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Communicability Across Evolving Networks

Peter Grindrod∗ Desmond J. Higham† Mark C. Parsons‡

Ernesto Estrada§

Abstract

Many natural and technological applications generate time ordered
sequences of networks, defined over a fixed set of nodes; for example
time-stamped information about ‘who phoned who’ or ‘who came into
contact with who’ arise naturally in studies of communication and
the spread of disease. Concepts and algorithms for static networks
do not immediately carry through to this dynamic setting. For ex-
ample, suppose A and B interact in the morning, and then B and C
interact in the afternoon. Information, or disease, may then pass from
A to C, but not vice versa. This subtlety is lost if we simply sum-
marize using the daily aggregate network given by the chain A-B-C.
However, using a natural definition of a walk on an evolving network,
we show that classic centrality measures from the static setting can
be extended in a computationally convenient manner. In particular,
communicability indices can be computed to summarize the ability of
each node to broadcast and receive information. The computations
involve basic operations in linear algebra, and the asymmetry caused
by time’s arrow is captured naturally through the non-commutativity
of matrix-matrix multiplication. Illustrative examples are given for
both synthetic and real-world communication data sets. We also dis-
cuss the use of the new centrality measures for real-time monitoring
and prediction.
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1 Introduction

At the heart of network science are the well established mathematical fields
of deterministic and random graph theory, with concepts such as connected-
ness, pathlength, diameter, degree and clique playing key roles [1, 2]. The
motivation for this work is that a new type of time-dependent network-based
object is emerging from a range of digital technologies that requires a funda-
mentally different way of thinking.

In Figure 1 we show a simple example of an evolving network, where undi-
rected connections between a fixed set of seven nodes is recorded over three
days. If we regard the links as representing communication, for example, by
telephone or email, then we see that A may pass a message to C through the
links A ↔ B and B ↔ G on day 1 and then through the links G ↔ E and
E ↔ C on day 2. However, there is no way for C to pass a message to A.
Analogously, if the links represent physical proximity, then A may pass an
infection to C but C cannot cause A to be infected. This asymmetry, which
arises even though each individual network is symmetric, is caused by the
arrow of time. It is clear that simply aggregating the individual networks
would present a very misleading summary. This highlights a fundamental
gap between the static and dynamic cases, and points out the need for a
theory of evolving networks that

1. deals with the time ordering inherent in the edge lists when considering
communication around the network,

2. respects the inherent asymmetry imposed by the arrow of time, even
when each individual snapshot consists of an undirected network.

Many application areas give rise to connectivity patterns that change
over time in this manner. As well as the traditional context of individual-to-
individual contacts in epidemiology [3], the digital revolution is generating
novel large scale examples, including

• networks of mobile users with a link denoting current “interaction”, i.e.,
either copresence in a location or logged contact through their mobile
devices [4],

• networks of online social users (e.g., Facebook) interacting through
messaging [4] or online chatting systems (e.g. MSN) [5],
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Figure 1: (Color online) Simple example of an evolving network.

• networks of travellers, vehicles or available routes defined over a dy-
namic transportation infrastructure [6, 7, 8],

• networks describing transient social interactions over cyberspace [9],

• networks describing individuals’ attendance at regularly scheduled events
over time [10],

• correlated neural activity in response to a functional task [11].

In this work, we show how centrality concepts that have proved useful
for determining important nodes in static networks can be extended to this
dynamic setting. Our approach is related to that of [12, 9, 13], in the sense
that static graph concepts are directly generalized in a manner that respects
the time dependency, but we take a walk counting viewpoint and focus on the
type of centrality measures that are popular for social networks [14]. Earlier
studies have also dealt with time-respecting paths. Berman [7] looked at a
more restricted class of dynamic networks, where each edge has a single start
time and a single finish time, and focused on issues such as the minimum
number of nodes that must be deleted in order to disconnect all paths be-
tween a given pair of nodes. Further algorithmic and combinatorial issues
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were considered in [15] for the case where each edge exists at a single instant
of time. More recent work in [16] deals with the setting where each edge may
exist at more than one time instance, and focuses on how quickly informa-
tion or disease may spread across a contact network, whereas [17] looks at
identifying edges that have the potential to pass information while it is fresh.
We also note that dynamic networks are treated in [18], but the emphasis in
that work is to discover communities, and a different approach is used, where
extra links are added to represent the passage of time.

