Boosted $H \rightarrow bb$ tagging searches

F. Parodi on behalf of the ATLAS Collaboration

Università di Genova/INFN Genova

э

イロト イボト イヨト イヨト

Why $H ightarrow bar{b}$ (boosted) ?

- Search for new particles decaying to Higgs bosons (i.e. X → HH)
- Not a single golden channel but $b\bar{b}$ final state has the highest BR (often selected as decay channel of at least one of the two Higgs)

٥	High HH-mass	systems	produce	boosted	Higgs	(тнн	>	$1 T \epsilon$	eV)	
---	--------------	---------	---------	---------	-------	-------	---	----------------	-----	--

• The analysis presented in this talk exploits vector-boson fusion production to enhance S/\sqrt{B}

bb WW TT ZZ VV

0.26% 0.10% 0.028% 0.012%

2.7% 0.39%

bb 34%

WW 25% 4.6%

7.3%

ZZ 3.1% 1.1% 0.33% 0.069%

vv

Non resonant HH

Non resonant *HH* production relevant for Higgs self-coupling (κ_λ = λ_{HHH}/λSM_{HHH}) and Higgs coupling to vector bosons (κ_{2V} = λ_{VVHH}/λSM_{VVHH}). In particular the ggF production mode is sensitive to κ_λ while VBF production mode is sensitive to both κ_λ and κ_{2V}.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Higgs boson p_T vs κ_{2V}

• Boosted topologies very sensitivity to κ_{2V}

Leading Higgs boson pT when varying κ_{2V}

• • = • • = •

< 一型

3

4/16

Jet reconstruction for boosted jets

Large-R jet:

- *b*-jets from decay high *p*_T particles are merged in a single large-radius jet
 - Dedicated ATLAS calorimeter jet reconstruction with a (fixed) radius of R=1 (anti k_T algorithm).

Boosted jets: Increasing transverse momentum, p_T

(4) E (4) E (4)

- 34

Jet substructure

- Dedicated track jet collection with variable size : $R = \rho/p_T$ (jet)
- Defined by three parameters: $\rho = 30$ (dimensionless constant), $R_{min}=0.02$ (minimal size) and $R_{max}=0.4$ (maximal size)
- Exploit tracking-only info: variable-radius track jets (VRTrack-jet)

ATL-PHYS-PUB-2017-010 [http://cds.cern.ch/record/2268678/files/ATL-PHYS-PUB-2017-010.pdf]

Xbb tagger:

- feed-forward NN that combined flavour tagging discriminants from subjets
- calibrated on ATLAS Run 2 data
- used in most of the Run 2 results

Tagger definition

- Individual subjets (VRTrack jets) are tagged using single btagging DL1r algorithm (DNN) optimised for VR jets
- Jet information + DL1r output nodes of max 3 subjets are fed to the net

イロト イポト イヨト イヨト 二日

Boosted bb tagger

Performance

• $H \rightarrow b\bar{b}$ vs $t\bar{t}$ and multijet:

ATL-PHYS-PUB-2020-019 [http://cds.cern.ch/record/2724739/files/ATL-PHYS-PUB-2020-019.pdf]

イロト イボト イヨト イヨト

э

Xbb calibration

• Signal calibration on: $Z(bb)+\gamma$ (low p_T), Z(bb)+jets (high p_T)

- Background calibration on $t\bar{t}$ events
- Validation on $g o b ar{b}$ events

ATL-PHYS-PUB-2021-035 [http://cds.cern.ch/record/2777811/files/ATL-PHYS-PUB-2021-035.pdf]

$HH \rightarrow b \bar{b} b \bar{b}$ analysis: event selection

- Trigger: at least 1 Large-R jet
- VBF topology: two Higgs candidates + two VBF jets
- Higgs candidates: Large R-jet, tagged with Xbb. At least two candidates: H_1 leading ($p_T > 450$ GeV), H_2 sub-leading ($p_T > 250$ GeV).
- Signal/control regions:
 - **2Pass**: both candidates pass the 60% Xbb working point, **1Pass** only one of the two candidates satisfies the selection
 - Signal Region/Validation Region/Control Region: defined in the $m_{H_1} m_{H_2}$ plane

