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Increased shear in the North Atlantic upper-level jet stream over the past four 1 
decades 2 
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Department of Meteorology, University of Reading, Reading, U.K. 4 

Earth’s equator-to-pole temperature gradient drives westerly mid-latitude jet streams 5 

through thermal wind balance1. In the upper atmosphere, anthropogenic climate 6 

change is strengthening this meridional temperature gradient by cooling the polar lower 7 

stratosphere2,3 and warming the tropical upper troposphere4–6, acting to strengthen the 8 

upper-level jet stream7. In contrast, in the lower atmosphere, Arctic amplification of 9 

global warming is weakening the meridional temperature gradient8–10, acting to weaken 10 

the upper-level jet stream. Therefore, trends in the speed of the upper-level jet stream11–11 

13 represent a closely balanced tug-of-war between two competing effects at different 12 

altitudes14. It is possible to isolate one of the competing effects by analysing the vertical 13 

shear instead of the speed, but this approach has not previously been taken. Here we 14 

show that, while the zonal wind speed in the North Atlantic polar jet stream at 250 hPa 15 

has not significantly changed since the start of the observational satellite era in 1979, the 16 

vertical shear has increased by 15% (with a range of 11–17%) according to three 17 

different reanalysis datasets15–17. We further show that this trend is attributable to the 18 

thermal wind response to the enhanced upper-level meridional temperature gradient. 19 

Our results indicate that climate change is having a larger impact on the North Atlantic 20 

jet stream than previously thought. The increased vertical shear is consistent with the 21 

intensification of shear-driven clear-air turbulence expected from climate change18–20, 22 

which will affect aviation in the busy transatlantic flight corridor. We conclude that the 23 

impacts of climate change and variability on the upper-level jet stream are being partly 24 

obscured by the traditional focus on speed rather than shear. 25 
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In the northern and southern hemispheres, the mid-latitude baroclinic zone of the atmosphere 26 

is associated with a planetary-scale meridional temperature gradient between the equator and 27 

the pole. This temperature gradient generates westerly winds that strengthen with height – 28 

vertical wind shear – as a consequence of thermal wind balance1. Using pressure as a vertical 29 

coordinate, the vertical shear in the zonal wind, −߲݌߲/ݑ, is related to the meridional 30 

temperature gradient, ߲ܶ/߲ݕ, by the thermal wind balance equation: 31 

݌߲ݑ߲− = − ݌݂ܴ ݕ߲߲ܶ 	, (1) 
where ܴ is the specific gas constant for dry air, ݂ is the Coriolis parameter, ݌ is pressure, and 32 ݕ is northward distance. Aloft, the strong westerly winds generated by thermal wind balance 33 

form the polar (or mid-latitude) jet stream, the speed of which is typically maximised near the 34 

tropopause, where the sign of the meridional temperature gradient (and thus the sign of the 35 

vertical shear) reverses. The polar jet stream is often described as eddy-driven, because 36 

eddies are required to support non-zero surface westerlies. It is distinct from the subtropical 37 

jet stream, which is primarily caused by poleward transport of angular momentum in the 38 

Hadley cell21. The polar jet stream influences mid-latitude weather systems, with the storm 39 

tracks being essentially a surface expression of the jet stream22. It also plays an important role 40 

in commercial aircraft operations, partly because it creates strong headwinds and tailwinds on 41 

busy mid-latitude flight routes23, but also because clear-air turbulence is generated by the 42 

associated intense vertical wind shear. 43 

The mid-latitude meridional temperature gradients are being modified by anthropogenic 44 

climate change24, and the jet streams are expected to adjust in response23–25. In the lower 45 

troposphere of the northern hemisphere, Arctic amplification caused primarily by lapse-rate 46 

feedbacks26 is weakening the meridional temperature gradient and polar jet stream8–10. In 47 

contrast, in the upper troposphere and lower stratosphere, the meridional temperature gradient 48 
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is strengthening because of the combined effects of polar lower-stratospheric cooling and 49 

tropical upper-tropospheric warming, the latter caused by water vapour feedbacks releasing 50 

additional latent heat and reducing the lapse rate7. The vertically integrated thermal wind 51 

response is a tug-of-war between these two competing effects, with Arctic amplification 52 

acting to decrease the wind speed in the upper troposphere and lower stratosphere, but polar 53 

lower-stratospheric cooling and tropical upper-tropospheric warming acting to increase it. 54 

