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Optimized renormalization group flows

Daniel F. Litim*
Theory Division, CERN, CH-1211 Geneva 23, Switzerland

~Received 10 May 2001; published 12 October 2001!

We study the optimization of exact renormalization group~ERG! flows. We explain why the convergence of
approximate solutions towards the physical theory is optimized by appropriate choices of the regularization.
We consider specific optimized regulators for bosonic and fermionic fields and compare the optimized ERG
flows with generic ones. This is done up to second order in the derivative expansion at both vanishing and
nonvanishing temperature. We find that optimized flows at finite temperature factorize. This corresponds to the
disentangling of thermal and quantum fluctuations. A similar factorization is found at second order in the
derivative expansion. The corresponding optimized flow for a ‘‘proper-time renormalization group’’ is also
provided to leading order in the derivative expansion.
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I. INTRODUCTION

Wilsonian renormalization group techniques@1,2# such as
the exact renormalization group~ERG! @3–6# are important
tools for addressing nonperturbative problems within qu
tum field theory~for recent reviews, see Refs.@7,8#!. They
are similar in spirit to the block-spin action invented in co
densed matter physics, and their particular strength is t
flexibility, allowing for systematic approximations withou
being tied to the small coupling region. The ERG is based
an infrared~IR! regularization with the momentum scale p
rameterk of the full propagator, which turns the correspon
ing effective action into a scale dependent functionalGk .
The ERG flow describes the change of the effective ac
under an infinitesimal variation of the IR scalek. It thereby
interpolates between the initial UV actionGk5L and the full
quantum effective actionG[Gk50. Although the flow de-
pends explicitly on the specific infrared regulator chosen,
end point of the integrated full flow does not.

An explicit computation of the IR effective theory base
on the ERG flow requires the specification of the field co
tent, the initial conditionGL and the choice of a particular IR
regulator. The UV initial condition is typically given by th
classical action. Hence, the main physical information
contained in the ERG flow itself. Most problems of physic
interest are too complex to be solved exactly and an ap
cation of this formalism—as of any other method—is bou
to certain approximations. Furthermore, the flow equation
equivalent to infinitely many coupled partial differenti
equations, which would seem very difficult to solve exac
Therefore, one has to resort to some approximations or t
cations which allow, at least in principle, for a systema
computation of the full quantum effective action. In order
provide reliable physical predictions, such as a high pre
sion computation of universal critical exponents, it is ma
datory to provide a good control for approximated ER
flows.

A number of systematic expansion schemes for flow eq
tions are known, including standard perturbation theo
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Non-perturbative expansions of the effective action, n
bound to the weakly coupled regime, are the derivative
pansion, expansions in powers of the fields, or combinati
thereof. For example, the leading order of the derivative
pansion retains only an effective potential and a stand
kinetic term, and contains non-perturbative information a
corresponds to the resummation of infinitely many pertur
tive loop diagrams. The study of approximate quantum
fective actions along these lines is a sensible procedure s
the underlying expansions admit a systematic improvem
to higher order.

Solutions to truncated flow equations display a spurio
dependence on the IR regulator@9–16#. This is similar to the
scheme dependence of physical observables observed w
perturbative QCD@17#, or the truncation dependence of s
lutions to Schwinger-Dyson equations. Its origin is the fo
lowing. The IR regulator couples, through the flow equatio
to all vertex functions of the theory. The flow trajectory
the functionalGk in the space of all effective action function
als depends on the regulator. Hence, the regulator—w
regulating the flow—also modifies the effective interactio
at intermediate scaleskÞ0. In other words, the effective
action at intermediate scales still has some memory of
details of how the integrating-out of degrees of freedom
been performed. This regulator dependence is of no
evance for the full flow. Eventually, the convergence towa
the full quantum effective action forany regulator ensures
that all regulator-induced interactions cancel out in the phy
cal limit. Approximations imply that certain vertex function
are neglected. Then, not all regulator-induced interacti
cancel out fork→0: the missing back coupling of the ne
glected vertex functions is responsible for regulat
dependent terms in the physical limit. In consequence,
proximations to the full quantum effective action depe
spuriously on the scheme.

Recently, a new line of reasoning has been put forw
which essentially turns this observation around@15#: given
that the solution of a truncated flow depends on the regula
it should be possible to identify specific ones which ‘‘op
mize’’ the physical content of a given approximation. Op
mized regulators stabilize the flow and lead to a faster c
vergence of expansions, such that the main phys
©2001 The American Physical Society07-1
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DANIEL F. LITIM PHYSICAL REVIEW D 64 105007
information is almost exclusively contained within a fe
leading terms, and higher order contributions remain sm
@18#.

In Ref. @15#, we have derived a simple and generic op
mization criterion for ERG flows, based only on the fu
inverse propagator at vanishing field. Given the set of p
sible IR regulators, the criterion allows to distinguish t
quality of regulators in the sense outlined above. In
present paper we study a specific ‘‘optimized’’ regulator
both bosonic and fermionic degrees of freedom. To be m
explicit, we introduce the ERG flow for the effective actio
@4–6#. For bosonic fieldsf, it is given by

] tGk@f#5
1

2
TrS d2Gk

df~q!df~2q!
1RkD 21

] tRk . ~1.1!

Here, the trace denotes a sum over all loop momenta
indices, andt5 ln k is the logarithmic scale parameter. Th
flow has a simple one-loop structure. The Wilsoni
‘‘integrating-out’’ is achieved by the infrared regulatorRk . It
regulates the propagator for small momenta, while the in
tion ] tRk cuts off the large-momentum contributions. In t
tal, only a small momentum window aboutq2'k2 contrib-
utes to the flow. Apart from a few constraints displayed la
the functionRk can be chosen at will. A ‘‘good’’ choice for
the regulator function is at the root of reliable physical p
dictions, and we consider, for the bosonic fields, the o
mized regulator

Rk
opt~q2!5Zk~k22q2!Q~k22q2!, ~1.2!

where Zk is an appropriately defined wave function reno
malization. This regulator is particularly simple: for loo
momentaq2.k2 it vanishes identically and the effectiv
propagator appearing in the flow equation is not modifi
for loop-momenta q2,k2 it acts like a momentum-
dependent mass term in such a way that the inverse effe
propagator;q21Rk(q

2) becomes a momentum indepe
dent constant. In consequence, the effective infra-red pro
gator no longer distinguishes between the different mo
with q2,k2.

Optimized flows based on Eq.~1.2! derive from a generic
optimization criterion@15#, and have a number of remarkab
properties. The optimized flow leads to the fastest dec
pling of heavy modes, in accordance with the decoupl
theorem@19#. In the limit k→0, optimized flows smoothly
approach a convex effective action, owing to a simple a
lytic pole of the flow@15,18#. At non-vanishing temperature
the optimized flow factorizes: the contributions from therm
and quantum fluctuations are disentangled, unlike for gen
flows. A similar factorization of the flow holds to secon
order in the derivative expansion for field-independent wa
function renormalizations, and a partial factorization is fou
for the general case. Finally, the optimized flow has a v
simple analytic structure. This facilitates their study and
helpful for both analytical or numerical considerations. A
these properties lead to a stabilization of the flow and
improved convergence towards the physical theory. Ana
gous results for fermionic flows are discussed as well.
10500
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We also study this question within an RG formalis
based on a proper-time regularization of the operator tr
for the one-loop effective action@20#, which we call the
‘‘proper-time renormalization group’’~PTRG! for short. In
contrast to the ERG, the PTRG has no path integral der
tion, which makes the conceptual reasoning more diffic
@21#. Still, owing to the close similarity to the ERG at lead
ing order in the derivative expansion, it is possible to ident
the analog of Eq.~1.2! for the PTRG.

The format of the paper is as follows. We introduce t
physical ideas behind the generic optimization condition. E
plicit realizations for bosonic and fermionic degrees of fre
dom are introduced as well~Sec. II!. The main characteris
tics of optimized flows are discussed to leading order in
derivative expansion, and contrasted with those of gen
flows ~Sec. III!. We then turn to the discussion of quantu
field theories at finite temperature. We show that optimiz
thermal flows factorize on the level of the flow equatio
unlike generic flows. A simple physical explanation for th
factorization is provided~Sec. IV!. Next, we consider the
extension to higher orders in the derivative expansion. T
cases of field dependent or independent wave-function re
malizations are both discussed, and a similar factorization
optimized flows is established~Sec. V!. Finally, we provide
the corresponding optimized proper-time cutoff for t
PTRG ~Sec. VI!. Because of the qualitative difference b
tween the topics studied, we discuss our findings separa
at the end of the corresponding sections. We close wit
summary and an outlook~Sec. VII!. Three Appendixes con
tain technical details and explicit expressions for optimiz
flows.

II. OPTIMIZATION

In this section, we discuss a generic optimization criter
for ERG flows for Euclidean quantum field theories. In pa
ticular, we provide a simple and explicit optimized regulat
for both bosonic and fermionic flows. Prior to this, we ha
to review a few basic properties of IR regulator function
which are at the root of the subsequent considerations.

A. Regulators

The flow equation~1.1! is defined through the infrared
regulator functionsRk(q

2) andRF,k(q
2), respectively@4–6#.

These operators depend on an infrared scalek, which induces
a scale dependence. When written in terms of the sc
dependent effective actionGk , the scale dependence is give
precisely by the flow equation~1.1!. The right-hand side of
Eq. ~1.1! contains the full inverse propagators and the tra
denotes a sum over all indices and integration over all m
menta.

