Electroweak Measurements of Multiboson Production with the ATLAS Experiment

Stefanie Götz on behalf of the ATLAS Collaboration

Ludwig-Maximilians-Universität München

ICNFP 2024

2 Sep 2024

LUDWIG-

MAXIMII IANS-

UNIVERSITÄT MÜNCHEN Bundesministerium für Bildung und Forschung

Introduction

Multiboson studies probe the SM EW symmetry breaking mechanism

- Study of vector boson self-couplings
 - ⇒ Vector boson self-interactions determined by the gauge symmetry of the EW theory
 - ⇒ VBS of particular interest due to its sensitivity to triple and quartic gauge couplings

 \Rightarrow Search for anomalous gauge couplings in context of an ${\rm EFT}$ interpretation

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_{i} \frac{f_{i}^{(6)}}{\Lambda_{i}^{2}} O_{i}^{(6)} + \sum_{i} \frac{f_{i}^{(8)}}{\Lambda_{i}^{4}} O_{i}^{(8)} + \dots$$

EFT SM aTGC aQGC

- Study of vector boson **polarisation states**
 - ⇒ Vector bosons obtain through the EW symmetry breaking mechanism longitudinally polarised states

 \Rightarrow Deviations of the cross-section of the longitudinal polarisation state indicates physics beyond the SM

Introduction

Multiboson studies probe the SM EW symmetry breaking mechanism

- Study of vector boson self-couplings
 - ⇒ Vector boson self-interactions determined by the gauge symmetry of the EW theory
 - ⇒ VBS of particular interest due to its sensitivity to triple and quartic gauge couplings

⇒ Search for anomalous gauge couplings in context of an EFT interpretation

- Study of vector boson **polarisation states**
 - ⇒ Vector bosons obtain through the EW symmetry breaking mechanism longitudinally polarised states

⇒ Deviations of the cross-section of the longitudinal polarisation state indicates physics beyond the SM

ATLAS	analyses p	presented in	this talk
New energy:	<i>ZZ</i> at 13.	6 TeV	
Polarisation:	n: ZZ polarisation & CP at high		at high $p_{\rm T}$
VBS:	₩±Zjj	$W^{\pm}W^{\pm}jj$	Wγjj

ZZ at 13.6 TeV

13.6 TeV 29 fb⁻¹ Partial Run-3

Phys. Lett. B 855 (2024) 138764

• First Run-3 ZZ cross-section measurement!

- Rarest diboson process but attractive due to high signal-to-background ratio in fully-leptonic channels
- Key channel for aTGCs searches & studying off-shell Higgs boson production
- **Signal**: 2 SFOC lepton pairs (*e*, μ) with on-shell *Z* requirements
- $q\overline{q} \rightarrow ZZ$ dominant process
- Irreducible backgrounds from $t\bar{t}Z$ & triboson
- Non-prompt lepton background
- Comparison of results to state-of-art MC simulation and fixed-order calculations (NNLO QCD & NL EW)

Good data/MC agreement!

ZZ at 13.6 TeV

Cross-section measurements:

- Inclusive measurement & extrapolation to a total phase space with $66 < m_Z < 116 {\rm GeV}$

	Measurement	MC prediction	MATRIX prediction
Fiducial	$36.7\pm1.6(\mathrm{stat})\pm1.5(\mathrm{syst})\pm0.8(\mathrm{lumi})$ fb	$36.8 \stackrel{+4.3}{_{-3.5}} { m fb}$	$36.5\pm0.7~{\rm fb}$
Total	$16.8\pm0.7(\mathrm{stat})\pm0.7(\mathrm{syst})\pm0.4(\mathrm{lumi})~\mathrm{pb}$	17.0 $^{+1.9}_{-1.4}~{\rm pb}$	$16.7\pm0.5~\rm{pb}$

Differential measurements

ZZ at 13.6 TeV in a historical context:

• Extension of diboson studies to a new centre-of-mass energy

All results well described by SM predictions!