Let us emphasize at this stage that unlike in the well-studied ‘network
growth’ context, where new nodes and accompanying edges are accumulated
and only the final, aggregate network is of interest [19, 2], we are concerned
here with a different time-dependent scenario where the population of nodes
remains fixed from the outset, and the graph evolves through the appearance
(birth) or the deletion (death) of edges.

2 Katz Centrality

To motivate our work we briefly discuss the case of a single, static network.
Given a directed graph G defined over N nodes, we let A denote the corre-
sponding N -by-N binary adjacency matrix, where a nonzero i, j entry records
the presence of a link from node i to node j. We allow for Aij #= Aji, so that
the adjacency matrix may be unsymmetric.

Numerous measures have been proposed for quantifying important fea-
tures of a network, many of them originating from the field of social network
analysis [20]. We consider here the issue of assigning an importance ranking
to each node, and focus on the idea of Katz [14], which has widely influenced
the study of static social networks [21, 22, 23].

Although the definition can be derived by viewing a link as a ‘vote of
confidence,’ in the style of Google’s PageRank algorithm [23, Chapter 7], we
summarize here the original derivation of Katz. To quantify the propensity
for node i to communicate, or interact, with node j, we may count how
many walks of length w = 1, 2, 3, . . . there are from i to j. We may then
combine these counts into a single, cumulative total over all w. Allowing for
the fact that shorter walks are generally more important (since, for example,
the noise or cost of a transmission may increase with length), it makes sense
to scale the counts according to the walk length. A particularly attractive
choice is to scale walks of length w by a factor aw, where a is a suitably
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chosen scalar. A basic identity from graph theory shows that the kth power
of the adjacency matrix has i, j element that counts the number of walks of
length w from node i to node j. Introducing the identity matrix I ∈ RN×N

for convenience, this leads us to the expansion I+aA+a2A2+a3A3 · · ·, which
converges to the resolvent function (I − aA)−1 when a < 1/ρ(A). Here ρ(·)
denotes the spectral radius; that is, the largest eigenvalue in modulus. Since(
(I − aA)−1)

ij
summarizes how well information can pass from node i to

node j, the nth row sum

N∑

k=1

(
(I − aA)−1)

nk
(1)

is a centrality measure for node n. Following Newman [23] we refer to this
as the Katz centrality.

We emphasize that this centrality measure is based on the combinatorics
of walks, which allow nodes and edges to be reused during a traversal, rather
than paths or shortest paths. A practical advantage of the walk counting
approach is that the combinatorics can be conveniently described and im-
plemented in terms of basic operations in linear algebra. Two further jus-
tifications are that (a) information does not necessarily flow along paths or
geodesics [21, 22, 24] and (b) walk counting is more tolerant of errors (missing
and spurious edges) than path counting. We also note that a related walk
based measure of centrality was proposed for this static network case in [25],
and the idea has been shown to lead to very powerful tools that are useful
across a range of application areas [26, 27, 28, 29].

In the case of a directed network, the Katz centrality (1) quantifies the
ability of node n to send out information along the directed links. By an
entirely analogous argument, we could use a column sum instead of a row
sum (or, equivalently, replace the adjacency matrix by its transpose) to give
a measure that quantifies the ability of node n to acquire information:

N∑

k=1

(
(I − aA)−1)

kn
. (2)

3 Dynamic Centralities

We now return to our main theme of dynamic networks. To formalize our
ideas, given a set of N nodes we consider an ordered sequence {G[k]} for
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k = 0, 1, 2, . . . ,M , where each G[k] is an unweighted graph defined over those
nodes. We think of a corresponding ordered sequence of time points t0 ≤
t1 ≤ · · · ≤ tM , so that G[k] records the state of the network at time tk. Each
graph may then be represented by its adjacency matrix, A[k].