The regulator scheme~RS! functions can be chosen a
will, however, within some basic restrictions. These restr
tions ensure that the flow equation is well-defined, there
interpolating between an initial action in the UV and the fu
quantum effective action in the IR. More specifically, it
required that
7-2
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OPTIMIZED RENORMALIZATION GROUP FLOWS PHYSICAL REVIEW D64 105007
lim
q2/k2→0

Rk~q2!.0. ~2.1!

This ensures that the effective propagator at vanishing fi
remains finite in the infrared limitq2→0, and no infrared
divergences are encountered in the presence of mas
modes. This property makesRk an infrared regulator. If the
limit ~2.1! is finite, we call the corresponding regulatormass-
like. The second requirement is the vanishing ofRk in the
infrared,

lim
k2/q2→0

Rk~q2!→0. ~2.2!

This guarantees that the regulator function is removed in
physical limit, where the scale-dependent effective actionGk
reduces to the quantum effective actionG5 limk→0Gk . The
third condition to be met is

lim
k→L

Rk~q2!→`. ~2.3!

This way it is ensured thatGk approaches the microscop
actionS5 limk→LGk in the UV limit k→L. In the rest of the
paper, we setL5` for the UV scale, although our main lin
of reasoning can be applied for finiteL as well. With this
choice, the regulator function depends only onq2 and k2,
and it is convenient to introduce a dimensionless funct
r (q2/k2) as

Rk~q2!5Zkq
2r ~q2/k2! ~2.4!

with Zk an appropriate wave function renormalization~cf.
Sec. V!; Zk[1 to leading order in the derivative expansio
Owing to the general conditions imposed on the regula
the functionr (y) ranges between 0<r (y)<`.

Another condition concerns the proper normalization
the regulator. The normalization fixes the scale at which
IR regulator becomes effective. Let us employ the condit

Rk~q25cBk2!5ZkcBk2 ~2.5!

for bosons~a similar condition holds for fermions, see b
low! andcB.0.1 The normalization translates into the co
dition r (cB)51. Two different choices forcB can always be
mapped onto each other through a rescaling of the IR scak.
Hence, a proper normalization is only of relevance for
comparison of different regulators~as done in Ref.@15#!, or
for theories containing different bosonic and/or fermionic d
grees of freedom, where the relative normalization of
regulators can become important.

B. Optimization criterion

Here, we discuss an optimization criterion for ERG flow
which ensures that flows like Eq.~1.1! and approximations to
it have good convergence and stability properties. Follow
Ref. @15# ~see also Ref.@18#!, we first provide the genera

1In Ref. @15# the conventioncB51 has been used.
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criterion for optimized choices of RS functions. Then, mo
specifically, we apply this idea to bosonic and fermion
theories with standard kinetic terms.

The physical information of the flow equation~1.1! is
contained in the full effective inverse propagator, which
given by

d2Gk@f#

df~q!df~2q!
1Rk~q2!. ~2.6!

Notice that Eq.~2.6! depends both on the fields and on t
RS function. The ERG flow is well-defined as long as the f
inverse propagator displays a gap,

min
q2>0

S d2Gk@f#

df~q!df~2q!
U

f5f0

1Rk~q2!D 5C k2.0.

~2.7!

The functional derivative is evaluated at a properly chos
expansion pointf0. The existence of the gapC.0 implies
an IR regularization. Furthermore, the gap is a prerequi
for the ERG formalism. Otherwise, Eq.~1.1! becomes singu-
lar at points where the full inverse effective propagator d
velops zero modes.2 The size of the gapC in Eq. ~2.7! de-
pends both on the RS function and on dimensionl
parameters likef0

2/k2 or mass ratios, specific to the particu
lar theory studied.

A natural optimization criterion based on Eq.~2.7! con-
sists of maximizing the gapC over the space of all possibl
RS functions. Optimized RS functions are those for wh
the maximum ofC is attained. The optimization ensures th
the momentum-dependent kernel of the ERG flow is
most regular. Therefore we expect that optimized flows
much more stable against approximations and show be
convergence properties.

The optimization condition as formulated above is, ess
tially, only sensitive to the momentum dependence of the
inverse propagator. Dropping momentum-independent te
on the left-hand side of Eq.~2.7! changes the numberC
accordingly, but leaves the explicit dependence onRk(q

2)
unchanged. Therefore, the optimization leads to the same
of optimized RS functions as long as the implicit depende
of Gk

(2)@f#[d2Gk@f#/df(q)df(2q) on the RS function
remains negligible. For this reason, the optimization con
tion of Refs. @15,18# is based only on the momentum
dependent terms of Eq.~2.6!.

From now on, we concentrate on a standard kinetic te
The effect of a field-dependent wave function renormali
tion can be taken into account as well~see Sec. V below!. We
expand the full inverse propagator asZk@q21Zk

21Rk(q
2)

1 . . . # about the regularized kinetic term. Finally, droppin
the momentum-independent terms transforms Eq.~2.7! into

2The caseC50 indicates that a saddle point expansion aboutf0

is not applicable. Those pointsf0 in field space withC50 corre-
spond to an instability. The problem can be solved by choosin
more appropriate expansion point such thatC.0. For related lit-
erature, see Ref.@22#.
7-3
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DANIEL F. LITIM PHYSICAL REVIEW D 64 105007
min
q2>0

@q21Zk
21Rk~q2!#5C k2.0. ~2.8!

A far reaching consequence of the infrared regulator in
~2.8! is the presence of a gap for allk.0, which follows
trivially from Eq. ~2.1!. The decisive difference between E
~2.7! and Eq.~2.8! is that the size of the gapC.0 in Eq.
~2.8! depends only on the particular choice for the RS,
not on the specific theory. Rewriting Eq.~2.8! in dimensions
of k leads to

P2~y![q2/k21Rk~q2!/~Zkk
2!5y@11r ~y!#, ~2.9!

wherey[q2/k2. Expressed in terms of Eq.~2.9!, the size of
the gap is given by

C5min
y>0

P2~y!. ~2.10!

Any RS function is now characterized by the associated
C. The size of the gap can be made arbitrarily small. Eff
tively, this corresponds to removing the IR regulator in t
first place. However, for fixed normalizationcB , it cannot be
made arbitrarily large,C,`. Hence, the natural optimiza
tion condition, which is the requirement to maximize t
gap, becomes

Copt5max
(RS)

„min
y>0

P2~y!…. ~2.11!

A few comments are in order. The maximum in Eq.~2.11! is
taken over the~infinite-dimensional! space of all possible RS
functions. The numberCopt is uniquely determined and read
Copt52cB , wherecB is the normalization of bosonic regula
tors. From now on, we refer to Eq.~2.11! as an ‘‘optimiza-
tion condition,’’ and all RS functions for whichC5Copt are
called solutions to the optimization condition. The space
solutions to the optimization condition is infinite
dimensional. Notice also that the condition to minimize t
gap is not an extremization linked to the regulator, becaus
corresponds to removing the IR regularization. In Ref.@15#,
a variety of different solutions have been found, and so
examples are given in Fig. 1 below.

In order to obtain Eq.~2.8!, we have assumed a standa
kinetic term for the fields. Therefore, the resulting optimiz
tion condition Eq. ~2.11! is independent of the specifi
theory. Once the momentum-dependent part ofGk

(2) depends
on the fields, the corresponding optimization condition ba
on the momentum-dependent part of Eq.~2.7! is sensitive to
the specific theory. Within a derivative expansion, this h
pens starting from the second order~cf. the discussion in
Sec. V!.

The optimization condition has a number of interpre
tions in more physical terms~cf. Refs.@15,18#!. It has been
shown that the radius of convergence for amplitude exp
sions is given byC. Therefore the optimization conditio
improves their convergence. Furthermore, it leads to
smooth approach towards a convex effective potential in
IR limit k→0. It has also been shown that it improves t
convergence of the derivative expansion@18#. Finally, it is
worth emphasizing that the optimization criterion is a rath
10500
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mild condition: all regulator functions are described by
most countably infinitely many parameters, becauseRk is at
least square integrable. Of these, only one parameter is fi
by the optimization criterion.

We now turn to the discussion of fermionic degrees
freedomc and c̄ @23,24#. The flow equation is given by

] tGk@c,c̄#52TrS d2Gk

dc~q!dc̄~2q!
1RF,kD 21

] tRF,k .

~2.12!

As usual, the trace sums over all loop momenta and indi
The constraints on the functionRF,k are similar to those on
Rk @24#. Following Ref. @24#, we choose the regulator pro
portional toq” and introduce

RF,k~q!5ZF,kq” r F~q2/k2!. ~2.13!

We choose the normalization as

RF,k
2 ~q25cFk2!5cFk2. ~2.14!

This translates into the conditionr F(cF)51. It has been
shown that the fermionic analog of the function Eq.~2.9! is
given by @24#

PF
2~y!5y@11r F~y!#2. ~2.15!

Therefore, we can define the fermionic gap as

CF5min
y>0

PF
2~y!, ~2.16!

and the corresponding optimization condition reads

CF,opt5max
(RS)

„min
y>0

PF
2~y!…. ~2.17!