Phys. Lett. B 855 (2024) 138764

ZZ polarisation & CP

13 TeV 140 fb⁻¹ Full Run-2

x

Polarisation states sensitive to

angular observables

z

z - z' - x' plane

 $T_{\rm vz.1(3)} = \sin \Phi_{1(3)} \times \cos \theta_{1(3)}$

 Z_1 rest frame

JHEP 12 (2023) 107

- Signal: $q\bar{q} \rightarrow ZZ$, $gg \rightarrow ZZ$, $qq \rightarrow ZZjj$
- 2 SFOC e or μ pairs, on-shell with $|m_{\rm H} m_{\rm Z}| < 10 \, {\rm GeV}$
- Prompt lepton background from $t\bar{t}Z$ & triboson
- Non-prompt lepton background
- 3 helicity states: $Z_L Z_L, Z_L Z_T, Z_T Z_T$
- $Z_L Z_L$ signal extraction by profile likelihood fit on BDT distribution
- Additional reweighting of MC templates to account for NLO/LO corrections of ZZ polarisation states

CP-odd aNTGC

aNTGC cross-section: $\sigma^i = \sigma^i_{SM} + c\sigma^i_{interference} + c^2\sigma^i_{quadratic}$

 Z_2 rest frame

Polarisation measurements:

 $\sigma_{Z_L Z_L}^{obs} = 2.45 \pm 0.56 \pm 0.21$ fb with 4.3 σ significance

- $Z_{\rm L}Z_{\rm L}$ -polarisation cross-section consistent with SM prediction
- Measurement limited by data statistic & polarisation modelling

Study of the CP property :

- Inclusive $(Z_L Z_L + Z_L Z_T + Z_T Z_T)$ differential cross-section measurement for $\mathcal{O}_{T_{VZ,1}T_{VZ,3}}$
- $\mathcal{O}_{T_{\text{VZ},1} T_{\text{VZ},3}}$ asymmetric for CP-odd aNTGC

CP-odd aNTGC:

- Constraints on ZZZ & ZZy coupling parameters f_Z^4 , f_Y^4 at 95% CL using the differential cross-section distribution
- First constraints using only linear interference terms
- No significant deviations from SM

	CP-odd aNTGC		with $\sigma^i_{ ext{quadratic}}$		
aNTGC parameter	Interference only Expected Observed		Full Expected Observed		
f_Z^4	[-0.16, 0.16]	[-0.12, 0.20]	[-0.013, 0.012]	[-0.012, 0.012]	
f_{γ}^4	[-0.30, 0.30]	[-0.34, 0.28]	[-0.015, 0.015]	[-0.015, 0.015]	

WZ polarisation at high $p_{\rm T}$

13 TeV 140 fb⁻¹ Full Run-2

- Selection of 2 fiducial regions such to enhanced prevalence for the 2 longitudinally-polarised (00) bosons for the measurement of diboson polarisation fractions f_{00} , f_{0T} , f_{T0} , $f_{TT} \Rightarrow high p_T^Z$
- Exploit Radiation Amplitude Zero (RAZ) effect in WZ
 - \Rightarrow Dominant helicity amplitude of the TT-polarised bosons becomes zero when the scattering angle of the W boson to the incoming antiquark \bar{q} approaches 90° in the WZ restframe
 - \Rightarrow NLO QCD corrections dilute effect

Reduced jet activity for the observation of the RAZ

Reduced TT contribution and increase of f_{00} from 5-7% to 20-30%

RAZ effect in WZ:

- First-time study in WZ
- Evaluation of the 00+0T+T0-subtracted $|\Delta Y(l_W Z)| \& |\Delta Y(WZ)|$ distributions for TT events
- Evaluation of the dip depth

 $\mathcal{D} = 1 - 2 \frac{N_{\text{central}}^{\text{unf}}}{N_{\text{sides}}^{\text{unf}}} > 0$ indicates dip

Energy dependence of diboson polarisation fractions

- Signal extraction from maximum-likelyhood fit on BDT score distribution
- *f*₀₀ observation in agreement with SM prediction