These competing influences suggest that upper-level trends in the jet stream may be better 55 

discerned through changes in vertical wind shear rather than absolute wind speed. 56 

Here we analyse historic trends in the upper-level vertical wind shear over the North Atlantic. 57 

In future climate projections, the prevalence of clear-air turbulence at typical aircraft cruising 58 

altitudes increases more here than anywhere else globally20. We use data from the ERA-59 

Interim reanalysis at 0.75° horizontal resolution16, the NCEP/NCAR reanalysis at 2.5° 60 

horizontal resolution15, and the JRA-55 reanalysis at 1.25° horizontal resolution17. The use of 61 

three independently produced reanalysis datasets allows us to quantify the sensitivity of our 62 

results to uncertainties in the state of the atmosphere. We take six-hourly data from the years 63 

1979–2017 inclusive. We restrict the temporal coverage to the satellite era, because the 64 

sparsity of upper-level wind observations over the North Atlantic before 1979 substantially 65 

increases uncertainty in reanalysis datasets27. We consider data within the region defined by 66 

30–70°N and 10–80°W. This latitudinal range is chosen to include the polar jet stream (and 67 

the busy transatlantic flight corridor) whilst excluding the subtropical jet stream. We focus on 68 

the shear at a pressure altitude of 250 hPa, corresponding to the climatological core of the 69 

polar jet stream, and equating to a typical aircraft cruising altitude of around 34,000 feet. 70 

We begin by analysing annual-mean upper-level temperature trends. As shown in Figure 1, 71 

all three reanalysis datasets indicate a strengthening of the mid-latitude meridional 72 

temperature gradient at 250 hPa. The 250 hPa pressure surface evidently intersects the 73 
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tropopause at around 50–60°N, with lower-stratospheric cooling on the poleward side and 74 

upper-tropospheric warming on the equatorward side. The upper-tropospheric warming trend 75 

is slightly stronger in ERA-Interim and JRA-55, and the lower-stratospheric cooling trend is 76 

slightly stronger in NCEP/NCAR. Despite these minor differences, the spatial patterns and 77 

magnitudes of the temperature trends are broadly consistent across the datasets. Unlike the 78 

warming trends, the cooling trends are generally not statistically significant (except near 79 

Iceland in NCEP/NCAR), probably because of large inter-annual variability associated with 80 

the northern hemispheric circumpolar vortex28. 81 

To assess the vertical structure of the trends in the meridional temperature gradient, we 82 

calculate a bulk north–south temperature difference across the North Atlantic using a two-box 83 

method. On each pressure surface, annual-mean temperatures are averaged within a polar box 84 

(50–70°N, 10–80°W) and then subtracted from those averaged within a subtropical box (30–85 

50°N, 10–80°W). This calculation yields a zonal-mean bulk meridional temperature 86 

difference, and the trends in this quantity are shown in Figure 2. There is good agreement 87 

between the reanalysis datasets, with all three showing a significant weakening of the 88 

meridional temperature gradient in the lower atmosphere and a significant strengthening in 89 

the upper atmosphere. There is a transition between these two influences at around 450 hPa. 90 

There are some minor discrepancies, with NCEP/NCAR showing both a faster weakening of 91 

the meridional temperature gradient in the lower atmosphere and a faster strengthening aloft. 92 

At 250 hPa, however, all three reanalysis datasets show a significant strengthening of the 93 

temperature difference by nearly 0.2 K decade-1, consistent with Figure 1.  94 

To assess the impacts of the increasing meridional temperature gradient at 250 hPa on the 95 

atmospheric circulation, time series of the annual-mean vertical shear in zonal wind, averaged 96 

over the region 30–70°N and 10–80°W, are shown in Figure 3 (a). All three reanalysis 97 

datasets are clearly in good agreement with respect to the inter-annual variability and the 98 
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superimposed upward trend. The multi-reanalysis ensemble-mean vertical wind shear shows 99 

a significant (p = 0.03) increase of 15% (0.07 m s-1 (100 hPa)-1 decade-1) over the 39-year 100 

period. The individual increases range from 11% in JRA-55 (0.06 m s-1 (100 hPa)-1 decade-1, 101 

p = 0.09) to 17% in ERA-Interim (0.08 m s-1 (100 hPa)-1 decade-1, p = 0.02) and 17% in 102 