FIG. 1. Optimized inverse propagatorsPopt
2 for different regula-

tors, normalized asr ( 1
2 )51. The regulator Eq.~2.18! is given by

the full line. The thin dashed line corresponds tor 50. All other
dashed lines, given for comparison, correspond to the different
timized regulators of Fig. 3 in Ref.@15#.
7-4
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OPTIMIZED RENORMALIZATION GROUP FLOWS PHYSICAL REVIEW D64 105007
The optimized fermionic gap is uniquely determined throu
the normalizationcF as CFopt54cF . Conceptually, the fer-
mionic case is treated in the same way as the bosonic c
The sole difference stems from the fact that the bosonic
netic term contains two derivatives, while the fermionic k
netic term contains only one. Therefore, the functions~2.9!
and ~2.15! entering the optimization condition are differen

C. Derivation of optimized bosonic and fermionic regulators

A lot of effort has been made in order to provide expli
regulators which lead to sufficiently simple and analy
ERG flows. For example, the sharp cutoff provides a sim
explicit flow to leading order in the derivative expansion. F
this reason, it is one of the most intensively studied flows
the field ~cf. Refs. @1,2,25,6,26,27#!. Other attempts have
been made based on power-like regulatorsRk;q2(k2/q2)b

for b51 andb52 @28#, or variants of a mass-term regulat
Rk;k2Q(k22q2). These regulators are still sufficientl
simple from an algebraic point of view, and lead
reasonably simple flows.3 However, in the absence of an un
derlying ‘‘guiding principle’’ it was not obvious how to mak
progress given the plethora of possible regulators, and
particular, how to distinguish the ‘‘quality’’ of the corre
sponding flows.

Here, in turn, we take full advantage of the existence o
guideline provided by the optimization criterion. We propo
a regulator which~i! solves the optimization criterion,~ii ! is
based on an additional stability criterion for approxima
flows, and~iii ! leads to simple explicit expressions for th
corresponding flows. The heuristic derivation runs as f
lows. The space of regulators which solve the optimizat
criterion is still infinite dimensional. Let us seek a ‘‘simple
solution to Eq.~2.11!. The simplest one corresponds to
inverse propagator which isflat, i.e., momentum-
independent,P2[Copt. TakeCopt51. This immediately im-
plies, using Eqs.~2.4! and ~2.9!, that Rk(q

2)5k22q2. Our
naive ansatz is consistent with Eqs.~2.1! and ~2.3!, but not
with the main requirement Eq.~2.2! for small k2,q2. In
order to fulfill Eq.~2.2!, the regulator has to be cut off abov
some loop momenta. Therefore, a natural proposal for
bosonic case consists in taking

Rk
opt~q2!5~k22q2!Q~k22q2!. ~2.18!

The ultraviolet modesq2.k2 are not touched by this regu
lator because Eq.~2.18! vanishes identically forq2.k2. In
turn, for all modes withq2<k2 the regulator acts as
momentum-dependent mass term;(k22q2) with the infra-
red limit ;k2 for vanishing momenta. It is a masslike reg
lator. By construction, the inverse propagator at vanish
field Eq. ~2.6! becomes momentum independent for allq2

<k2 ~see Fig. 1!. It is this property which is responsible fo
the main characteristics of the regulator: all infrared mom
tum modes below the scalek are treated in the same wa
since the effective inverse propagator no longer distinguis
between them.

3Of these, only the power-like regulator withb52 solves the
optimization condition Eq.~2.11!.
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The dimensionless regulator functionr (y) is defined in
Eq. ~2.4!. With the choice made in Eq.~2.18! it follows that

r opt~y!5S 1

y
21DQ~12y!. ~2.19!

The regulator function is normalized withcB5 1
2 . Such a

normalization can always be achieved. Other normalizati
are considered at the end of Sec. III.

In Fig. 1, we have displayed the effective inverse prop
gator at vanishing field for different optimized regulator
The full line represents Eq.~2.18!, and the thin dashed line
corresponds toR50 ~no regulator!. The set of dashed line
corresponds to the optimized regulators discussed in Fi
of Ref. @15#. Here, they have been given for compariso
Notice that all curves cross in the normalization po
r (cB)51. All optimized propagators display the same g
Copt52cB , but differ essentially in the curvature aroun
their minima.

The fermionic analog of Eq.~2.18! is derived in essen-
tially the same way. Starting with Eq.~2.15!, imposingPF

2

[1 for small momenta, and the general conditions~2.1!,
~2.2! and ~2.3!, we finally end up with

RF,k
opt~q!5q” SAk2

q2
21D Q~k22q2!, ~2.20!

normalized withcF5 1
4 . In terms of a dimensionless functio

r F(q2/k2), Eq. ~2.20! becomes

r F,opt~y!5S 1

Ay
21D Q~12y! ~2.21!

and r F( 1
4 )51. The non-analyticity of Eq.~2.21! is a direct

consequence ofRF,k having only one mass dimension. W
shall see below that it is of no harm to the computation
fermionic flows because Eq.~2.21! enters only in specific
combinations such that the non-analyticity disappears.

III. DERIVATIVE EXPANSION

The flow equation~1.1! is a functional differential equa
tion, which, from a technical point of view, is equivalent
infinitely many coupled partial differential equations for th
couplings parametrizing the effective actionGk . A number
of different systematic approximation procedures for flo
are known. In this section, we consider flows to leading
der in the derivative expansion, based on expanding the
erators of the effective action according to the number
derivatives@29#. This leads to a closed set of coupled part
differential equations for the coefficient functions. We d
cuss the main structure of optimized flows and contras
with generic ones.

A. Specific flows

In order to make our subsequent reasoning more trans
ent, it is useful to have an explicit example at hand. To t
end, we consider anO(N)-symmetric real scalar field theor
7-5
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in d dimensions, the linear sigma model. To leading orde
the derivative expansion we make the ansatz@30#

Gk5E ddxS Uk~ r̄ !1
1

2
Zk~ r̄ !]mfa]mfa1

1

4
Yk~ r̄ !]mr̄]mr̄

1O~]4! D ~3.1!

for the effective action, withr̄5 1
2 fafa . ForNÞ1, there are

two independent wave function factorsZk and Yk beyond
leading order in this expansion~cf. Sec. V!. To leading order
in the derivative expansion, the flow equation~1.1! reduces
to a flow for the effective potential,] tUk . The main physical
applications concern the non-trivial Wilson-Fisher fix
point in d53 and the computation of related universal qua
tities.

Inserting the ansatz~3.1! into the basic flow equation, an
usingZ[Y[1, yields@30#

] tUk5
1

2E ddq

~2p!d S ~N21!] tRk~q2!

q21Rk~q2!1Uk8~ r̄ !

1
] tRk~q2!

q21Rk~q2!1Uk8~ r̄ !12r̄Uk9~ r̄ !
D . ~3.2!

It is a second order non-linear partial differential equatio
One easily recognizes the contributions from theN21
‘‘Goldstone’’ modes and the ‘‘radial’’ mode. A similar flow
equation has been obtained for the wave function renorm
izationsZk andYk @30#. The momentum integration is regu
larized in the UV, owing to the regulator term] tRk(q

2) in
the numerator, and in the IR due toRk(q

2) in the denomina-
tor.

B. Generic flows

For convenience we perform the angular part of the m
mentum integration and rewrite the right-hand side of E
~3.2! in terms of so-called threshold functions@30# as

] tUk~ r̄ !52vd~N21!kdl 0
dS Uk8~ r̄ !

k2 D
12vdkdl 0

dS Uk8~ r̄ !12r̄Uk9~ r̄ !

k2 D . ~3.3!

The constantsvd are given by

vd
2152d11pd/2GS d

2D , ~3.4!

and the functionsl n
d(v) are defined as

l n
d~v!5~dn,01n!E

0

`

dyy(d/2)21
2y2r 8~y!

@P2~y!1w#n11
.

~3.5!
10500
n

-
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While the flow~3.3! is specific for the theory defined by Eq
~3.1!, the functions~3.5! are not. These functions describ
the generic structure of the flow to leading order in the d
rivative expansion. The flows for different indicesn.0 are
related by

]vl n
d~v!52~n1dn,0!l n11

d ~v!. ~3.6!

Therefore, it suffices to study the flowsl 0
d(v).

The fermionic analog of the flow~3.5! is @24#

l F,n
d ~v!5~dn,01n!E

0

`

dyyd/2
22y~11r F!r F8

@PF
2~y!1w#n11

~3.7!

and Eq.~3.6! holds equally for Eq.~3.7!. Notice the addi-
tional factor 12r F in the integrand, which arises due to th
Dirac structure of Eq.~2.20!. We have used the normaliza

tion conditionr F( 1
4 )51.

It is evident that the characteristics of the flow, det
mined by the choice ofRk , are entirely encoded within the
functions Eqs.~3.5! and~3.7! ~or similar functions to higher
order in the derivative expansion!. For a generic regulator
these are complicated functions of the fields, which can
computed explicitly only for very specific choices for th
regulator.

Two properties of generic flows given in terms ofl 0
d(v)

and l F,0
d (v) are worth mentioning. First of all, from thei

very definition and the constraints imposed on the regula
function, we conclude that any function~3.5! for n50 de-
cays at most as 1/v for v→` @30#. Therefore, they describe
the decoupling of ‘‘heavy’’ modes from the flow, which is
manifestation of the decoupling theorem@19#. Secondly, all
flows have a pole inC1v, whereC denotes the gap. Both
the analytical structure and the strength of the pole dep
on the regulator. From the general requirements for reg
tors, and the explicit form of Eq.~3.5!, it follows that the
pole for n50 cannot be stronger than a simple analytic
pole;1/(C1v). The pole of threshold functions has impo
tant physical implications. It determines the approach to
convex effective potential for theories within a phase
spontaneous symmetry breaking@31,8#.