	Measurement			
	$100 < p_T^Z \le 200 \text{ GeV}$	$p_T^Z > 200 \text{ GeV}$		
f_{00}	$0.19 \pm _{0.03}^{0.03} (\text{stat}) \pm _{0.02}^{0.02} (\text{syst})$	$0.13 \pm _{0.08}^{0.09}$ (stat) $\pm _{0.02}^{0.02}$ (syst)		
f_{0T+T0}	$0.18 \pm_{0.08}^{0.07} (\text{stat}) \pm_{0.06}^{0.05} (\text{syst})$	$0.23 \pm_{0.18}^{0.17} (\text{stat}) \pm_{0.10}^{0.06} (\text{syst})$		
ftt	$0.63 \pm_{0.05}^{0.05} (\text{stat}) \pm_{0.04}^{0.04} (\text{syst})$	$0.64 \pm_{0.12}^{0.12} (\text{stat}) \pm_{0.06}^{0.06} (\text{syst})$		
f_{00} obs (exp) sig.	5.2 (4.3) σ	1.6 (2.5) σ		

arXiv:2402.16365 2 Sep 2024

13 TeV 140 fb⁻¹ Full Run-2

JHEP 06 (2024) 192

- **VBS** not independently gauge invariant, therefore study with same final-state processes required
 - $\Rightarrow \text{ Exclusively EW} \sim \alpha_{EW}^6$
 - $\Rightarrow \text{ QCD} \sim \alpha_S^2 \ \alpha_{EW}^4$
 - $\Rightarrow\,$ EW-QCD interference $\sim\alpha_S\,\alpha_{EW}^5$
- Signature: $WZ \rightarrow l' \nu ll \& \geq 2 j$
- SR with enhanced VBS: $m_{jj} > 500$ GeV, $N_{b-quark} = 0$
- Main irreducible background from ZZ & $t\bar{t}V$
- Background from misidentified leptons

EW & QCD cross-section measurements

- Multivariate discriminant constructed from BDT to separate
 EW from QCD
- Most precise EW *W*[±]*Zjj* cross-section measurement to date!

JHEP 06 (2024) 192

EW & QCD differential cross-section measurements

- In bins of N_{jets} , m_{jj}
- 2σ EW agreement in all SR sub-categories
- QCD mis-modelling by MADGRAPH+PYTHIA8 or SHERPA 2.2.12 for events with exactly 2 jets of $p_{\rm T}>25~{\rm GeV}$ or with $500 < m_{jj} < 1300~{\rm GeV}$

<u>*W*[±]*Zjj*</u> inclusive differential cross-section measurements

- For several kinematic observables
- Statistical uncertainties dominant

<u>aQGC</u>

- BDT score & m_{T}^{WZ} to search for aQGC
- 95% CL limits D-8 EFT operators indicating no deviation from 0

	Expected	Observed
	$[\text{TeV}^{-4}]$	$[\text{TeV}^{-4}]$
$f_{ m T0}/\Lambda^4$	[-0.80, 0.80]	[-0.57, 0.56]
$f_{ m T1}/\Lambda^4$	[-0.52, 0.49]	[-0.39, 0.35]
$f_{\mathrm{T2}}/\Lambda^4$	[-1.6, 1.4]	[-1.2, 1.0]
$f_{ m M0}/\Lambda^4$	[-8.3, 8.3]	[-5.8, 5.6]
$f_{ m M1}/\Lambda^4$	[-12.3, 12.2]	[-8.6, 8.5]
$f_{ m M7}/\Lambda^4$	[-16.2, 16.2]	[-11.3, 11.3]
$f_{\mathrm{S02}}/\Lambda^4$	[-14.2, 14.2]	[-10.4, 10.4]
$f_{ m S1}/\Lambda^4$	[-42, 41]	[-30, 30]