To address the question of how well information can be passed between
pairs of nodes, we generalize the static graph concept of a walk as follows.

Definition 1 A dynamic walk of length w from node i1 to node iw+1 consists
of a sequence of edges i1 → i2, i2 → i3, . . . , iw → iw+1 and a non-decreasing
sequence of times tr1 ≤ tr2 ≤ . . . ≤ trw such that A[rm]

im,im+1
#= 0. We also

define the lifetime of this walk to be trw − tr1.

We note that an analogous definition of a dynamic path can be made by
insisting that no node is visited more than once—that concept was devel-
oped recently in [4], and, as described in section 1, time-respecting paths for
different temporal models have appeared in earlier work [7, 16, 15, 17].

We emphasize that the sequence of times tr1 , tr2 , . . . , trw in Definition 1
must be nondecreasing, in order to respect the arrow of time, but

• repeated times are allowed: for example, if r1 < r2 = r3 < r4 then
precisely two edges are followed at time tr2 ,

• times are not required to be consecutive: for example, if r2 > r1 + 1
then the networks corresponding to times in between tr1 and tr2 have
not been used during the walk.

Of course, depending on the application area, it may be reasonable to al-
ter these features; forcing at most one edge per time level and/or forcing
time levels to be consecutive. The ideas presented here could be adjusted
accordingly.

Our key observation, which generalizes the static walk-counting identity
mentioned in section 2, is that the matrix product A[r1]A[r2] · · ·A[rw] has i, j
element that counts the number of dynamic walks of length w from node i
to node j on which the mth step of the walk takes place at time trm .

Now, in this new dynamic setting, we may apply the arguments that
were used to derive the Katz centrality measure (1). We wish to quantify
the propensity for node i to communicate, or interact, with node j. For each
length w = 1, 2, . . ., we may count the number of dynamic walks from i to j,
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downweighting walks of length w by a factor aw. In the matrix multiplication
framework, this leads to the task of summing all products of the form

awA[r1]A[r2] · · ·A[rw], where r1 ≤ r2 ≤ · · · ≤ rw. (3)

These arguments motivate the matrix product

Q :=
(
I − aA[0]

)−1 (
I − aA[1]

)−1 · · ·
(
I − aA[M ]

)−1
. (4)

The use of the identity matrices in (4) is crucial in our target case of large,
sparse networks—it allows a message to ‘wait’ at a node until a suitable
connection appears at a later time.

Overall, as required, the matrix Q records the sum of all terms of the
form (3). We may therefore use Qij as our summary of how well information
can be passed from node i to node j. The nth row and column sums

Cbroadcast
n :=

N∑

k=1

Qnk and Creceive
n :=

N∑

k=1

Qkn (5)

are centrality measures that quantify how effectively node n can broadcast
and receive messages, respectively1.

Because we are interested in the relative values of the centrality measures
across all nodes, rather than their absolute sizes, we are free to multiply Q
by any positive scalar. We can use this freedom to avoid under or overflow in
the computations. A normalized version, say Q̂, could be computed as the
result Q̂[M ] of an iteration such as

Q̂[k] =
Q̂[k−1]

(
I − aA[k]

)−1

‖ Q̂[k−1] (I − aA[k])−1 ‖
, k = 0, 1, 2, . . . ,M,

with Q̂[−1] = I, where ‖ ·‖ denotes any convenient matrix norm. In our
computations we use the Euclidean norm.

These new centralities are a direct generalization of Katz centralities (1)
and (2) to the case of more than one time point.

Two features of this new approach are immediately apparent.

1An alternative is to specify k #= n in the summations, so that closed walks are not
included. However, such closed walks can play an important role as indicators of centrality
[30].
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• The basic computational tasks are linear system solves, which are con-
venient and efficient for large, sparse networks.

• The inherent asymmetry caused by the dynamics is captured directly
through the non-commutativity of matrix multiplication.

