
Cython: The best of both worlds
Stefan Behnel, Senacor Technologies AG Germany

Robert Bradshaw, Google USA
Craig Citro, Google USA

Lisandro Dalcin, National University of the Littoral Argentina
Dag Sverre Seljebotn, University of Oslo Norway
Kurt Smith, University of Wisconsin-Madison USA

This article is published in IEEE Computing in Science and Engineering. Please refer to
the published version if accessible, as it contains editor’s improvements. (c) 2011 IEEE.∗
Permalink: http://dx.doi.org/10.1109/MCSE.2010.118

Abstract

Cython is an extension to the Python language
that allows explicit type declarations and is com-
piled directly to C. This addresses Python’s large
overhead for numerical loops and the difficulty of
efficiently making use of existing C and Fortran
code, which Cython code can interact with na-
tively. The Cython language combines the speed
of C with the power and simplicity of the Python
language.

Introduction

Python’s success as a platform for scientific com-
puting to date is primarily due to two factors.
First, Python tends to be readable and concise,
leading to a rapid development cycle. Second,
Python provides access to its internals from C via
the Python/C API. This makes it possible to in-
terface with existing C, C++, and Fortran code,
as well as write critical sections in C when speed
is essential.

Though Python is plenty fast for many tasks, low-
level computational code written in Python tends
to be slow, largely due to the extremely dynamic
nature of the Python language itself. In particu-
lar, low-level computational loops are simply in-
feasible. Although NumPy [NumPy] eliminates

∗Personal use of this material is permitted. Permission
from IEEE must be obtained for all other users, includ-
ing reprinting/ republishing this material for advertising
or promotional purposes, creating new collective works for
resale or redistribution to servers or lists, or reuse of any
copyrighted components of this work in other works.

the need for many such loops, there are always
going to be computations that can only be ex-
pressed well through looping constructs. Cython
aim to be a good companion to NumPy for such
cases.

Given the magnitude of existing, well-tested code
in Fortran and C, rewriting any of this code in
Python would be a waste of our valuable re-
sources. A big part of the role of Python in sci-
ence is its ability to couple together existing com-
ponents instead of reinventing the wheel. For in-
stance, the Python-specific SciPy library contains
over 200 000 lines of C++, 60 000 lines of C, and
75 000 lines of Fortran, compared to about 70 000
lines of Python code. Wrapping of existing code
for use from Python has traditionally been the
domain of the Python experts, as the Python/C
API has a high learning curve. While one can use
such wrappers without ever knowing about their
internals, they draw a sharp line between users
(using Python) and developers (using C with the
Python/C API).

Cython solves both of these problems, by com-
piling Python code (with some extensions) di-
rectly to C, which is then compiled and linked
against Python, ready to use from the interpreter.
Through its use of C types, Cython makes it
possible to embed numerical loops, running at
C speed, directly in Python code. Cython also
significantly lowers the learning curve for calling
C, C++ and Fortran code from Python. Using
Cython, any programmer with knowledge of both
Python and C/C++/Fortran can easily use them
together.

1

http://dx.doi.org/10.1109/MCSE.2010.118

In this paper, we present an overview of the
Cython language and the Cython compiler in
several examples. We give guidelines on where
Cython can be expected to provide signifi-
cantly higher performance than pure Python and
NumPy code, and where NumPy is a good choice
in its own right. We further show how the Cython
compiler speeds up Python code, and how it can
be used to interact directly with C code. We also
cover Fwrap, a close relative of Cython. Fwrap
is used for automatically creating fast wrappers
around Fortran code to make it callable from C,
Cython, and Python.

Cython is based on Pyrex [Pyrex] by Greg Ew-
ing. It’s been one of the more friendly “forks” in
open source, and we are thankful for Greg’s co-
operation. The two projects have somewhat dif-
ferent goals. Pyrex aims to be a “smooth blend
of Python and C”, while Cython focuses more
on preserving Python semantics where it can.
Cython also contains some features for numeri-
cal computation that are not found in Pyrex (in
particular fast NumPy array access). While there
is a subset of syntax that will work both in Pyrex
and Cython, the languages are diverging and one
will in general have to choose one or the other.
For instance, the syntax for calling C++ code is
different in Pyrex and Cython, since this feature
was added long after the fork.