• Evaluation of relevant limits as a function of the unitarisation cut-off

2 Sep 2024

W[±]W[±]ii

EW $W^{\pm}W^{\pm}i$

Largest EW to QCD production ratio among final states sensitive to VBS

- Triboson production with 1 hadronic decay suppressed in EW VBS phase space region ($\rightarrow m_{ii}$)
- **Clean signature**: 2 same-charged leptons (e,μ) , $\geq 2j$ (high $m_{ii} \& |\Delta y_{ii}|$) & E_T^{miss}
- Dominant WZ/γ^* and non-prompt lepton background

EW $W^{\pm}W^{\pm}jj$ & inclusive cross-section measurements

- Cross-section from maximum likelihood fits with signal strength of SR & WZ CR (m_{ii} reduced) as free parameter
- Most precise $W^{\pm}W^{\pm}jj$ fiducial measurements to date!

 $\sigma_{c_1}^{\text{EW+Int+QCD}}$ [fb] $\sigma_{\rm fid}^{\rm EW}$ [fb] 2.92 ± 0.22 (stat.) ± 0.19 (syst.) 3.38 ± 0.22 (stat.) ± 0.19 (syst.)

Very good data/MC agreement!

JHEP 04 (2024) 026

Data/SM

GeV

Events/10

 $W^{\pm}W^{\pm}ii$

<u>aQGC</u>

• Limits on 9 relevant D-8 EFT operators at 95% CL from the m_{ll} distribution in both SR & CRs

Coefficient	Туре	No unitarisation cut-off [TeV ⁻⁴]	Lower, upper limit at the respective unitarity bound $\label{eq:lower} [\text{TeV}^{-4}]$
£ 114	Exp.	[-3.9, 3.8]	-64 at 0.9 TeV, 40 at 1.0 TeV
J_{M0}/Λ^{-1}	Obs.	[-4.1, 4.1]	-140 at 0.7 TeV, 117 at 0.8 TeV
£	Exp.	[-6.3, 6.6]	-25.5 at 1.6 TeV, 31 at 1.5 TeV
J_{M1}/Λ	Obs.	[-6.8, 7.0]	-45 at 1.4 TeV, 54 at 1.3 TeV
£ _ / A 4	Exp.	[-9.3, 8.8]	-33 at 1.8 TeV, 29.1 at 1.8 TeV
JM7/A	Obs.	[-9.8, 9.5]	-39 at 1.7 TeV, 42 at 1.7 TeV
£ 114	Exp.	[-5.5, 5.7]	-94 at 0.8 TeV, 122 at 0.7 TeV
J_{S02}/Λ^{-1}	Obs.	[-5.9, 5.9]	-
£ 114	Exp.	[-22.0, 22.5]	-
J_{S1}/Λ^{-1}	Obs.	[-23.5, 23.6]	-
£ 1A4	Exp.	[-0.34, 0.34]	-3.2 at 1.2 TeV, 4.9 at 1.1 TeV
$J_{\rm T0}/\Lambda$	Obs.	[-0.36, 0.36]	-7.4 at 1.0 TeV, 12.4 at 0.9 TeV
£ 1A4	Exp.	[-0.158, 0.174]	-0.32 at 2.6 TeV, 0.44 at 2.4 TeV
J_{T1}/Λ	Obs.	[-0.174, 0.186]	-0.38 at 2.5 TeV, 0.49 at 2.4 TeV
f 1 A 4	Exp.	[-0.56, 0.70]	-2.60 at 1.7 TeV, 10.3 at 1.2 TeV
J_{T2}/I	Obs.	[-0.63, 0.74]	-

- Evaluation of limits as a function of the unitarisation cut-off excludes zero-values for $f_{\rm M0}$, $f_{\rm S1}$, $f_{\rm S02}$, $f_{\rm T0}$ for clipping scales below ~ 1 TeV at 95% CL
- Additional 2D limits on operator pairs