To help understand the role of the downweighting parameter, a, we first
note that for a fixed collection of network data, in the limit a → 0 the
centrality measures reduce to multiples of the aggregate out and in degrees,
shifted by unity;

lim
a→0+

Cbroadcast
n − 1

a
=

N∑

k=1

(
M∑

p=0

A[p]

)

nk

,

lim
a→0+

Creceive
n − 1

a
=

N∑

k=1

(
M∑

p=0

A[p]

)

kn

.

At the other extreme, to guarantee that each resolvent
(
I − aA[s]

)−1
in (4)

exists, we require that a < 1/ρ(A[s]), for all s. Furthermore, choosing a
close to 1/ maxs ρ(A[s]) will cause the corresponding time ts to dominate
the overall communicability matrix Q. In practice, a suitable choice of a
would be sufficiently below 1/ maxs ρ(A[s]) that the results are not sensitive
to small changes in a and sufficiently above zero that they do not collapse to
the shifted aggregate out and in degrees.

Let us consider how the asymmetry of Q arises, and hence that between
the centrality measures, in the case of an evolving undirected graph. Here,
all the adjacency matrices are symmetric. For any N -by−N matrix, B, we
define S(B) := 1

2(B + BT ) and AS(B) := 1
2(B − BT ) to be the projections

of B onto the space of symmetric matrices and the orthogonal space of anti-
symmetric matrices, respectively. The anti-symmetric part of Q governs the
differences between the column and row sums of Q, since

2AS(Q).1 = Cbroadcast −Creceive,

where 1 = (1, 1, ..., 1)T , and Cbroadcast = (Cbroadcast
1 , ..., Cbroadcast

N )T are N -
vectors, with Creceive defined analogously.

Working with the non-normalized version of Q in (4), we have

Q = I + a
M∑

p=0

A[p] + a2
M∑

p=0

M∑

p′=p

A[p]A[p′] + O(a3).
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It follows that

S(Q) = I + a
M∑

p=0

A[p] + O(a2), (6)

and

2AS(Q) = a2
M∑

p=0

M∑

p′=p+1

[A[p], A[p′]] + O(a3), (7)

where [A, B] := AB − BA denotes the commutator of matrices A and B.
Since each separate graph is undirected, this shows that the leading anti-
symmetric terms arise only from interactions over distinct pair of time steps.

We emphasize that this work focuses on the case of a fixed set of data.
In some applications, A[k] will itself be an aggregate of activity over a time
window; for example, in sections 4.2 and 4.3 we consider daily telephone and
email communication. If we reduce the time window down to hours, minutes,
seconds, . . . , then, before we can think about the asymptotic limit, we must
first be clear about the nature of the data.

If we consider email communication, and assume that messages are passed
instantaneously, then in the limit of time resolution the communicability
matrix Q would not change—we reach a point where no further walks can be
created through refinement. In the linear algebra setting of (4) only empty
networks are added to the sequence and no new non-identity factors will arise.
In this ultra-high-frequency regime, if the edges are undirected it would be
natural to replace (4) with the “at most one link per time window” version

Q :=
(
I + aA[0]

) (
I + aA[1]

)
· · ·

(
I + aA[M ]

)
,

in order to eliminate trivial closed walks such as i )→ j )→ i that occur over
a single window. However, the idea that the finest time level gives the most
accurate picture must be treated with caution—in the email context the
order in which messages are read or acted upon does not necessarily reflect
the order of arrival.

By contrast, suppose that dynamic edges represent telephone communi-
cations with prescribed start and finish times. As we refine the time window
in this setting beyond the point where new information is added, we simply
start to collect contiguous repeats of a finite number of adjacency matri-
ces. In this limit, suppose we allow the downweighting parameter a to scale
inversely with the length of the time window. Then letting A denote the ad-
jacency matrix representing the connectivity pattern that remains constant

9



over some period (because no calls are started or finished over this time), we
will be computing as a factor in (4) a quantity of the form

lim
K→∞

(
I − a

K
A

)−K

= exp(aA).

Measures based on the scaled matrix exponential have been studied exten-
sively, see, for example, [31], and we see that, in this asymptotic limit, the
dynamic communicability matrix Q is formed as a product of such factors.

