computed the absolute gradient of the loss function |∇θJ |1;

� We computed the variance value of the absolute gradient V ar(|∇θJ |);

Our approach differs from the original paper on barren plateaus, as [?] used architectures
with only parameters in their parametric gates, without data embedding. In contrast, the
block re-uploading architecture incorporates both data and parameters in every parametric
gate.

1Alternatively, we could have computed only the loss function. As previously discussed, barren plateaus
can be defined either through the loss function or its gradient. This approach would have been computa-
tionally more efficient.



We studied the trainability of the block re-uploading architecture with two different
decodings: local Pauli Z and global Pauli Z.
Let’s compare these two decodings technique when initializing the trainable parameters
uniformly between [-π, π] (figure 10):

1. V ar(|∇θJ |) vs layers: Global vs Local.
By comparing the two decoding scenarios, we can notice a common behaviour: ini-
tially, there is an exponential decrease in variance for the first few layers (which is
more pronounced in the local case), after which the variance levels off and reaches
a plateau. The primary difference between the global and local cases is that in the
global case, the plateau is reached more quickly.
It is particularly noteworthy that as the number of qubits increases, the plateaus in
both the global and local cases become progressively lower. This behaviour indicates
that the variance is inversely proportionate to the number of qubits.
Finally, we can examine the architecture’s layers budget before reaching barren plateaus1.
In the local case, every qubit architecture maintains a non-zero layers budget (L1).
For architectures with fewer qubits, this budget is effectively unlimited as the plateau
is above 10−4 (L2). However, as the number of qubits increases, the layers budget
decreases, with the 16-qubit architecture having a layers budget ranging from 0 to 8
(L3)2. In contrast, the global case shows a different behavior: architectures with 14,
15, and 16 qubits have no layers budget, indicating that they are almost untrainable.
Moreover, the local and global cases reveals distinct behaviors for single-layer architec-
tures: in the local case, the variance for different qubit architectures is concentrated
within the range [10−3, 10−1]; in contrast, for the global case, as the number of qubits
increases, the variance progressively decreases, ranging from [100, 105].

2. V ar(|∇θJ |) vs qubits: Global vs Local.
Since both plots are in log scale, by looking at V ar(|∇θJ |) vs qubits we can notice
that as the number of layers increases V ar(|∇θJ |) is exponentially suppressed1. In
both cases (global and local), we observe that the variance is inversely correlated with
the number of qubits: as the number of qubits increases, the variance decreases.

After examining uniform initialization (see figure 10), we evaluated gaussian initializa-
tion (shown in figure 11) for local decoding. However, we observed no significant differences
between the two initialization methods.

1By layers budget, we refer to the number of layers an architecture can accommodate before encountering
a barren plateau. For this analysis, we define the threshold for a barren plateau as 10−4

2I have indicated with (L1), (L2), (L3) to express that those three observations are valid only for the
local case.

1A straight-line function with a negative slope on a logarithmic scale corresponds to a negative exponential
function on a linear scale.
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Figure 10: The first row compares the V ar(|∇θJ |) vs layers plots for the local (left) and
global (right) case with a uniform initialization of the parameters ranging [-π, π]. The first
row compares the V ar(|∇θJ |) vs qubits plots for the local (left) and global (right) case
with a uniform initialization of the parameters ranging [-π, π]. By local and global case we
intend that we either used local Pauli Z or global Pauli Z, as the decoding method.

0 20 40 60 80 100
Layers

10 6

10 5

10 4

10 3

10 2

10 1

100

101

Va
ria

nc
e

Variance vs Layers

Qubits 1
Qubits 2
Qubits 3
Qubits 4
Qubits 5
Qubits 6
Qubits 7
Qubits 8
Qubits 9
Qubits 10
Qubits 11
Qubits 12
Qubits 13
Qubits 14
Qubits 15
Qubits 16

2 4 6 8 10 12 14 16
Qubits

Variance vs Qubits

Layers 1
Layers 5
Layers 10
Layers 15
Layers 20
Layers 40
Layers 60
Layers 80
Layers 100

Figure 11: The figure shows the V ar(|∇θJ |) vs layers and V ar(|∇θJ |) vs qubits plots with
a local decoding and a gaussian initialization of the parameters (µ = 1, σ = 1).
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