Search for doubly-charged Higgs boson production

• Evaluation of the m_T distribution in context of the Georgi-Machacek model

- Upper limits on $\sin \Theta_{\rm H} \& \sigma_{\rm VBF}(H_5^{\pm\pm}) \times B(H_5^{\pm\pm} \to W^{\pm}W^{\pm})$ at 95% CL
- $\sin \Theta_{
 m H}$ > 0.11-0.42 excluded for 200 GeV < $m_{
 m H_{
 m s}^{\pm\pm}}$ < 1500 GeV
- Local excess of events for $m_{\mathrm{H}_{\mathrm{c}}^{\pm\pm}}$ = 450 GeV at 2.5 σ

13 TeV 140 fb⁻¹ Full Run-2

- High precision for differential **EW** $W\gamma jj$ cross-section measurements compared to other VBS processes (large production cross-section)
- Combined measurement of EW $W\gamma i j$ processes in region with enhanced VBS
- **Clean signature**: $1e/\mu$, p_T^{miss} , $\ge 1\gamma$, $\ge 2j$ (high $m_{jj} \& |\Delta y_{jj}|$)
- **QCD** *Wyjj* dominant prompt background
- Background from misidentified leptons and photons
- Multivariate techniques including a Neural Network to isolate **EW** $W\gamma i j$ from **QCD** $W\gamma j j$
- SR & CRs separated by N_{jets}^{gap} & $\xi_{l\gamma}$

EW Wyjj fiducial cross section measurement

 $\sigma_{\rm EW} = 13.2 \pm 2.5$ fb with $\gg 6\sigma$ significance (6.3 σ expected)

- MADGRAPH5+PYTHIA8 in agreement with data within uncertainties ۰
- $\sim 2\sigma$ underestimation by SHERPA 2.2.12 from the 3rd parton in the SHERPA matrix element

EW Wyjj differential cross section measurements

Search for $WW\gamma\gamma \& WW\gammaZ$ (aQGC)

arXiv:2403.02809

[-24, 24]

[-37, 38]

[-8.6, 8.5]

[-13, 14]

[-15, 15]

[-14, 12]

[-66, 65]

•	Differential measurements for a set of variables
	sensitive to QGC or the CP violation structure of
	$WW\gamma\gamma \& WW\gamma Z$

- Reasonable agreement of data & LO SM prediction
- Slight overestimation of the measurement by . MADGRAPH5+PYTHIA8 at high m_{ii} & high p_T^{jj}
- Good shape agreement for SHERPA 2.2.12 but tendency to underestimate

95% CL limits on EFT	Coefficients [TeV ⁻⁴]	Observable	Expected [TeV ⁻⁴]	Observed [TeV ⁻⁴]
D-8 operators	f_{T0}/Λ^4	p_{T}^{jj}	[-2.4, 2.4]	[-1.8, 1.8]
	f_{T1}/Λ^4	p_{T}^{jj}	[-1.5, 1.6]	[-1.1, 1.2]
	f_{T2}/Λ^4	p_{T}^{jj}	[-4.4, 4.7]	[-3.1, 3.5]
	f_{T3}/Λ^4	p_{T}^{jj}	[-3.3, 3.5]	[-2.4, 2.6]
	f_{T4}/Λ^4	p_{T}^{jj}	[-3.0, 3.0]	[-2.2, 2.2]
	f_{T5}/Λ^4	p_{T}^{jj}	[-1.7, 1.7]	[-1.2, 1.3]
Observable most sensitive	f_{T6}/Λ^4	p_{T}^{jj}	[-1.5, 1.5]	[-1.0, 1.1]
to tensor-type operators	f_{T7}/Λ^4	p_T^{jj}	[-3.8, 3.9]	[-2.7, 2.8]

 f_{M0}/Λ^4

 f_{M1}/Λ^4

 f_{M2}/Λ^4

 f_{M3}/Λ^4

 f_{M4}/Λ^4

Additional constraints with unitarity • preservation are obtained by applying the clipping technique

Observable most sensitive f_{M5}/Λ^4

to mixed scalar operators f_{M7}/Λ^4

First LHC constraints on f_{T3} and f_{T4}

[-28, 28]

[-43, 44]

[-10, 10]

[-16, 16]

[-18, 18]

[-17, 14]

[-78, 77]

Summary

• Several exciting results by the 6 ATLAS analyses presented!