NCEP/NCAR (0.08 m s-1 (100 hPa)-1 decade-1, p = 0.01). In contrast, as shown in Figure 3 103 

(b), the annual-mean zonal wind speed averaged over the same region at 250 hPa has not 104 

significantly changed in any of the three datasets (p = 0.72 for the slope of the ensemble-105 

mean trend). It is notable that there is less spread between the three datasets for the shear than 106 

the speed, possibly because the speed is biased low in NCEP/NCAR because of the relatively 107 

coarse resolution compared to ERA-Interim and JRA-55, whereas this bias evidently 108 

disappears when vertical differences are taken to compute the shear. 109 

The increased shear without increased speed shown for the upper atmosphere in Figure 3 110 

indicates that the weaker meridional temperature gradient (and weaker vertical wind shear) in 111 

the lower troposphere is masking the stronger meridional temperature gradient (and stronger 112 

vertical wind shear) in the upper troposphere and lower stratosphere, through a large degree 113 

of cancellation in the vertically integrated thermal wind. We illustrate this effect by showing 114 

vertical profiles of trends in shear and speed throughout the depth of the troposphere in 115 

Extended Data Figure 1. The shear is strengthening within the jet core as well as throughout 116 

the broader region influenced by the jet stream (Extended Data Figure 2) and the trends are 117 

not attributable to a shift in the annual-mean latitude of the jet core (Extended Data 118 

Figure 3). 119 

To relate trends in the meridional temperature gradient to trends in the vertical shear, we 120 

invoke the time derivative of the thermal wind balance equation (1): 121 

− ݐ߲߲ ݌߲ݑ߲ = − ݌݂ܴ ݐ߲߲ .	ݕ߲߲ܶ (2) 
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We calculate both sides of this equation independently at each grid-point, as a measure of the 122 

extent to which the vertical wind shear changes are attributable to the local thermal wind 123 

response to the meridional temperature gradient changes. The time derivatives are evaluated 124 

as the linear trends over the period 1979–2017, calculated by applying ordinary least-squares 125 

regression to annual-mean values of ߲݌߲/ݑ and ߲ܶ/߲ݕ at each grid-point on the 250 hPa 126 

pressure surface. Maps of the left side of equation (2) – the directly calculated vertical wind 127 

shear trend, produced by differencing the wind fields at the two adjacent pressure levels – are 128 

shown in Figure 4 (a, b, c).  Maps of the right side of equation (2) – the expected vertical 129 

wind shear trend, produced by using the temperature field and assuming thermal wind 130 

balance – are shown in Figure 4 (d, e, f). There is a clear trend towards stronger vertical 131 

shear at 250 hPa over almost the entire North Atlantic domain in all three reanalysis datasets. 132 

The trend is statistically significant in the core of the climatological jet stream and on the 133 

poleward flank. We note the similarity in spatial patterns between these observed vertical 134 

wind shear increases and future projections of increased clear-air turbulence18,19. The good 135 

agreement between the left and right sides of equation (2), in terms of both the spatial 136 

patterns (the pattern correlation coefficients are r > 0.70 in all three datasets) and magnitudes, 137 

confirms that the vertical wind shear trends are indeed largely attributable to the response of 138 

the thermal wind to the meridional temperature gradient trends. The small discrepancies are 139 

presumably attributable to the numerical finite differences used to estimate the derivatives, as 140 

well as to weak ageostrophic and non-hydrostatic effects. 141 

In summary, we have identified the first observationally based evidence of increased vertical 142 

wind shear in the North Atlantic upper-level jet stream over the satellite era (1979–2017). 143 

The increase of 15% (with a range of 11–17%) is statistically significant, is present in three 144 

independently produced reanalysis datasets, and is attributable to the thermal wind response 145 

to the strengthening upper-level meridional temperature gradient. The stronger shear is 146 
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consistent with the intensification of clear-air turbulence expected from climate change18–20, 147 

because clear-air turbulence is generated by strong vertical wind shear (which means small 148 