C. Optimized flows

Now we turn our attention to the optimized regulato
introduced in Eqs.~2.18! and ~2.20!. The evaluation of Eq.
~3.5! is particularly simple because theQ-function cuts off
the momentum integration. Using Eq.~2.19!, Eq. ~3.5! re-
duces to two terms,

l 0
d~v!5

1

11wE0

1

dyy(d/2)21

1E
0

`

dyy(d/2)21
~y21!d~12y!

12yQ~12y!1w
. ~3.8!

In the first term, the momentum integration is cut off abo
y<1. The functionP2(y) remains a constant in this momen
tum regime, which allowed to move thev-dependent term in
7-6
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front of the momentum integration. The integrand of the s
ond term contains products of distributions. Since the in
grand is proportional to;(12y)d(12y) the second term
vanishes identically, independently of the specific implem
tation for theQ-function. The remaining momentum integr
tion of the first term becomes trivial and gives

l 0
d~v!5

2

d

1

11v
. ~3.9!

We used the normalizationr ( 1
2 )51 and henceP251 for y

<1.
For fermionic flows~3.7! and the regulator~2.20!, we find

l F,0
d ~v!5

1

11vE0

1

dy y(d/2)2112E
0

`

dy y(d/2)11

3

F11S 1

Ay
21D Q~12y!G S 1

Ay
21D d~12y!

@Ay1~12Ay!Q~12y!#21w
.

~3.10!

The first term has a restricted momentum integration du
the cutoff provided by theQ-function. The second term i
more involved, and the integrand even contains product
distributions. Notice, however, that it contains the fac
;@(1/Ay)21#d(12y) which is proportional to ;(y
21)d(12y). Therefore, the second term vanishes iden
cally and independent of the parametrization of the distri
tions and their products. The evaluation of the first te
gives finally

l F,0
d ~v!5

2

d

1

11v
, ~3.11!

and is identical to the bosonic flow.

D. Discussion

The flows described by the functions~3.9! and~3.11! have
the simplest asymptotic structure forv→`. This implies
that heavy modes decouple ‘‘the fastest’’ from the flow f
optimized regulators. For comparison, the sharp cutoff le
only to a logarithmic decoupling; ln v. Also, the decou-
pling does not depend on the particular theory studied~i.e.
the dimension!, unlike the case for polynomial regulato
Rk;q2(k2/q2)b. Furthermore, the flow described by th
functions~3.9! and~3.11! has the simplest and strongest po
structure forC1v→01. The pole is a simple analytic one
which is not the case for generic regulator functions.
immediate implication of this structure is that the optimiz
flows ~3.9! and ~3.11! lead to a logarithmically smooth ap
proach towards a convex effective potential. This is ve
different from the sharp cutoff case, where the approac
only exponential@8#. A detailed presentation of these resu
is given elsewhere.

For completeness we quote the results for the flows~3.9!
and ~3.11! for arbitrary normalization. While the normaliza
10500
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to
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tion is of no relevance for a theory containing only boson
or fermionic degrees of freedom, their relative normalizati
can become important for theories containing bosons
fermions. The normalization conditions~2.5! and~2.14! cor-
respond tor (cB)51 and r F(cF)51, which can always be
imposed because the functionsr (y) and r F(y) range be-
tween 0<r ,r F<`. The optimized gaps areCopt52cB and
CFopt54cF . For arbitrarycB the flow Eq.~3.9! is obtained
as

l 0
d~v!5

2

d

~2cB!(d/2)11

2cB1v
. ~3.12!

In the fermionic case we find

l F,0
d ~v!5

2

d

~4cF!(d/2)11

4cF1v
~3.13!

for the rescaled analog of Eq.~3.11!.
Finally, we note that flowsl 0

d(v);1/(11v) have been
used earlier in the literature@32–34#, however without the
explicit knowledge of the corresponding regulator functio
These trial functions are sufficiently simple to allow for an
lytical considerations. The motivation for their use was bas
on the observation that the generic threshold function
~3.5! decays at most asv21 for largev. This suggested tha
a regulator may exist which leads tol 0

d(v)5Ad(C1v)21.
Let us show how the normalizationAd can be derived from
consistency arguments. We use the universal relationl n

2n(0)
51 @30#, which holds ford52n dimensions, to identify the
prefactor asA2n5(1/n)Cn11. The analytic continuation to
arbitrary dimensions leads finally to our results~3.12! and
~3.13!. This reasoning shows that the ansatzl 0

d(v)
5(2/d)Cd/211(C1v)21 is self-consistent. However, w
rush to add that these consistency arguments are nece
conditions, but not sufficient ones: only the explicit form
the regulator—as given by Eqs.~2.18! and ~2.20!—finally
justifies the few earlier computations. In addition, Eqs.~2.18!
and ~2.20! are explicitly required for the computation of th
flow at finite temperature~see Sec. IV! or to higher order
~see Sec. V!.

IV. THERMAL FLUCTUATIONS

In this section we apply our reasoning in the context o
quantum field theory coupled to a heat bath at temperaturT,
and to leading order in the derivative expansion. We sh
that optimized flows, as opposed to generic ones, disenta
the different contributions related to thermal and quant
fluctuations, respectively. These properties are realized
the level of the flow equation, in terms of an importantfac-
torization. This leads to better convergence properties of
flow itself. Approximate solutions of the flow correspond
better approximations of the physical theory.

A. Imaginary time formalism

To be explicit, we consider a bosonic or fermionic fie
theory at thermal equilibrium at the temperatureT within the
7-7
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Matsubara formalism. This implies that periodic~antiperi-
odic! boundary conditions for the bosonic~fermionic! fields
are employed. As a consequence, theq0 integration in the
flow equation~1.1! is replaced by a sum over Matsuba
modesm50,61,62, . . . . Thetrace in Eq.~1.1! contains a
momentum integration, which is then substituted as

E ddq

~2p!d
→T(

m
E dd21q

~2p!d21
. ~4.1!

In the integrand of Eq.~1.1! the q0 variable is replaced by

q0→2pcmT ~4.2!

where

cm5m for bosons ~4.3!

cm5m1 1
2 for fermions. ~4.4!

It is also useful to introduce the variable

t52pT/k ~4.5!

for the following considerations. The replacement~4.2! im-
plies that functionsl n

d(v) turn into temperature depende
functionsl n

d(v,t). We show that this function factorizes fo
the regulators~2.18! and ~2.20!.

B. Dimensional reduction and fermion decoupling

Let us review a few basic facts known for generic flows
finite temperature within the imaginary time formalis
@30,35,24,36#.

Bosonic fields within the Matsubara formalism displ
the phenomenon of dimensional reduction at high temp
ture. This means that forT large enough all non-vanishin
Matsubara modes are suppressed due to effective ma
;mT for the Matsubara modes withmÞ0. Only them50
mode survives in this limit, leading to an effective theory
(d21)-dimensions. For a generic bosonic regulator, the
nite temperature flow is given as

l 0
d~v,t!5

vd21

vd

t

2p (
m

E
0

`

dy y[(d21)/2]21

3
2~y1cm

2 t2!2r 8~y1cm
2 t2!

P2~y1cm
2 t2!1v

. ~4.6!

The functionP2 is defined in Eq.~2.9!. The asymptotic re-
gime where only them50 Matsubara mode contributes
reached fort→`. From Eqs.~4.6! and ~3.6!, we deduce

l n
d~v,t→`!5

vd21

vd

T

k
l n
d21~v!. ~4.7!

On the other hand, the limitt→0 eventually switches on al
higher order Matsubara modes. It is straightforward to ve
that
10500
t

a-

ses

-

y

l n
d~v,t→0!5 l n

d~v!. ~4.8!

The asymptotic limits forT→`, Eq. ~4.7!, and T→0, Eq.
~4.8!, display dimensional reduction for bosons as a funct
of temperature for generic regulator function@35#.

Fermions at finite temperature within the Masubara f
malism can be treated in essentially the same way. Howe
they happen to have nom50 mode as antiperiodic boundar
conditions have to be used on theq0-integration. Hence, fer-
mions do not display dimension reduction. Rather, they
couple completely from the RG flow once the smallest M
subara mode is larger than the scalek. These properties can
be read off from the temperature-dependent flow. For a
neric fermionic regulator, the flowl F,0

d (v) at finite tempera-
ture is defined as

l F,0
d ~v,t!

5
vd21

vd

t

2p (
m

E
0

`

dy y[(d21)/2]21

3
22~y1cm

2 t2!2r F8 ~y1cm
2 t2!@11r F~y1cm

2 t2!#

PF
2~y1cm

2 t2!1v
.

~4.9!

The functionPF
2 is given in Eq.~2.15!. The asymptotic re-

gime where the fermions decouple completely is reached
t→`. From Eq.~4.9!, we deduce that

l F,n
d ~v,t→`!50. ~4.10!

Again, the limitt→0 eventually switches on all higher orde
Matsubara modes such that

l F,n
d ~v,t→0!5 l F,n

d ~v!. ~4.11!

The asymptotic limits~4.10! and ~4.11! describe the decou
pling of fermions in the high temperature limit for arbitrar
dimension and generic regulator function.