F. Parodi Boosted $H \rightarrow bb$ tagging searches

9/16

$HH \rightarrow b \bar{b} b \bar{b}$ analysis: multivariate discriminant

• Boosted decision tree to separate signal/background in the SR

Physics objects	BDT input variables
Higgs Boson Candidate (H_i , $i = 1, 2$)	$p_{\mathrm{T}}^{H_i}$, η_{H_i}
Di-Higgs System (HH)	$p_{\mathrm{T}}^{HH},\eta_{HH},m_{HH}$
VBF Jets $(j_i, i = 1, 2)$	$p_{\mathrm{T}}^{j_i},\eta_{j_i},E_{j_i}$

- Non-resonant analysis: training with $k_{2V} = 0$
- Resonant analysis: mass-parameterized BDT (pBDT) to accommodate multiple resonant signals

$HH \rightarrow b \bar{b} b \bar{b}$ analysis: background modeling and systematic uncertainties

- Background processes in the SR predominantly originate from non-resonant multijet production (b or lighter quarks + 10% $t\bar{t}$)
- Multijet background estimated using a data-driven method and 1Pass events:
 - BDT shapes compatible between 1Pass and 2Pass
 - Derive multijets in 2Pass/SR using 1Pass/SR events (signal "contamination" negligible) applying a normalization factor

$$w = N_{1Pass CR} / N_{2Pass CR}$$

• Uncertainty from the independent *w* estimate in VR

(I)

ъ

• Sistematic uncertainties: analysis is statically limited. Main systematic uncertainty comes from Xbb calibration uncertainty (20-30%).

$HH \rightarrow b\bar{b}b\bar{b}$: non-resonant analysis

 Binned maximum-likelihood fit to the BDT distributions in the 2Pass/SR

• κ_{2V} (95% CL intervals): observed: 0.52 < κ_{2V} < 1.52 expected: 0.32 < κ_{2V} < 1.71

Combining with *ggF* and *VBF* categories of the resolved analysis:

 $\kappa_{2V} = 0$ excluded at 3.4 σ .

$HH \rightarrow b\bar{b}b\bar{b}$: non-resonant analysis

• Boosted analysis is dominant for κ_{2V} sensitivity while κ_{λ} sensitivity is driven by the resolved analysis

• Results on κ_{2V} analysis are as good as the HL-LHC projections of the previous-best VBF HH analysis (the full Run 2 resolved VBF hh4b).

$HH \rightarrow b\bar{b}b\bar{b}$: resonant analysis

- Two resonance-width (Γ_X) hypotheses are considered:
 - narrow-width signal (Γ_X smaller than the detector resolution 5-6% of the resonance mass)
 - broad-width signal ($\Gamma_X=20\%$ of the resonance mass, based on the Composite Higgs model

- No excess is found in the region 1-5 TeV. Exclusion limits are set on the production cross-section:
 - Narrow-width [obs. (exp.)]: 4.6 fb (3.1 fb) for $m_X = 1$ TeV to 1.9 fb (3.0 fb) for $m_X = 5$ TeV
 - Broad-width [obs. (exp.)]: 2.5 fb (2.1 fb) for $m_X = 1.2$ TeV to 0.8 fb (1.3 fb) for $m_X = 2$ TeV

14/16

- Latest ATLAS results on $HH \to b\bar{b}b\bar{b}$ (VBF channel, both Higgs candidates boosted) are presented
 - Non-resonant analysis: most sensitive constrain to κ_{2V} , evidence of $\kappa_{2V} \neq 0$
 - Resonant analysis: no excess found in the range 1 $\mathit{TeV} < m_{HH} <$ 5 TeV , exclusion limits on cross-sections

Outlook

- The analysis is statistically limited, significant improvement expected with:
 - Run3 statistics
 - improved bb tagger based on GNN (GN2X, see N. Kumari talk on Monday)