Richardson number; we note that a 15% shear increase implies roughly a 30% Richardson 149 

number decrease, because of their inverse square relationship). In contrast to the large 150 

increase in vertical wind shear, we find that the zonal wind speed has not significantly 151 

changed, consistent with previous studies11,12. The explanation for this effect is that, in the 152 

vertically integrated thermal wind balance equation, the weaker meridional temperature 153 

gradient and weaker vertical wind shear in the lower troposphere are mostly offsetting the 154 

stronger meridional temperature gradient and stronger vertical wind shear aloft. Increased 155 

vertical wind shear has important implications, not only for clear-air turbulence and its 156 

impacts on aviation, but also for the turbulent mixing of atmospheric constituents across the 157 

tropopause29, with potentially significant consequences for large-scale atmospheric 158 

thermodynamics and dynamics30. 159 

Our results indicate that climate change is having a larger impact on the North Atlantic jet 160 

stream than previously thought. We conclude that the impacts of climate change and 161 

variability on the upper-level jet stream are being partly obscured by the traditional focus on 162 

speed rather than shear. We suggest that climate-modelling studies into the response of the jet 163 

streams to climate change should therefore include consideration of the vertical shear as well 164 

as the speed. We anticipate that inter-model differences in upper-level vertical wind shear 165 

trends will have a clear interpretation in terms of different upper-level temperature trends. On 166 

the other hand, inter-model differences in upper-level wind speed trends may be more 167 

difficult to interpret, because of different balances in the competition between temperature 168 

trends at upper and lower levels. 169 
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Figure 1: Annual-mean temperature trends in the North Atlantic at 250 hPa over the 250 

period 1979–2017. Linear trends are calculated using ordinary least-squares regression from 251 

the (a) ERA-Interim, (b) NCEP/NCAR, and (c) JRA-55 reanalysis datasets. Significant 252 

(p < 0.05; n = 39) trends are indicated by stippling. 253 

Figure 2: Vertical profiles of trends in the annual-mean north–south temperature 254 

difference across the North Atlantic over the period 1979–2017. Linear trends are 255 

calculated from the (a) ERA-Interim, (b) NCEP/NCAR, and (c) JRA-55 reanalysis datasets. 256 

Red and blue shading represents positive and negative trends, respectively. Error bars 257 

represent the 95% confidence intervals in the slope of the ordinary least-squares regression 258 

(n = 39). 259 

Figure 3: Time series of annual-mean wind characteristics in the North Atlantic at 260 

250 hPa over the period 1979–2017. Panel (a) shows the vertical shear in the zonal wind, 261 
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and panel (b) shows the zonal wind speed. Data are presented from the ERA-Interim, 262 

NCEP/NCAR, and JRA-55 reanalysis datasets.  Also shown are the mean of the three 263 

reanalysis datasets and the linear trend in the mean. 264 

Figure 4: Annual-mean trends in vertical shear in zonal wind in the North Atlantic at 265 

250 hPa over the period 1979–2017. Panels (a), (b), and (c) show the actual vertical wind 266 

shear trends calculated from the wind field, whereas panels (d), (e), and (f) show the expected 267 

vertical wind shear trends calculated from the temperature field using thermal wind balance. 268 

Linear trends are calculated using ordinary least-squares regression from the (a, d) ERA-269 

Interim, (b, e) NCEP/NCAR, and (c, f) JRA-55 reanalysis datasets. Significant (p < 0.05; 270 

n = 39) trends are indicated by stippling. To indicate the climatological jet stream position, 271 

the 1979–2017 annual-mean zonal wind at 250 hPa in each reanalysis dataset is also shown 272 

(black contours every 5 m s-1). 273 

Methods 274 

The North Atlantic region was chosen partly because it is the world’s busiest oceanic flight 275 

corridor. Due to the zonally extended nature of the polar jet stream in this region, 276 

transatlantic flights are typically affected by the strength and position of the jet stream 277 

throughout their entire flight paths. The effects of the jet stream on aircraft include 278 

headwinds, tailwinds, and clear-air turbulence. A further reason for choosing the North 279 