We also mention that the definition (4) extends readily to the case where
a varies with the time point; this might be natural, for example, if non-
uniform time windows are used or if some external property, such as the cost
of making a phone call or the likelihood of a batch of spam email, varies over
time.

4 Computational Tests

In this section we describe some illustrative computations with the new dy-
namic centralities. For convenience, we let amax denote the upper limit
1/ maxs ρ(A[s]) for the downweighting parameter a. In order to compare re-
sults with those for the Katz centralities we let Astar denote the binarized
version of the aggregated adjacency matrix, so (A!)ij = 1 if (Ak])ij = 1 for
any k, and (A!)ij = 0 otherwise. We then let amax! denote the upper limit
1/ρ(A!).

4.1 Synthetic Data

Figure 2 shows a proof-of-principle test of the ideas behind (4). Here we
used N = 1001 nodes and simulated networks at 31 time points; that is, a
month of daily data. At each time point, for nodes 1 to 1000 we constructed,
independently, a classical, undirected, Erdos/Renyi random graph—each was
chosen uniformly from the collection of all graphs with 1000 nodes and 1000
edges. Then at each time the final node 1001 was connected to the two nodes
with largest degree. In this way, node number 1001 is distinguished only by
the time-sensitive ‘quality’ of its links—at each time tk it has a degree that
matches that of the average node, and it will never be among the highest
degree nodes at any time; so any static or aggregative measure is likely to
fail to identify this node as being special. The upper pictures in the figure
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scatter the (normalized) broadcast and receive centralities (5) for each node,
with node 1001 identified by a circle. In this case, amax = 0.26, and we show
results for a = 0.2 (left) and a = 0.1 (right). We see that the new measures
correctly identify the fact that this node can communicate well, despite never
enjoying a high degree. Because each network is undirected, A∗ is symmetric,
and the Katz centralities (1) and (2) are equivalent. Here, amax! = 0.016 and
in the lower pictures we give a histogram for the Katz centrality in the case
a = 0.01 (left) and a = 0.005 (right). The centrality for node 1001 is marked
with a vertical dashed line, and we see that its advantageous connectivity at
each time point has been lost in the aggregation process.

4.2 Telecommunication Data

We now consider telecommunication data from [32]. We have daily “who
phoned who” information between 106 individuals based at M.I.T. over 365
days, with starting date 20th July 2004. Because phone conversations are
bi-directional, we have symmetrized the data, so A[k]

ij = 1 if individuals i
and j had at least one interaction on day k. Figure 3 shows a summary of
the adjacency matrices aggregated into 28 day intervals (day 365 omitted).
We notice a decrease in activity outside the traditional academic teaching
periods.

The upper left picture in Figure 4 shows the daily edge count. For this
data amax = 0.12, and the figure shows centrality results for a = 0.1. In the
upper right picture we scatter plot on a log-log scale the broadcast and receive
centralities (5). Here, and in all other scatter plots, the correlation coefficient
“corr” and the Kendall τ index “τ” for a pair of raw (not log transformed)
centralities are quoted to two decimal places in the figure caption. We see
that even though the individual adjacency matrices are symmetric, there
is no strong correlation between the two centralities. The lower pictures
scatter plot the broadcast and receive centralities for each node against the
total degree; that is, the sum of the node’s degrees over all days. This
makes it clear that the new centralities are not simply repeating the degree
information. The figure captions also quantify the overlap between the sets
of nodes ranked among the top twenty. In Figure 4, the top twenty nodes
ordered from twentieth place to first place in terms of the three measures are

broadcast : 27, 32, 38, 44, 47, 7, 45, 6, 2, 4, 10, 3, 30, 49, 26, 1, 46, 8, 5, 102

receive : 94, 58, 76, 95, 15, 20, 12, 89, 93, 30, 19, 49, 6, 35, 39, 52, 42, 8, 13, 53,

11
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Figure 2: (Color online) Comparison of centralities synthetically generated
network of 1001 nodes, where node number 1001 is designed to have average
activity, as measured by the aggregate degree, but enjoys high quality con-
nections at each time point. Upper pictures scatter the broadcast and receive
centralities (5) with node 1001 circled. Lower pictures show histograms of
Katz centrality for the binarized aggregate network, with centrality for node
1001 marked with a vertical dashed line.
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least one telephone interaction between those individuals.
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totaldegree : 21, 9, 93, 100, 32, 10, 57, 22, 49, 25, 53, 23, 6, 40, 20, 3, 2, 4, 8, 5.