There are other projects that make possible the
inclusion of compiled code in Python (e.g. Weave
and Instant). A comparison of several such tools
can be found in [comparison]. Another often used
approach is to implement the core algorithm in
C, C++ or Fortran and then create wrappers
for Python. Such wrappers can be created with
Cython or with more specialized tools such as
SWIG, ctypes, Boost.Python or F2PY. Each tool
has its own flavor. SWIG is able to automatically
wrap C or C++ code while Cython and ctypes
require redeclaration of the functions to wrap.
SWIG and Cython require a compilation stage
which ctypes does not. On the other hand, if one
gets a declaration wrong using ctypes it can result
in unpredictable program crashes without prior
warning. With Boost.Python one implements a
Python module in C++ which – depending on
who you ask – is either a great feature or a great
disadvantage.

Finally, numexpr1 and Theano2 are specialized
tools for quickly evaluating numerical expressions
(see below).

To summarize, Cython could be described as a
swiss army knife: It lacks the targeted function-
ality of more specialized tools, but its generality
and versatility allow its application in almost any
situation that requires going beyond pure Python
code.

Cython at a glance

Cython is a programming language based on
Python, that is translated into C/C++ code, and
finally compiled into binary extension modules
that can be loaded into a regular Python ses-
sion. Cython extends the Python language with
explicit type declarations of native C types. One
can annotate attributes and function calls to be
resolved at compile-time (as opposed to runtime).
With the extra information from the annotations,
Cython is able to generate code that sidesteps
most of the usual runtime costs.

The generated code can take advantage of all the
optimizations the C/C++ compiler is aware of
without having to re-implement them as part of
Cython. Cython integrates the C language and
the Python runtime through automatic conver-
sions between Python types and C types, allowing
the programmer to switch between the two with-
out having to do anything by hand. The same
applies when calling into external libraries writ-
ten in C, C++ or Fortran. Accessing them is a
native operation in Cython code, so calling back
and forth between Python code, Cython code and
native library code is trivial.

Of course, if we’re manually annotating every
variable, attribute, and return type with type in-
formation, we might as well be writing C/C++
directly. Here is where Cython’s approach of ex-
tending the Python language really shines. Any-
thing that Cython can’t determine statically is
compiled with the usual Python semantics, mean-
ing that you can selectively speed up only those
parts of your program that expose significant ex-
ecution times. The key thing to keep in mind in
this context is the Pareto Principle, also known

1http://code.google.com/p/numexpr/
2http://deeplearning.net/software/theano/

2 IEEE Computing in science and Engineering

http://code.google.com/p/numexpr/
http://deeplearning.net/software/theano/

as the 80/20 rule: 80% of the runtime is spent in
20% of the source code. This means that a little
bit of annotation in the right spot can go a long
way.

This leads to an extremely productive workflow in
Cython: users can simply develop with Python,
and if they find that a significant amount of time
is being spent paying Python overheads, they can
compile parts or all of their project with Cython,
possibly providing some annotations to speed up
the critical parts of the code. For code that
spends almost all of its execution time in libraries
doing things like FFTs, matrix multiplication, or
linear system solving, Cython fills the same rapid
development role as Python. However, as you ex-
tend the code with new functionality and algo-
rithms, you can do this directly in Cython – and
just by providing a little extra type information,
you can get all the speed of C without all the
headaches.