Atlantic is that – unlike the North Pacific – it exhibits separate polar and subtropical jet 280 

streams, allowing an analysis of the polar jet stream exclusively. 281 

We used pressure-level zonal wind and temperature data from the ERA-Interim, 282 

NCEP/NCAR, and JRA-55 reanalysis datasets at six-hourly analysis intervals from 1 January 283 

1979 to 31 December 2017 inclusive, giving 39 full years of data. All datasets were used on a 284 

standard latitude–longitude grid (0.75° for ERA-Interim, 2.5° for NCEP/NCAR, and 1.25° 285 
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for JRA-55). Trends were calculated using ordinary least-squares regression, and statistical 286 

significance was assessed at the 95% confidence level (p < 0.05) according to a two-tailed t-287 

test. The effect of temporal autocorrelation on statistical significance was tested in the 288 

computed annual-mean data and found to be negligible. Percentage changes were calculated 289 

using the values of the fitted linear trend lines in 1979 and 2017. 290 

To calculate the two-box zonal-mean bulk meridional temperature difference, we first 291 

averaged the annual-mean temperature in a subtropical box (30–50°N, 10–80°W) and a polar 292 

box (50–70°N, 10–80°W), with a cosine(latitude) weighting factor to account for the 293 

convergence of grid points at high latitudes. The latitudinal bounds of these boxes were 294 

chosen to be approximately either side of the climatological annual-mean jet stream latitude 295 

in the North Atlantic. We then found the meridional temperature difference across the North 296 

Atlantic by subtracting the subtropical box temperature from the polar box temperature. 297 

The jet stream was analysed in the North Atlantic region (10–80°W, 30–70°N). The annual-298 

mean regional-mean 250 hPa vertical shear in zonal wind was calculated by taking a centred 299 

vertical finite difference using the annual-mean zonal winds at 300 and 200 hPa: 300 

hPa	ฬଶହ଴݌߲ݑ߲−

(hPa	200)ݑ	≈ − hPa	100(hPa	300)ݑ
	 . (3) 

We also calculated trends in the annual-mean regional-mean (area-weighted) zonal wind 301 

speed at 250 hPa over the North Atlantic region. Vertical profiles of vertical shear trends 302 

were calculated by taking centred finite differences at 50 hPa intervals for ERA-Interim and 303 

JRA-55, and from neighbouring pressure levels in NCEP/NCAR (due to the spacing of 304 

available pressure-level data). 305 
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The annual-mean regional-maximum vertical shear was calculated by a similar centred-306 

difference method: we first subtracted the 300 hPa zonal wind from the 200 hPa zonal wind 307 

and then found the maximum value within the North Atlantic region at each six-hourly 308 

interval, before averaging the maximum values annually. For the annual-mean regional-309 

maximum zonal wind speed, we found the maximum 250 hPa zonal wind speed within the 310 

North Atlantic region at each six-hourly interval, before averaging annually. In both cases, 311 

the latitude at which the maximum occurred was stored.  312 

When the calculations in Figure 3 are repeated using the annual-mean regional-maximum 313 

vertical shear, instead of the annual-mean regional-mean vertical shear, a significant 314 

ensemble-mean increase of 11% (p < 0.01) in the shear is found. The individual increases are 315 

10% in ERA-Interim (p < 0.01), 18% in NCEP/NCAR (p < 0.01), and 7% in JRA-55 316 

(p < 0.01) (Extended Data Figure 2). These results confirm that the shear is strengthening 317 

within the jet core as well as throughout the broader region influenced by the jet stream. The 318 

trends are not attributable to a shift in the annual-mean latitude of the jet core, which shows 319 

no significant trend over the period (Extended Data Figure 3). 320 

We used the time derivative of the thermal wind balance equation to relate linear trends in the 321 

meridional temperature gradient to linear trends in the vertical wind shear. At 250 hPa, we 322 

calculated trends in the annual-mean values of ߲݌߲/ݑ (using the centred finite difference 323 

method outlined above) and ߲ܶ/߲ݕ. The agreement between the two was assessed through 324 

Pearson’s correlation coefficient using an area-weighted pattern correlation.  325 