ZZ at 13.6 TeV

13.6 TeV 29 fb⁻¹ Partial Run-3

Source	Relative uncertainty $(\%)$
Data statistical uncertainty	4.2
MC statistical uncertainty	0.3
Luminosity	2.2
Lepton momentum	0.2
Lepton efficiency	3.7
Background	1.6
Theoretical uncertainty	1.0
Total	6.3

ZZ polarisation & CP

13 TeV 140 fb ⁻¹ Full Run-

Contribution	Relative uncertainty [%]
Total	24
Data statistical uncertainty	23
Total systematic uncertainty	8.8
MC statistical uncertainty	1.7
Theoretical systematic uncertainties	
$q\bar{q} \rightarrow ZZ$ interference modelling	6.9
NLO reweighting observable choice for $q\bar{q} \rightarrow ZZ$	3.7
PDF, α_s and parton shower for $q\bar{q} \rightarrow ZZ$	2.2
NLO reweighting non-closure	1.0
QCD scale for $q\bar{q} \rightarrow ZZ$	0.2
NLO EW corrections for $q\bar{q} \rightarrow ZZ$	0.2
$gg \rightarrow ZZ$ modelling	1.4
Experimental systematic uncertainties	
Luminosity	0.8
Muons	0.6
Electrons	0.4
Non-prompt background	0.3
Pile-up reweighting	0.3
Triboson and $t\bar{t}Z$ normalisations	0.1

Impact of NLO corrections

Asymmetric prediction

Detector-level distribution to train BDT

(RAZ) effect in WZ

p _T ^{wz} <70 GeV	Impact [%]				
Source	TT state		Sum of polarizations		
Experimental	$\Delta Y(\ell_W Z)$	$\Delta Y(WZ)$	$\Delta Y(\ell_W Z)$	$\Delta Y(WZ)$	
Luminosity	1.5	0.6	0.5	0.1	
Electron calibration	0.9	0.5	1.7	0.4	
Muon calibration	1.6	0.8	1.4	0.5	
Jet energy scale and resolution	3.4	1.9	1.8	1.2	
$E_{\rm T}^{\rm miss}$ scale and resolution	1.3	1.0	2.2	1.4	
Flavor-tagging inefficiency	0.0	0.0	0.1	0.0	
Pileup modelling	0.0	0.4	3.4	0.4	
Non-prompt background estimation	9.5	3.6	13.5	3.7	
Modelling					
Background, other	5.7	2.1	8.0	2.1	
Model statistical	2.4	1.3	4.6	2.0	
NLO corrections	9.2	1.0	0.0	0.0	
PDF, Scale and shower settings	7.5	3.9	0.7	0.2	
Unfolding uncertainty	0.0	2.3	0.0	2.6	
Experimental and modelling	17.0	6.8	17.2	5.7	
Data statistical	12.8	6.2	27.0	10.3	
Total	21.3	9.3	32.0	11.8	

Energy dependence of diboson polarisation fractions

Source	Impact on f_{00} [%]	
Experimental	$100 < p_T^Z \le 200 \text{ GeV}$	$p_T^Z > 200 \text{ GeV}$
Luminosity	0.1	0.2
Electron calibration	1.0	0.9
Muon calibration	1.1	1.3
Jet energy scale and resolution	5.9	9.0
$E_{\rm T}^{\rm miss}$ scale and resolution	1.0	0.6
Flavor-tagging inefficiency	0.1	0.2
Pileup modelling	1.6	1.1
Non-prompt background estimation	5.8	0.8
Modelling		
Background, other	1.4	1.6
Model statistical	2.5	5.6
NLO QCD effects	6.8	8.2
NLO EW effects	1.1	3.3
Effect of additive vs multiplicative QCD+EW combination	1.3	3.8
Interference impact	1.4	0.7
PDF, Scales, and shower settings	3.5	9.2
Experimental and modelling	12.1	17.7
Data statistical	18.0	64.5
Total	21.7	66.9