C. Optimized thermal flows and factorization

We now turn to the optimized regulators~2.18! and
~2.20!. For this case, the flow~4.6! can be computed explic
itly. Inserting Eq.~2.18! into Eq. ~4.6!, and following a rea-
soning analogous to the one after Eq.~3.8!, we find

l n
d~v,t!5Bd~t!l n

d~v! ~4.12!

with the temperature dependent function

Bd~t!5
d

d21

vd21

vd

t

2p (
m

~12cm
2 t2!(d21)/2Q~12cm

2 t2!.

~4.13!

Notice that the temperature effects have factorized. This
plies that temperature cuts off all amplitudesv in the same
manner. This is not the case for a generic regulator.

Let us discuss the thermal threshold factorBd(t). In Fig.
2 the thermal threshold factorBd(t) is displayed ford
7-8
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52, 3 and 4 dimensions. Every single Matsubara mode c
tributes to Eq.~4.13! proportional to

;t~12cm
2 t2!(d21)/2Q~12cm

2 t2!. ~4.14!

TheQ-function is a remnant of the regulator~2.19! and cuts
the mth Matsubara mode off as soon ask,cmT/2p. The
factor t stems from theq0-integration and the factor (1
2cm

2 t2)(d21)/2 from the d21 dimensional integration ove
spatial loop momentauqu. These functions vanish outside th
interval 0<t<1/cm . At the upper end they behave lik
(1/cm2t)(d21)/2 and vanish linearly witht at the lower end.
This structure explains the spikes observed in Fig. 2, wh
are located precisely at the pointst51/cm and due to the
decoupling of the6cmth Matsubara modes. Indeed, fort
.1 only them50 Matsubara mode yields a contribution
Bd(t) in Eq. ~4.13!. The asymptotic regime where only th
m50 Matsubara mode contributes is reached already fot
.1 with Bd(t>1)5tdvd21/2pvd(d21), or

l n
d~v,t>1!5

vd21

vd

T

k
l n
d21~v!. ~4.15!

Notice the difference from Eq.~4.7!. Decreasingt below t
51/cm eventually switches on the6cm Matsubara modes
For t close to the points 1/cm , the term~4.14! increases as
(1/cm2t)(d21)/2 for decreasingt. This power law explains
why the spikes are more pronounced in lower dimensio4

In the limit t→0 it is straightforward to verify thatBd(t
→0)→1 which implies

l n
d~v,t→0!5 l n

d~v!. ~4.16!

This asymptotic limit is the same as Eq.~4.8!.

4To higher order in the derivative expansion, the spikes
smoothed out for non-trivial wave function renormalization, cf. S
V C.

FIG. 2. Dimensional reduction for bosons, described by
bosonic thermal functionBd(t) defined in Eq.~4.13!. d54: full
line, d53: dashed line,d52: dashed-dotted line.
10500
n-

h

.

Turning to the optimal fermionic regulator~2.21!, the mo-
mentum integration in Eq.~4.9! can be performed explicitly
to give

l F,n
d ~v,t!5Fd~t!l F,n

d ~v!. ~4.17!

As in the bosonic case, the temperature effects factorize f
the threshold effects. The fermionic thermal threshold fac
Fd(t) is given by

Fd~t!5
d

d21

vd21

vd

t

2p (
m

~12cm
2 t2!(d21)/2Q~12cm

2 t2!.

~4.18!

Equation~4.18! is identical to its bosonic counterpart~4.13!
except for the Matsubara sum which runs overcm56 1

2 ,
6 3

2 , . . . in Eq.~4.18!. In Fig. 3 we have displayed the func
tion Fd(t) for d52, 3 and 4 dimensions. Again, the spike
have the same origin as in the bosonic case and the s
reasoning applies. The high temperature limit at which
fermions decouple completely, is already reached fork
<pT,

l F,n
d ~v,t>2!50. ~4.19!

Notice the important difference from Eq.~4.10!, where the
decoupling of fermions is only asymptotic. The limitt→0 is
equivalent to Eq.~4.11!.

D. Discussion

The optimized regulators~2.18! and ~2.20! correctly de-
scribe dimensional reduction and fermion decoupling. In
dition, they lead to a thermal factorization of the flow
observed in Eqs.~4.12! and~4.17!. From a physical point of
view, this fact is easily understood. The imaginary time fo
malism compactifies the time direction and the temperat
modifies thetemporalmomentum modes of the fields. Th
corresponding Matsubara mode, when compared to the in
red scalek, leads to a thermal decoupling. To leading order
the derivative expansion, the optimized regulator makes

e
.

e FIG. 3. Fermion decoupling at finite temperature described
the fermionic thermal functionFd(t) given by Eq.~4.18!. d54:
full line, d53: dashed line,d52: dashed-dotted line.
7-9
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DANIEL F. LITIM PHYSICAL REVIEW D 64 105007
temperature blind for the quantum fluctuations. It cannot d
tinguish between amplitudes of constant fields. In turn,
quantum fluctuations are sensitive to the field amplitud
which are responsible for the mass decoupling, similar to
case for vanishing temperature. Clearly, these two effe
have different physical origins. As a consequence, it is na
ral to employ a regulator which reflects this factorization
the level of the flow equation.

For a generic regulator function, the flows~4.6! and~4.9!
are complicated functions of both the temperature and
field amplitudes. They reflect dimensional reduction and
mion decoupling. Typically, however, they do not factoriz
This simply means that a generic ERG flow entangles th
mal and quantum fluctuations even to leading order in
derivative expansion. This is a direct consequence of
regulator term, whose coupling to the different operators
the effective action leads to a field-dependent thermal dec
pling of the different modes on the level of the flow equatio
This entanglement is of no relevance if the flow can
solved exactly. In turn, for an approximate solution of t
flow, the factorization on the level of the flow equation
most helpful. It avoids a mixing of thermal and quantu
fluctuations in a regime where they can be disentang
thereby minimizing possible artifacts due to the spec
regulator function. As a consequence, the flow itself is sta
lized, and expansions of the flow show much better conv
gence behavior towards the physical theory. More gener
it is expected that this line of reasoning applies for gene
optimized regulators.

Finally, the factorization is very helpful for numerical so
lutions of flow equations. In the generic case, one tw
parameter function has to be fitted in order to describe
flows ~4.6! or ~4.9!. In turn, only two one-parameter func
tions are needed once they factorize as in Eqs.~4.12! and
~4.17!. This simplification is substantial, and even more
because the functions~4.12! and ~4.17! have a very simple
analytical form.

V. DERIVATIVE EXPANSION TO SECOND ORDER

In this section, we apply the optimized regulator to high
order in the derivative expansion. We first discuss the gen
structure of the equations. Furthermore, we show tha
simple factorization of the flow takes place for fiel
independent wave function renormalization. The physi
origin of the factorization is discussed, and its realization
the level of the flow equation leads, as in the thermal case
better convergence properties of the flow and the deriva
expansion. For technical details on the computations, we
fer to the Appendixes.

A. Wave-function renormalization

In the preceding sections we have restricted the discus
to the leading order in a derivative expansion. This impl
the vanishing of the anomalous dimensionshf5hc50 or
Zf[Zc[1. To higher order in the derivative expansion t
multiplicative renormalization of the fields has to be tak
into account, according to
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f→Zf,k
1/2 f ~5.1!

c→Zc,k
1/2c. ~5.2!

Once higher derivative terms are included in the ansatz
the effective action, additional flow equations for the cor
sponding coefficient functions like Zf,k(q

2,r̄) and
Zc,k(q

2,r̄) have to be studied. The wave function renorm
izations are functions of the scale parameterk and can de-
pend as well on momentaq2 or on the mean fieldsr̄. To
second order in the derivative expansion the wave func
renormalization is evaluated at a particular momentum sc
q25k0

2 which fixes the renormalization conditions. Typic
choices fork0 arek050 andk05k.

The most important new ingredient at this order is t
scale- and field-dependence of the wave function renorm
izations. In the example defined through Eq.~3.1!, these are
given by the functionsZk and Yk . Here, the functionZk is
responsible for the renormalization of theN21 ‘‘Goldstone’’
modes, which differs fromZ̃k5Zk1 r̄Yk for the ‘‘radial’’
mode. The fact that different wave function renormalizatio
appear to second order in the derivative expansion~depend-
ing on the theory considered! is of no relevance for the fol-
lowing discussion of the flows. The parametric depende
of the flow on eitherZk or Z̃k is the same.

Let us introduce an additional functionzk(r) as

Zk~ r̄ !5Zk~ r̄0!zk~ r̄ !. ~5.3!

We have factored out a constant termZk( r̄0) chosen at an
arbitrary reference point. We have chosen the reference p
r̄5 r̄0 which fixes the renormalization of the fields for a
momenta. Typical choices are eitherr050, orr05 the mini-
mum of the scale-dependent potential. The split~5.3! allows
to separate the non-trivial field-dependence, contained
zk( r̄), from an overall renormalization contained inZk( r̄0).
The factorzk is normalized aszk( r̄0)51.

In order to provide a simple form for the flow it is usefu
to introduce the field-independent factorZk( r̄0) into the
regulator function,

Rk→Zf,kRk ~5.4!

RF,k→Zc,kRF,k . ~5.5!

The flow equation, when written in terms of renormaliz
variables~5.1! and ~5.2!, receives additional contribution
proportional to the anomalous dimensions

hf52] tln Zf,k , ~5.6!

hc52] tln Zc,k , ~5.7!

because the derivative] tRk in the flow equation now acts
also on the explicit scale-dependence contained inZk .
7-10
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B. Generic flows to second order

To second order in the derivative expansion the flow
turned into a function of the field amplitudesv, the anoma-
lous dimensionh and the field dependent functionz. The
corresponding bosonic flow is defined as

l 0
d~v,z,h!5E

0

`

dyy(d/2)21
2y2r 8~y!2 1

2 h y r~y!

y@z1r ~y!#1v
.