A simple example

As an introductory example, consider naive nu-
merical integration of the Gamma function. A
fast C implementation of the Gamma function is
available e.g. in the GNU Scientific Library, and
can easily be made available to Cython through
some C declarations in Cython code (double
refers to the double precision floating point type
in C):

cdef extern from "gsl/gsl_sf.h":
double gsl_sf_gamma(double x)
double GSL_SF_GAMMA_XMAX

One can then write a Cython function, callable
from Python, to approximate the definite integral:

def integrate_gamma(double a, double b,
int n=10000):

if (min(a, b) <= 0 or
max(a, b) >= GSL_SF_GAMMA_XMAX):
raise ValueError(’Limits out ’

’of range (0, \%f)’ %
GSL_SF_GAMMA_XMAX)

cdef int i
cdef double dx = (b - a) / n, result = 0
for i in range(n):

result += gsl_sf_gamma(a + i * dx) * dx
return result

This is pure Python code except that C types

(int, double) are statically declared for some
variables, using Cython-specific syntax. The cdef
keyword is a Cython extension to the language, as
is prepending the type in the argument list. In ef-
fect, Cython provides a mixture of C and Python
programming. The above code is 30 times faster
than the corresponding Python loop, and much
more memory efficient (although not any faster)
than the corresponding NumPy expression:

import numpy as np
y = scipy.special.gamma(

np.linspace(a, b, n, endpoint=False))
y *= ((b - a) / n)
result = np.sum(y)

Cython especially shines in more complicated ex-
amples where for loops are the most natural or
only viable solution. Examples are given below.

Writing fast high-level code

Python is a very high-level programming lan-
guage, and constrains itself to a comparatively
small set of language constructs that are both
simple and powerful. To map them to efficient C
code, the Cython compiler applies tightly tailored
and optimized implementations for different use
patterns. It therefore becomes possible to write
simple code that executes very efficiently.

Given how much time most programs spend in
loops, an important target for optimizations is the
for loop in Python, which is really a for-each loop
that can run over any iterable object. For exam-
ple, the following code iterates over the lines of a
file:

f = open(’a_file.txt’)
for line in f:

handle(line)
f.close()

The Python language avoids special cases where
possible, so there is no special syntax for a plain
integer for loop. However, there is a common
idiom for it, e.g. for an integer loop from 0 to
999:

for i in range(1000):
do_something(i)

The Cython compiler recognizes this pattern and
transforms it into an efficient for loop in C, if the

3

value range and the type of the loop variable al-
low it. Similarly, when iterating over a sequence,
it is sometimes required to know the current in-
dex inside of the loop body. Python has a spe-
cial function for this, called enumerate(), which
wraps the iterable in a counter:

f = open(’a_file.txt’)
for line_no, line in enumerate(f):

prepend line number to line
print("%d: %s" % (line_no, line))

Cython knows this pattern, too, and reduces the
wrapping of the iterable to a simple counter vari-
able, so that the loop can run over the iterable
itself, with no additional overhead. Cython’s for
loop has optimizations for the most important
built-in Python container and string types and it
can even iterate directly over low-level types, such
as C arrays of a known size or sliced pointers:

cdef char* c_string = \
get_pointer_to_chars(10)

cdef char char_val

check if chars at offsets 3..9 are
any of ’abcABC’
for char_val in c_string[3:10]:

print(char_val in b’abcABC’)

Another example where high-level language id-
ioms lead to specialized low-level code is cascaded
if statements. Many languages provide a special
switch statement for testing integer(-like) values
against a set of different cases. A common Python
idiom uses the normal if statement:

if int_value == 1:
func_A()

elif int_value in (2,3,7):
func_B()

else:
func_C()

This reads well, without needing a special syntax.
However, C compilers often fold switch state-
ments into more efficient code than sequential or
nested if-else statements. If Cython knows that
the type of the int value variable is compatible
with a C integer (e.g. an enum value), it can ex-
tract an equivalent switch statement directly from
the above code.

Several of these patterns have been implemented
in the Cython compiler, and new optimizations

are easy to add. It therefore becomes reasonable
for code writers to stick to the simple and read-
able idioms of the Python language, to rely on the
compiler to transform them into well specialized
and fast C language constructs, and to only take
a closer look at the code sections, if any, that still
prove to be performance critical in benchmarks.