In this case the overlaps between broadcast & receive, broadcast & total
degree and receive & total degree contain 4, 9 and 6 nodes, respectively.
Only one node appears in all three top twenty lists.

Figure 5 examines the sensitivity of the results to the parameter a. The
upper pictures show how the centralities change from a = 0.1 to a = 0.05.
The top twenty broadcast lists have 14 nodes in common and for the receiver
lists the overlap is 16. The lower pictures show the change from a = 0.05
to a = 0.01, and in this case the top twenty overlap counts are 16 and 11.
Overall, the experiments indicate that the two new measures deliver distinct
information that is different from a raw degree count, and remains consistent
over a range of a values.

We also found that neither of the dynamic centralities were strongly cor-
related with the Katz centrality for the binary aggregated matrix A!. In this
case amax! = 0.02 and comparing the the a = 0.1 broadcast centralities with
the a = 0.015 Katz centralities gave corr = 0.34 and τ = 0.25. Similarly, for
receive versus Katz we had corr = 0.22 and τ = 0.24.

4.3 Email Data

We now consider a public domain data set concerning email activities of
Enron employees. In [33] the static, aggregate network was analysed, but
here we treat it as an evolving network. We constructed daily information
representing emails between 151 Enron employees, including to, cc or bcc.
So A[k]

ij = 1 if employee i sent at least one message to employee j on day k, but
because this type of communication is unidirectional, we do not automatically
add the j )→ i link. We have data over 1138 days, starting on 11th May 1999.
Many of the adjacency matrices are empty, stressing the importance of the
identity matrices in (4) for analysing sparse data. The upper left plot in
Figure 6 shows the daily edge count.

Using a = 0.2, in the upper right of Figure 6 we scatter plot broadcast
versus receive centralities, and in the lower plots we show broadcast versus
total out degree and receive versus total in degree. In this case amax = 0.24.
As in the previous test, we see that the two new centrality measures are
distinct; in particular, only two nodes appear in the overlap of top twenty
broadcast and receive and it is clear that some top receivers are very poor
broadcasters. The top twenty overlap between broadcast and total out degree
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Figure 4: (Color online) Daily M.I.T. telecommunication data. Upper right:
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and 11.
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is 11 and between receive and total in degree in 6, showing that the new
measures do not simply reflect aggregate connectivity.

For the binarized aggregate network we have amax! = 0.05 and comparing
the a = 0.2 broadcast centralities with the a = 0.04 Katz centralities gave
corr = 0.10 and τ = 0.37. Similarly, for receive versus Katz we had corr =
0.02 and τ = 0.21.

The upper plots of Figure 7 show how the new centralities change when
a is reduced from 0.2 to 0.1, indicating robustness in this parameter regime.
The lower plots show the effect of symmetrizing the data, so that j )→ i
whenever i )→ j, in the case a = 0.1. We then have amax = 0.12. We see that
the new dynamic centralities are relatively insensitive to this transformation
of the data, suggesting that the dominant asymmetry is caused by time.

5 Discussion

The new centrality measures introduced here can be computed at any point
in time, and hence they may be used to monitor network behaviour dynami-
cally. A practical problem with evolving networks is that of an observer who
may be able make some kind of intervention; for example by injecting some
information (marketing content, rumours, propaganda, misinformation) at
key nodes at some instant, or by isolating or even removing a node. This
raises the issue of predicting future network behavior. We will briefly discuss
an approach based on the observer’s expectation of the future communica-
bility: an estimate of Q going forwards.