~5.8!

Notice that the pole structure of the flow is changed, ow
to the functionz(r). The effective inverse propagator b
comes a function of the fields:

P2~r,y!5y@z~r!1r ~y!#. ~5.9!

The location of the pole of Eq.~5.8! at 2v5C(r)
5miny>0P

2(r,y) has turned into a function of the fields. Fo
the optimized regulator~2.19! the pole is located atC
5min$1,z%. Compared to the leading order in the derivati
expansion, the pole structure is modified oncezÞ1.

For the fermionic case, the flows are given as

l F,0
d ~v,zF ,hc!5E

0

`

dy yd/2
2~2y rF81hcr F!~zF1r F!

y@zF1r F~y!#21v
.

~5.10!

The pole structure changed as well, as follows from

PF
2~r,y!5y@zF~r!1r F~y!#2. ~5.11!

The location of the pole of Eq.~5.8! at 2v5CF(r)
5miny>0PF

2(r,y) has turned into a function of the fields. Fo
the regulator~2.21! the pole is located atCF5min$1,zF%.
The pole structure is modified compared to the leading or
in the derivative expansion oncezFÞ1.

C. Optimized flows to second order

We now turn to the optimized flows and discuss th
structure at second order in the derivative expansion.
refer to the Appendixes for all technical details.

In the case of a generic wave-function renormalizat
wherezk( r̄) is a non-trivial function of the fields, the func
tion l 0

d(v,z,h) as defined in Eq.~5.8! can be evaluated ex
plicitly for the regulator~2.18!. The structure of the flow is
as follows. Consider the denominator of Eq.~5.8!, given by
y(z1r )1v. It can be rewritten as 11v1y(z21)1@y(1
1r )21#. The last term in brackets vanishes for the op
mized regulator~2.18! because the integration is restricted
y<1. The remaining term can be written as the product
1v)$12@(12z)/(11v)#y%. Notice also that the numerato
of Eq. ~5.8! depends neither onz nor onv. These observa
tions lead to the following conclusions. First, and apart fro
an overallv-dependence;(11v)21, the optimized flow
depends onz andv only through the variable

j[
12z

11v
. ~5.12!
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Second, the optimized flow factorizes into a leading ord
term ~3.9! and a remaining factorBd(j,h),

l 0
d~v,j,h!5 l 0

d~v!Bd~j,h!, ~5.13!

because the denominator of Eq.~5.8! contains a momentum
independent factor (11v). Here we have introduced
l 0
d
„v,j(v,z),h…[ l 0

d(v,z,h). It it interesting to see that the
structure of the optimized flow is still quite simple. An inte
gral representation ofBd(j,h) is given in Eq.~B3!. @For all
j,1, Bd(j,h) can be expressed in terms of hypergeome
functions, cf. Eqs.~B4!, ~B5! and~B6!; closed expressions o
Eq. ~5.13! for d54, 3 and 2 dimensions are given in Eq
~B7!, ~B8! and ~B9!, respectively.# For uju,1 the function
Bd(j,h) can be Taylor-expanded in arbitrary dimensions,
wit

Bd~j,h!5 (
n50

`
jn

11
2n

d

S 12
h

d1212nD

512
h

d12
1

j

11
2

d

1O~j2,jh!. ~5.14!

The series representation~5.14! is best suited for the flow as
long asuju remains small. This corresponds to either the lim
of a field-independent wave function renormalizationz(r)
[1, or, for anyz, to the limit of large amplitudesv. From
Eq. ~5.14!, we obtain for Eq.~5.13! to zeroth order inj

l 0
d~v,j,h!5 l 0

d~v!S 12
h

d12D1OS j

11v
,

jh

11v D .

~5.15!

We note that theh-dependent correction in Eq.~5.15! has the
same functional dependence on the amplitudev as Eq.~3.9!.
Stated differently, the optimized regulator leads to a sim
factorization in both the decoupling limitv@1 and for the
case of a field-independent anomalous dimensionj[0.

For completeness we give also the result for the boso
flow at finite temperature. The corresponding flo
l 0
d(v,j,t,h) still factorizes as

l 0
d~v,j,t,h!5Bd~j,t,h!l 0

d~v!. ~5.16!

This is the generalization of Eq.~4.12! to second order in the
derivative expansion. We only have to replace the funct
Bd(j,h) by its temperature-dependent counterp
Bd(j,t,h) @cf. Eq. ~A5!#. It is straightforward, if tedious, to
establish explicitly that the functionBd(j,t,h) represents
dimensional reduction in precisely the same way asBd(t)
[Bd(j50,t,h50). Let us consider the most interestin
case, which is the leading order inj!1. In this limit, Eq.
~5.16! reads

Bd~j,t,h!5Bd~t,h!1O~j,jh!. ~5.17!

The functionBd(t,h) can be expressed as
7-11
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Bd~t,h!5Bd~t!2h
d

d221

vd21

vd

t

2p

3(
m

~12cm
2 t2!(d11)/2Q~12cm

2 t2!.

~5.18!

The functionBd(t), Eq. ~4.13!, has been discussed in Se
IV. The new ingredient, beyond leading order, is given by
corrections;h in Eq. ~5.18!. Every single Matsubara mod
contributes as

;t~12cm
2 t2!(d11)/2Q~12cm

2 t2!. ~5.19!

Compared to the leading order contributions~4.14!, we no-
tice that Eq.~5.19! follows from Eq. ~4.14! for d→d12.
The reason is very simple. In the flow equation, the anom
lous dimension is proportional to a term containing an ad
tional factor;q2, which effectively increases the mome
tum measure by two dimensions. This has an immed
consequence. The thermal decoupling in Eq.~5.18! propor-
tional to ;h is much smoother than the leading order d
coupling, simply because the spikes are less pronounced
higher the dimension. Therefore, the spikes observed in
2 are smoothed out onceh ~andj) are non-vanishing.

In the opposite regime whereu12zu/(11w)@1, only a
few leading terms of the series~5.14! have to be retained
This limit is of relevance close to the pole region of the flo
v→21, or in the region of largez@1. From the explicitly
resummed expressions~B7!, ~B8! and~B9!, we conclude that
a factorization as

l 0
d~v,z,h!5 f d~v,z!S 12

h

d D ~5.20!

holds true, and f 4(z)5(z21)21, f 3(z)52 f 4(z) and
f 2(v,z)5 f 4(z)ln„(z1v)/(11v)….

It is not surprising that a similar structure is found f
fermionic flows. The correction term due to the substituti
Eq. ~5.4! simplifies Eq.~5.10! to

l F,0
d ~v,zF ,hc!

5E
0

1

dyyd/221
@11Ay~zF21!#@12hc~12Ay!#

@11Ay~zF21!#21w
.

~5.21!

Equation~5.21! factorizes as

l F,0
d ~v,zF ,hc!5 l F,0

d ~v!Fd~v,zF ,hc!. ~5.22!

The functionFd(v,z,h) can be expressed in terms of hype
geometric functions. At finite temperature, and forz51 and
h50, it reduces to Eq.~4.18!. Here, we are only intereste
in the structure of the flow for a nearly field-independe
wave function renormalization,z'1, or for the decoupling
limit. We find
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Fd~v,zF ,hc!512
hc

d11
1

d~zF21!

d11 S 12
2

11v D
3S 12

hc

d12D1••• . ~5.23!

The two leading terms in Eq.~5.23! show that also fermionic
flows factorize for field-independent wave function reno
malization.

D. Discussion

The structure of the flow has increased to second orde
the derivative expansion. Let us discuss first the case
field-independent wave function renormalizationz[1. The
corresponding flows~5.15! and ~5.23! for the optimized
regulators factorize, similar to the thermal case to lead
order in the derivative expansion. Physically speaking, t
structure can be made plausible as follows. The flow, wh
written in terms of the renormalized fields—and under t
assumption that the renormalization is momentum- and fie
independent—depends, in addition to the fields, only on
anomalous dimension. The anomalous dimension is field
dependent, and, as a consequence, unable to distinguis
tween fields of different amplitudes contained inv, which
parametrize the quantum fluctuations. Therefore, it is nat
that the flow factorizes the contributions induced throughh
from those induced by the amplitudesv. The disentangle-
ment is realized by the optimized regulators.5

In turn, a generic flow does not reflect this factorizatio
Rather, it leads to an entanglement between the renorma
tion of the effective potential induced by the infrared reg
lator, and the renormalization parametrized by a fie
independent anomalous dimension. This is immediat
evident from the observation that theh-dependent and the
h-independent contributions to the flow of the effective p
tential have different functional forms as functions of t
fields. At this level, the entanglement is due to the regula
which modifies the coupling among all operators of the
fective action. As mentioned in the thermal case, the
tanglement is of no importance for the full solution to th
flow. In turn, the factorization is very useful for approxima
solutions. It leads to more stable flows because irrelev
couplings, entirely due to the regulator, are removed. T
same reasoning as given at the end of the previous sec
applies.