Apart from its powerful control flow constructs,
a high-level language feature that makes Python
so productive is its support for object oriented
programming. True to the rest of the language,
Python classes are very dynamic – methods and
attributes can be added, inspected, and modi-
fied at runtime, and new types can be dynami-
cally created on the fly. Of course this flexibil-
ity comes with a performance cost. Cython al-
lows one to statically compile classes into C-level
struct layouts (with virtual function tables) in
such a way that they integrate seamlessly into the
Python class hierarchy without any of the Python
overhead. Though much scientific data fits nicely
into arrays, sometimes it does not, and Cython’s
support for compiled classes allows one to effi-
ciently create and manipulate more complicated
data structures like trees, graphs, maps, and other
heterogeneous, hierarchal objects.

Some typical usecases

Cython has been successfully used in a wide va-
riety of situations, from the half a million lines of
Cython code in Sage (http://www.sagemath.org),
to providing Python-friendly wrappers to C li-
braries, to small personal projects. Here are some
example usecases demonstrating where Cython
has proved valuable.

Sparse matrices

SciPy and other libraries provide the basic high-
level operations for working with sparse matri-
ces. However, constructing sparse matrices often
follows complicated rules for which elements are
nonzero. Such code can seldomly be expressed
in terms of NumPy expressions – the most naive
method would need temporary arrays of the same
size as the corresponding dense matrix, thus de-
feating the purpose!

Cython is ideal for this, as we can easily and

4 IEEE Computing in science and Engineering

http://www.sagemath.org

quickly populate sparse matrices element by el-
ement:

import numpy as np
cimport numpy as np
...
cdef np.ndarray[np.intc_t] rows, cols
cdef np.ndarray[double] values
rows = np.zeros(nnz, dtype=np.intc)
cols = np.zeros(nnz, dtype=np.intc)
values = np.zeros(nnz, dtype=np.double)
cdef int idx = 0
for idx in range(0, nnz):

Compute next non-zero matrix element
...
rows[idx] = row; cols[idx] = col
values[idx] = value

Finally, we construct a regular
SciPy sparse matrix:
return scipy.sparse.coo_matrix(

(values, (rows, cols)), shape=(N,N))

Data transformation and reduction

Consider computing a simple expression for a
large number of different input values, e.g.:

v = np.sqrt(x**2 + y**2 + z**2)

where the variables are arrays for three vectors
x, y and z. This is a case where, in most cases,
one does not need to use Cython – it is easily
expressed by pure NumPy operations that are al-
ready optimized and usually fast enough.

The exceptions are for either extremely small or
large amounts of data. For small data sets that
are evaluated many, many times, the Python over-
head of the NumPy expression will dominate,
and making a loop in Cython removes this over-
head. For large amounts of data, NumPy has two
problems: it requires large amounts of temporary
memory, and it repeatedly moves temporary re-
sults over the memory bus. In most scientific set-
tings the memory bus can easily become the main
bottleneck, not the CPU (for a detailed explana-
tion see [Alted]). In the example above, NumPy
will first square x in a temporary buffer, then
square y in another temporary buffer, then add
them together using a third temporary buffer, and
so on.

In Cython, it is possible to manually write a loop
running at native speed:

cimport libc
...
cdef np.ndarray[double] x, y, z, v
x = ...; y = ...; z = ...
v = np.zeros_like(x)
...
for i in range(x.shape[0]):

v[i] = libc.sqrt(
x[i]**2 + y[i]**2 + z[i]**2)

which avoids these problems, as no temporary
buffers are required. The speedup is on the or-
der of a factor of ten for large arrays.

If one is doing a lot of such transformations, one
should also evaluate numexpr and Theano which
are dedicated to the task. Theano is able to refor-
mulate the expression for optimal numerical sta-
bility, and is able to compute the expression on a
highly parallel GPU.

Optimization and equation solving

In the case of numerical optimization or equa-
tion solving, the algorithm in question must be
handed a function (a “callback”) which evaluates
the function. The algorithm then relies on mak-
ing new steps depending on previously computed
function values, and the process is thus inherently
sequential. Depending on the nature and size of
the problem, different levels of optimization can
be employed.