Suppose we have a stochastic model for the evolution of the network based
on historical data and some specific knowledge. More precisely, suppose
we have P (A[p+1]|Hp), the conditional distribution for the adjacency matrix
at the next time step given its entire history up to and including step p,
so Hp = {A[p], A[p−1], A[p−2], . . .}. Then applying this model iteratively we
obtain the conditional distribution for A[p′] for any p′ > p; that is, P (A[p′]|Hp).

Let us write E(A[p′]|Hp) to denote the corresponding expected value of
the future adjacency matrix, given Hp.

Now suppose we have observed the network up to and including some
time step, say p = 0 for convenience. Then from (6) and (7) we can calculate
estimates for the expectation of the communicability over the current and
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Figure 6: (Color online) Results for Enron email data. Upper left: total
number of edges per day. Upper right: Scatter plot of broadcast and receive
centralities; corr = 0.00, τ = 0.05, top twenty overlap size 2. Lower left:
Scatter plot of broadcast centrality and total out degree; corr = 0.62, τ =
0.46, top twenty overlap size 11. Lower right: Scatter plot of receive centrality
and total in degree; corr = 0.28, τ = 0.31, top twenty overlap size 6.
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Figure 7: (Color online) Results for Enron email data. Upper left: Scatter
plot of broadcast centralities for a = 0.2 and a = 0.1; corr = 1.00, τ = 0.93,
top twenty overlap size 18. Upper right: Scatter plot of receive centralities
for a = 0.2 and a = 0.1; corr = 0.97, τ = 0.88, top twenty overlap size 14.
Lower left: Scatter plot of broadcast centralities for directed and undirected
networks for a = 0.1; corr = 0.82, τ = 0.58, top twenty overlap size 12.
Lower right: Scatter plot of receive centralities for directed and undirected
networks for a = 0.1; corr = 0.76, τ = 0.81, top twenty overlap size 13.
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future time steps. We have the small a approximations

E(S(Q)|H0) = I + a
M∑

p=0

E(A[p]|H0) + O(a2),

and

2E(AS(Q)|H0) = a2
M∑

p=0

M∑

p′=p+1

E([A[p], A[p′]])|H0) + O(a3).

These estimates may be accessible in practice, depending on the complex-
ity and memory dependence of the model. For example, suppose we make
the dramatically simplifying assumption that our model is a symmetric, edge
independent Markov process. Letting αij and ωij denote the stepwise birth
and death rates for the evolution of the (i, j)th edge, we have A[p] → A[∞]

as p →∞, where A[∞]
ij = αij/(αij + ωij). In this Markovian case we can also

replace the history, Hp, by the single previous step A[p]. Then considering
time steps 0 up to M we have

E(Q|A[0]) = I + a
(
RM ◦ (A[0] − A[∞]) + (M + 1)A[∞]

)
+ O(a2),

where RM is the symmetric matrix given by (Rp)ij = (1 − (1 − αij +
ωij)M+1)/(αij+ωij), and ◦ denotes componentwise multiplication. This quan-
tifies the relative contributions to Q made by the initial condition and the
long term expected equilibrium value for each edge. So if the observer wishes
to intervene based on the dominance of some large row or column sums of
Q, we can see that this may require such action sooner or later depending
on the current state of the network and the longer term expectation.

So, overall, we believe that the new class of walk-based centrality mea-
sures introduced here offers great potential as a computationally and ana-
lytically attractive means to treat time-stamped network sequences, both for
summarizing existing data sets and real-time actioning.
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[30] E. Estrada and J. A. Rodŕıguez-Velázquez. Subgraph centrality in com-
plex networks. Phys. Rev. E, 71:056103, 2005.

[31] E. Estrada and N. Hatano. Statistical-mechanical approach to subgraph
centrality in complex networks. Chemical Physics Letters, 439:247–251,
2007.

23



[32] Nathan Eagle, Alex S. Pentland, and David Lazer. Inferring friend-
ship network structure by using mobile phone data. Proceedings of the
National Academy of Sciences, 106(36):15274–15278, September 2009.

[33] Anurat Chapanond, Mukkai Krishnamoorthy, and Bülent Yener. Graph
theoretic and spectral analysis of Enron email data. Computational &
Mathematical Organization Theory, 11:265–281, 2005.

24