For the thermal bosonic flow~5.16!, we notice that the
dependence on the anomalous dimension enters the the
factor Bd(t,h). In particular, the thermal corrections do n
factorize from those due to a field-independent anomal
dimension. This structure can be understood as follows.
wave function renormalization enters the momentum trace
a multiplicative renormalization proportional to the kinet

5From the definition of Eqs.~5.8! and ~5.10! it follows that all
homogeneous regulators withr (y);yr8(y) @or r F(y);yrF8 (y), re-
spectively# factorize the anomalous dimension from the fiel
dependent part of the flow.
7-12
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termq2. At finite temperature within the imaginary time fo
malism, the spatial and the temporal loop momenta
treated in an unequal way. Hence, thermal fluctuati
couple in a non-trivial manner to the anomalous dimens
of the fields. This implies that the temperature-depend
factor itself is modified due to the anomalous dimensi
which provides the physical reason why no factorization
the temperature effects from the anomalous dimension
expected in the first place.

For the case of a field-dependent wave-function renorm
ization, a simple factorization similar to Eq.~5.15! is not
expected, simply because the wave function renormaliza
is a function of the fields. Hence, the wave function ren
malization can distinguish different field amplitudes, in co
trast to the field-independent case. However, two obse
tions are still worth mentioning. First of all, we observe
partial factorization, which is evident from Eqs.~5.13! and
~5.16!. This structure is based on the fact that t
z-dependence enters only through the variable~5.12!, as op-
posed to the generic case. Foru12zu/(11w)!1, only a few
leading terms have to be retained from the explicit se
~5.14!. It follows that each power ofu12zu/(11w) is renor-
malized proportional to the anomalous dimension and
order-dependent numerical coefficient. Secondly, the li
for u12zu/(11w)@1 again allows for a simple factoriza
tion, as follows from Eq.~5.20!. Here, the wave function
renormalization can no longer distinguish field amplitud
allowing for this simple structure.

A final comment concerns the numerical prefactors;h as
found in Eqs.~5.15! and~5.23!. We emphasize that the cou
pling of the anomalous dimensions to the effective poten
is, apart from the field dependence,dimensionally
suppressed—by factors 1/(d12) for bosons and 1/(d11)
for fermions—as opposed to the leading order contributio
This additional suppression is noteworthy because the c
vergence of the derivative expansion is controlled by sm
anomalous dimensions of the fields. Here, we have
shown that an expansion performed with an optimized re
lator leads to anadditional dimensional suppression of th
back-coupling of the anomalous dimension to the effect
potential. A more detailed discussion of this observation w
be given elsewhere.

VI. PROPER-TIME REGULARIZATION

In this section we leave aside the conceptual framew
of the ERG based on a momentum-scale regularization
address flows based on an operator cutoff regularization.
aim is to provide the analog of the optimized regulator~2.18!
within the proper-time regularization method. For a mo
detailed comparison with the exact renormalization gro
we refer the reader to Ref.@21#.

A simple flow has been derived from a one-loop expr
sion for the effective action which is UV and IR regularize
using a Schwinger proper-time representation of the oper
trace@37#, amended by a regulator functionf k

(d)(L,s) within
the proper-time integral@38#. The flow with respect to the
infrared scale parameterk follows from a 1-loop improve-
ment as@20#
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] tGk52
1

2E0

`ds

s
@] t f k

(d)~L,s!#Tr exp~2sGk
(2)!. ~6.1!

We refer to this flow as the ‘‘proper-time renormalizatio
group’’ ~PTRG!. It describes the partial resummation of pe
turbative diagrams. The proper-time regulator function pla
the role of the momentum regulatorRk within the ERG. The
flow ~6.1! is governed by the IR scalek. Following Ref.@20#,
we introduce a dimensionless functionf (x) as f k

(d)(L,s)
5 f (L2s)2 f (k2s) and require f (x→`)51 and f (x→0)
50. This ensures that the usual Schwinger proper time r
resentation is reached in the UV limit.

We are not aware of a simple and generic optimizat
criterion, analogous to Eq.~2.11!, which derives from within
the PTRG formalism. Furthermore, the flow~6.1! has no
path integral derivation, which makes a conceptual reason
much more difficult. However, it is still possible to show th
a functionf opt(x) exists which is equivalent to the optimize
ERG regulator~2.18! to the leading order in the derivativ
expansion.

To that end, we apply Eq.~6.1! to an N-component real
scalar theory ind dimensions and to leading order in th
derivative expansion. Using the ansatz~3.1! the flow for the
effective potentialUk( r̄) with r̄5 1

2 fafa becomes

] tUk~ r̄ !5
1

2
~4p!2d/2E

0

` ds

s11d/2
] t f k

(d)~L,s!

3@e2s[Uk8( r̄)12r̄Uk9( r̄)]1~N21!e2sUk8( r̄)#.

~6.2!

This flow is identical in form to the ERG flow~3.3!, if we
replace the ERG flow in Eq.~3.3! by the proper-time flow

l 0
d~v!5

1

2
GS d

2D E
0

`

dx x212(d/2)@] t f ~x!#exp~2xv!.

~6.3!

Here, the integration variable isx5k2s and stems from the
proper-time integration, in contrast to Eq.~3.5!, where y
5q2/k2 stems from the momentum trace. Now, conside
specific class of proper-time regulator functions:

f ~x!5
G~m,x!

G~m!
, ] t f ~x!5

2xme2x

G~m!
. ~6.4!

We have introduced a free parameterm describing different
regulators, and the incompleteG-function G(m,x)
5*0

xdyym21e2y. This yields the simple expression

l 0
d~v!5

GS m2
d

2DGS d

2D
G~m!

~11v!(d/2)2m ~6.5!

which agrees with Eq.~3.9! for m511(d/2), or
7-13
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f opt~x!5

GS d

2
11,xD

GS d

2
11D , ] t f

opt~x!5
2x11d/2e2x

GS d

2
11D . ~6.6!

The optimized proper-time regulator~6.6! corresponds to the
optimized regulator~2.18! within the ERG approach. Hence
it is possible to identify an optimal regulator function fo
proper-time flows, owing to their close similarity to the ER
to leading order in the derivative expansion.

VII. CONCLUSIONS AND OUTLOOK

This study was motivated by two observations. First,
application of the ERG to realistic physical problems
bound to certain approximations. Second, approximate s
tions of flow equations depend spuriously on the infra
regulator. Combining these observations, it became obv
that an understanding of the spurious scheme dependen
mandatory in order to provide predictive power for appro
mate solutions. Previously, we showed that the gap of the
inverse propagator controls convergence properties of
proximate solutions@15#. It has also been shown, based
the computation of critical exponents for the Ising univers
ity class, that the convergence of the derivative expansio
controlled by the gap@18#. These observations lead to th
conclusion that the freedom in the choice for the IR regula
can be used to maximize the physical information contai
within a given approximation or truncation.

An interpretation of the interplay between the RS functi
on one side, and convergence of approximate flows on
other, is as follows. The IR regulator—by regulating t
flow—modifies the interactions at intermediate scaleskÞ0
among all operators of the theory. Eventually, these can
out for the integrated full flow, but not for approximate
ones. Hence, changing the RS function for an approxima
flow modifies some remaining RS dependent terms wh
cannot be cancelled due to the missing contributions fr
neglected operators. Therefore, a ‘‘fine-tuning’’ of the R
function allows to partly incorporate higher-order effec
within the lower orders of a given approximation. This co
responds to an optimization.

The present derivation of optimized ERG flows had tw
ingredients. First, we made use of a generic optimizat
criterion for bosonic and fermionic fields@15#, which states
that the gap of the full inverse propagator, as a function
momenta, should be as large as possible. This way, the E
flow is the least singular, and approximations to such flo
are expected to be much more stable, leading to impro
convergence of expansions. Second, we added the spe
requirement that the effective inverse propagator
momentum-independent in the IR region~cf. Fig. 1!.

We have studied specific optimized ERG flows f
bosonic or fermionic theories up to second order in the
rivative expansion and at vanishing and non-vanishing te
perature. Their specific properties have been discusse
detail at the end of the corresponding sections. Here, le
only mention perhaps the most surprising property of o
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mized flows, which is the disentanglement of thermal a
quantum fluctuations to leading order in the derivative e
pansion. A similar factorization occurs for field-independe
wave function renormalizations.

More generally, optimized ERG flows owe their ma
properties to the ‘‘flatness’’ of the effective inverse propag
tor, which extends over the entire momentum regionq2

<k2 for the specific regulator studied here. Other regulat
can lead to similar factorization and convergence propert
Prime candidates are given by solutions to the optimizat
criterion: as is evident from Fig. 1, they automatically lead
flat effective propagators—at least within a small regi
about the minimum of the effective inverse propagator.
this region extends over the domain where the flow equa
receives its main contributions, we expect to find equa
good flows.

An important conclusion is that the optimization ide
discussed here should be useful for high-precision comp
tions based on this formalism. Increasing the precision n
mally implies a full computation at the following order of th
expansion. Here, we argued that the physical results ca
improved already within a fixed order of the expansion. I
mediate applications of optimized flows concern the com
tation of universal critical exponents forN-component scalar
theories in three dimensions, or the study of convex effec
potentials within a phase with spontaneous symmetry bre
ing. On the conceptual side, it is possible to show that
optimization criterion can be interpreted as a natural m
mum sensitivity condition, somewhat similar to the princip
of minimum sensitivity as employed within perturbativ
QCD. We will leave a detailed discussion of these results
a future publication@18#.