According to thermal wind balance, the trend in the zonal wind speed in the upper 326 

troposphere and lower stratosphere is given by the vertical integral of equation (2). This 327 

vertical integral is performed throughout the depth of the free troposphere, starting from the 328 

top of the planetary boundary layer. Temperature gradients in the lower troposphere are 329 
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included in the integral, and therefore Arctic amplification at low levels is able to influence 330 

the wind speed at upper levels. For example, written in equation form, we have: 331 

ݐ߲(hPa	250)ݑ߲ = න ݌݂ܴ ݐ߲߲ ൬߲߲ܶݕ൰ hPa	ସହ଴݌݀	

௣బ + න ݌݂ܴ ݐ߲߲ ൬߲߲ܶݕ൰ hPa	ଶହ଴݌݀	

ସହ଴	hPa
≈ 0	, (4) 

where ݌଴ is the pressure at the top of the planetary boundary layer. Here, the free troposphere 332 

has been divided into two layers at 450 hPa, by reference to Figure 2. The lower boundary 333 

term ߲ݑ(݌଴)/߲ݐ arising from the vertical integration has been neglected in equation (4), 334 

because the trend in zonal wind speed in the lower troposphere is not significantly different 335 

from zero in any of the reanalysis datasets, as shown in Extended Data Figure 1 (d, e, f). 336 

Our study shows that, on the right-hand side of equation (4), the first integral (which includes 337 

the weakening low-level temperature gradient from Arctic amplification) and the second 338 

integral (which includes the strengthening upper-level temperature gradient) are essentially 339 

equal and opposite when averaged over the North Atlantic region, thus largely cancelling out 340 

and leaving no significant trend in the upper-level speed. 341 

Data availability statement 342 

The NCEP/NCAR reanalysis data may be obtained from the National Oceanic and 343 

Atmospheric Administration (NOAA) Oceanic and Atmospheric Research (OAR) Earth 344 

System Research Laboratory (ESRL) Physical Sciences Division (PSD), Boulder, Colorado, 345 

USA (https://www.esrl.noaa.gov/psd/). The ERA-Interim and JRA-55 reanalysis data may be 346 

obtained from the Research Data Archive at the National Center for Atmospheric Research 347 

(NCAR), Computational and Information Systems Laboratory, Boulder, Colorado, USA 348 

(https://doi.org/10.5065/D6CR5RD9 and https://doi.org/10.5065/D6HH6H41, respectively).  349 

Code availability statement 350 
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The analytical computer codes are publicly available at 351 

http://doi.org/10.5281/zenodo.3238842. 352 

Extended Data Figure 1: Vertical profiles of annual-mean trends in wind characteristics 353 

in the North Atlantic over the period 1979–2017. Panels (a, b, c) show trends in the 354 

vertical shear in the zonal wind, and panels (d, e, f) show trends in the zonal wind speed. 355 

Linear trends are calculated from the (a, d) ERA-Interim, (b, e) NCEP/NCAR, and (c, f) JRA-356 

55 reanalysis datasets. Red and blue shading represents positive and negative trends, 357 

respectively. Error bars represent the 95% confidence intervals in the slope of the ordinary 358 

least-squares regression (n = 39). 359 

Extended Data Figure 2: Annual-mean regional-maximum six-hourly vertical shear in 360 

zonal wind in the North Atlantic at 250 hPa over the period 1979–2017. Data are 361 

presented from the ERA-Interim, NCEP/NCAR, and JRA-55 reanalysis datasets. Also shown 362 

are the mean of the three reanalysis datasets and the linear trend in the mean. 363 

Extended Data Figure 3: Annual-mean latitude of the core of the polar jet stream in the 364 

North Atlantic at 250 hPa over the period 1979–2017. Panel (a) shows the annual-mean 365 

latitude of the regional-maximum six-hourly vertical shear in zonal wind, and panel (b) 366 

shows the annual-mean latitude of the regional-maximum six-hourly zonal wind speed. Data 367 

are presented from the ERA-Interim, NCEP/NCAR, and JRA-55 reanalysis datasets. Also 368 

shown are the mean of the three reanalysis datasets and the linear trend in the mean, which 369 

has a statistically insignificant slope of (a) –0.1 degrees decade-1 (p = 0.54) and (b) 370 

0.01 degrees decade-1 (p = 0.76). 371 
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