WZ polarisation at high $p_{\rm T}$

V[±]Zjj

Source	$\frac{\Delta \sigma_{WZjj-\rm EW}}{\sigma_{WZjj-\rm EW}} \ \left[\%\right]$	$\frac{\Delta \sigma_{WZjj-\text{strong}}}{\sigma_{WZjj-\text{strong}}} \begin{bmatrix} \% \end{bmatrix}$
WZjj-EW theory modelling	7	1.8
WZjj–QCD theory modelling	2.8	8
WZjj-EW and $WZjj$ -QCD interference	0.35	0.6
PDFs	1.0	0.06
Jets	2.3	5
Pile-up	1.1	0.6
Electrons	0.8	0.8
Muons	0.9	0.9
p-tagging	0.10	0.11
MC statistics	1.9	1.2
Misid. lepton background	2.3	2.3
Other backgrounds	0.9	0.23
Luminosity	0.7	0.9
All systematics	16	12
Statistics	10	6
Total	19	13

13 TeV 140 fb⁻¹ Full Run-2

2D combination of BDT score and $m_{ m T}^{WZ}$ to obtain the EFT limits

JHEP 06 (2024) 192, STDM-2018-35

2 Sep 2024

 $W^{\pm}W^{\pm}ii$

Source	Impact [%]
Experimental	4.6
Electron calibration	0.4
Muon calibration	0.5
Jet energy scale and resolution	1.9
$E_{\rm T}^{\rm miss}$ scale and resolution	0.2
<i>b</i> -tagging inefficiency	0.7
Background, misid. leptons	3.4
Background, charge misrec.	1.0
Pile-up modelling	0.1
Luminosity	1.9
Modelling	4.5
EW $W^{\pm}W^{\pm}jj$, shower, scale, PDF & α_s	0.7
EW $W^{\pm}W^{\pm}jj$, QCD corrections	1.9
EW $W^{\pm}W^{\pm}jj$, EW corrections	0.9
Int $W^{\pm}W^{\pm}jj$, shower, scale, PDF & α_s	0.6
QCD $W^{\pm}W^{\pm}jj$, shower, scale, PDF & α_s	2.6
QCD $W^{\pm}W^{\pm}jj$, QCD corrections	0.8
Background, WZ scale, PDF & α_s	0.3
Background, WZ reweighting	1.5
Background, other	1.3
Model statistical	1.8
Experimental and modelling	6.4
Data statistical	7.4
Total	9.8

Distribution for aQGC limits

13 TeV 139 fb⁻¹ Full Run-2

JHEP 04 (2024) 026, STDM-2018-32 **Distribution for** $H_5^{\pm\pm}$ search The differential measurements are for all . parameters except $m_{\rm T}$ well described EW $W^{\pm}W^{\pm}jj$ Inclusive $W^{\pm}W^{\pm}jj$ Variable Max. value in data $\chi^2/N_{\rm dof}$ $\chi^2/N_{\rm dof}$ *p*-value *p*-value 4.5/60.605 7.34/6 0.291 1081 GeV mff 13.0/6 0.043 16.33/6 0.012 1270 GeV $m_{\rm T}$ 7.6/6 0.266 8.67/6 0.193 6328 GeV m_{ii} $N_{\rm gap \ jets}$ 2.5/20.282 2.53/2 0.282 5 0.517 0.424 1.74 4.2/54.93/5 ξ_{j_3}

13 TeV 140 fb⁻¹ Full Run-2

 $\sigma^{fid}_{\text{EW $W(\rightarrow/\nu)\gamma jj$}} \text{ [fb]}$

Fractional uncertainties as a function of $m_{ii} \& p_{\rm T}^l$

Distribution for predicted and observed yields as

arXiv:2403.02809, STDM-2018-31