Our analysis can be extended in a number of directio
For gauge theories, modified Ward or BRST identities ens
the gauge invariance of physical Green functions@39#, and
the optimization criterion is compatible with such addition
constraints. This optimization can also be implemented
field theories at finite temperature within the real-time fo
malism @36#. While our present analysis is based on the d
rivative expansion, it seems worthwhile to study optimiz
tions for other systematic expansions like expansions
powers of the fields. Finally, it would be interesting to s
how these ideas apply to flows at finite density or to Ham
tonian flows@40#.
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APPENDIX A: FLOWS TO SECOND ORDER
IN THE DERIVATIVE EXPANSION

In this appendix, we derive explicit expressions for t
optimized flow for the effective potentials to second order
the derivative expansion at both vanishing and non-vanish
temperature.

Our starting point is the flow for the effective potential
second order in the derivative expansion. We consider
7-14
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bosonic flow at finite temperature. All information about t
flow is parametrized by

l 0
d~v,z,t,h!5

vd21

vd

t

2p (
n
E

0

12cn
2t2

dy y(d23)/2

3
@12 1

2 h~12y2cn
2t2!#Q~12cn

2t2!

~z21!~y1cn
2t2!111v

.

~A1!

Here,v(r) is the field variable,z(r) a field dependent wave
function renormalization,h the anomalous dimension,t
52pT/k the rescaled dimensionless temperature, andcn
5n the Matsubara modes in the bosonic case, Eq.~4.3!. The
constantsvd are defined in Eq.~3.4!.

The leading order behavior of Eq.~A1! is given by the
function

l 0
d~v!5

2

d

1

11v
, ~A2!

which follows from Eq.~A1! for z51, t50 andh50. Fac-
torizing the main building block Eq.~A2! from Eq.~A1!, we
notice that the remaining factor depends on bothv and the
variablez only through the combination

j[
12z

11v
. ~A3!

Therefore, it is most natural to make the variable transfo
Eq. ~A3! by writing l 0

d(v,z,t,h)[ l 0
d
„v,j(z,v),t,h…, and to

rewrite the flow~A1! as

l 0
d~v,j,t,h!5 l 0

d~v!Bd~j,t,h!, ~A4!

where

Bd~j,t,h!5
d

2

vd21

vd

t

2p (
n
E

0

12cn
2t2

dy y(d/2)2(3/2)

3

12
h

2
~12y2cn

2t2!

12j~y1cn
2t2!

Q~12cn
2t2!. ~A5!

Below, if not stated otherwise, we adopt a simplified no
tion: functions are evaluated at the pointsj50, z51, t
50 or h50, if the corresponding arguments are not d
played. With these definitions at hand, we can face the
plicit computation of Eq.~A1!.

Let us compute the functionBd(j,t,h) more explicitly.
Since the anomalous dimension enters only linearly in
~A1!, it is helpful to rewrite Eq.~A5! as

Bd~j,t,h!5Bd~j,t!2hB̄d~j,t!. ~A6!

For j,1, the remaining integration over the momentu
variable in Eq.~A5! can be performed. This leads to
10500
-

-
x-

.

Bd~j,t!5
d

d21

vd21

vd

t

2p (
n

An~j,t!~12cn
2t2!(d23)/2

3Q~12cn
2t2! 2F1S 1,

d21

2
;
d11

2
;jAn~j,t! D .

~A7!

The function

2F1~a,b;c;z!5
G~c!

G~b!G~c2b!
E

0

1

dt tb21~12t !c2b21

3~12tz!2a ~A8!

with 2F1(a,b;c;z)5 2F1(b,a;c;z) denotes the hypergeo
metric function@41#. We also introduced the thermal ampl
tude function

An~j,t!5
12cn

2t2

12j cn
2t2

. ~A9!

The indexn corresponds to the Matsubara mode. The fact
An only appear in combination with the factorQ(12cn

2t2).
At the limits,

An~j,0!5A0~j,t!51 ~A10!

An~j,cn
21!50. ~A11!

In the same way, we find from Eq.~A5! for the term;h in
Eq. ~A4! the explicit expression

B̄d~j,t!5
1

2

d

d21

vd21

vd

t

2p (
n

An~j,t!

3~12cn
2t2!(d21)/2Q~12cn

2t2!

3F 2F1S 1,
d21

2
;
d11

2
;jAn~j,t! D

2
d21

d11 2F1S 1,
d11

2
;
d13

2
;jAn~j,t! D G .

~A12!

Combining Eq.~A7! with Eq. ~A12! gives Eq. ~A6! and
hence Eq.~A4! explicitly. Equation~A4! is the most genera
expression for the factorization at second order in the der
tive expansion and at finite temperature.

The temperature dependence of the functionBd(j,t,h)
describes dimensional reduction. In particular, it obeys
limits

Bd~j,t50,h![Bd~j,h! ~A13!

Bd~j,t>1,h!5
vd21

vd

d

d21

t

2p
Bd21~j,h!. ~A14!

The low- and high-temperature limits~A13! and ~A14! are
discussed in the following Appendixes.
7-15



r
a

xt

-

g

ly.

-

-

o

DANIEL F. LITIM PHYSICAL REVIEW D 64 105007
Let us consider the case wherej50. It corresponds eithe
to the case of a field-independent wave function renorm
ization z[1, and/or to the decoupling regimev@1. A few
properties of Eq.~A4! have been discussed in the main te
For j50 the factor~A6! reduces to

Bd~t,h!5
d

d21

vd21

vd

t

2p (
n

~12cn
2t2!(d21)/2

3S 12h
12cn

2t2

d11 DQ~12cn
2t2!. ~A15!

This corresponds to Eq.~4.13! discussed in Sec. IV. In addi
tion, we notice that

Bd~t,h→0!5Bd~t! ~A16!

Bd~t→0,h!512
h

d12
~A17!

Bd~t>1,h!5
d

d21

vd21

vd

t

2pS 12
h

d11D . ~A18!

Equation~A16! corresponds to Eq.~3.9!, Eq. ~A17! to the
low-temperature limit~5.15!, and Eq. ~A18! to the high-
temperature limit~4.15!.

Similar results are found for the fermionic case, thou
not discussed explicitly.

APPENDIX B: LOW TEMPERATURE LIMIT

In the low temperature limitt→0, the flow~A1! simpli-
fies to

l 0
d~v,z,h!5E

0

1

dy y(d22)/2
12 1

2 h ~12y!

~z21!y111v
. ~B1!

The remaining integration in Eq.~B1! is solved to give

l 0
d~v,j,h!5 l 0

d~v!Bd~j,h! ~B2!

with

Bd~j,h!5
d

2E0

1

dy y(d/2)21S 1

12jy
2

h

2

12y

12jyD ~B3!

in arbitrary dimensions. Forj[(12z)/(11v),1, and
hencez.2v, the integration can be peformed analytical
We find

Bd~j,h!5Bd~j!2h B̄d~j! ~B4!

where

Bd~j!5 2F1S 1,
d

2
;11

d

2
;j D ~B5!

and
10500
l-

.

h

B̄d~j!5
1

2 F 2F1S 1,
d

2
;11

d

2
;j D

2
d

d12 2F1S 1,11
d

2
;21

d

2
;j D G . ~B6!

For uju,1, Eq.~B4! can be Taylor-expanded inj, leading to
the first equation given in Eq.~5.14!.

For applications, it will be useful to obtain explicit ana
lytical expressions for the functions~B1! for fixed dimen-
sions. Ford54, we find

l 0
4~v,z,h!5

1

z21
2

11v

~z21!2
ln

z1v

11v

2hF112v1z

4~z21!2
2

1

2

~11v!~v1z!

~z21!3
ln

z1v

11vG .

~B7!

In d53 dimensions, we find

l 0
3~v,z,h!5

2

~z21!
2

2A11v

~z21!3/2
arctanAz21

11v

2hF113v12z

3~z21!2

2A11v

z21

z1v

~z21!2
arctanAz21

11vG
~B8!

and the region forz,1 is obtained through analytical con
tinuation. Finally, ford52 we find

l 0
2~v,z,h!5

1

z21
ln

z1v

11v
2hF2

1

2

1

z21

1
z1v

2~z21!2
ln

z1v

11vG . ~B9!

Notice that the functions~B7!, ~B8! and ~B9! behave
smoothly forz'1, which follows either from Eq.~5.14! or
by an explicit check.

For z51 these expressions reduce to the result Eq.~5.15!.

APPENDIX C: HIGH TEMPERATURE LIMIT

The high-temperature limit is reached fort>1, or T
>2pk. Then, only then50 Matsubara mode contributes t
the flow. Using Eqs.~A7!, ~A10! and ~B5!, we find:

Bd~j,t>1,h!5
d

d21

vd21

vd

t

2p
Bd21~j,t50,h!.

~C1!

For uju,1, Eq. ~C1! can be Taylor-expanded as
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Bd~j,t>1,h!5
d

d21

vd21

vd

t

2p (
n50

`
~d21!jn

2n1d21

3S 12
h

d1112nD . ~C2!

Splitting Bd(j,t>1,h) as in Eq.~A6!, we have

Bd~j,t>1!5
d

d21

vd21

vd

t

2p 2F1S 1,
d21

2
;
d11

2
;j D .

~C3!
y

o,

a,

10500
In turn, the flow proportional to the anomalous dimensi
reduces to

B̄d~j,t>1!5
1

2

d

d21

vd21

vd

t

2p
3

3F 2F1S 1,
d21

2
,
d11

2
,j D

2
d21

d11 2F1S 1,
d11

2
,
d13

2
,j D G . ~C4!
h,
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