For medium-sized to large problems, the standard
scientific Python routines integrate well with with
Cython. One simply declares types within the
callback function, and hands the callback to the
solver just like one would with a pure Python
function. Given the frequency with which this
function may be called, the act of typing the
variables in the callback function, combined with
the reduced call overhead of Cython implemented
Python functions, can have a noticeable impact
on performance. How much depends heavily on
the problem in question; as a rough indicator, we
have noted a 40 times speedup when using this
method on a particular ordinary differential equa-
tion in 12 variables.

For computationally simple problems in only a
few variables, evaluating the function can be such
a quick operation that the overhead of the Python
function call for each step becomes relevant. In

Optimization and equation solving 5

these cases, one might want to explore calling ex-
isting C or Fortran code directly from Cython.
Some libraries have ready-made Cython wrappers
– for instance, Sage has Cython wrappers around
the ordinary differential equation solvers in the
GNU Scientific Library. In some cases, one might
opt for implementing the algorithm directly in
Cython, to avoid any callback whatsoever – using
Newton’s method on equations of a single variable
comes to mind.

Non-rectangular arrays and data repacking

Sometimes data does not fit naturally in rectangu-
lar arrays, and Cython is especially well-suited to
this situation. One such example arises in cosmol-
ogy. Satellite experiments such as the Wilkinson
Microwave Anisotropy Probe have produced high-
resolution images of the Cosmic Microwave Back-
ground, a primary source of information about the
early universe. The resulting images are spheri-
cal, as they contain values for all directions on the
sky.

The spherical harmonic transform of these maps,
a “fourier transform on the sphere”, is especially
important. It has complex coefficients a`m where
the indices run over 0 ≤ ` ≤ `max, −` ≤ m ≤ `.
An average of the entire map is stored in a0,0,
followed by three elements to describe the dipole
component, a1,−1, a1,0, a1,1, and so on. Data like
this can be stored in a one-dimensional array and
elements looked up at position `2 + ` + m.

It is possible, but not trivial, to operate on such
data using NumPy whole-array operations. The
problem is that NumPy functions, such as find-
ing the variance, are primarily geared towards
rectangular arrays. If the data was rectangular,
one could estimate the variance per `, averaging
over m, by calling np.var(data, axis=1). This
doesn’t work for non-rectangular data. While
there are workarounds, such as the reduceat
method and masked arrays, we have found it
much more straightforward to write the obvious
loops over ` and m using Cython. For compar-
ison, with Python and NumPy one could loop
over ` and call repeatedly call np.var for sub-
slices of the data, which was 27 times slower in
our case (`max = 1500). Using a naive double
loop over both ` and m was more than a 1000
times slower in Python than in Cython. (Inciden-

tally, the variance per `, or power spectrum, is
the primary quantity of interest to observational
cosmologists.)

The spherical harmonic transform mentioned
above is computed using the Fortran library
HEALPix3, which can readily be called from
Cython with the help of Fwrap. However,
HEALPix spits out the result as a 2D array, with
roughly half of the elements unoccupied. The
waste of storage aside, 2D arrays are often incon-
venient – with 1D arrays one can treat each set of
coefficients as a vector, and perform linear alge-
bra, estimate covariance matrices and so on, the
usual way. Again, it is possible to quickly reorder
the data the way we want it with a Cython loop.
With all the existing code out there wanting data
in slightly different order and formats, for loops
are not about to disappear.

Fwrap

Whereas C and C++ integrate closely with
Cython, Fortran wrappers in Cython are gener-
ated with Fwrap, a separate utility that is dis-
tributed separately from Cython. Fwrap [fwrap]
is a tool that automates wrapping Fortran source
in C, Cython and Python, allowing Fortran code
to benefit from the dynamism and flexibility of
Python. Fwrapped code can be seamlessly inte-
grated into a C, Cython or Python project. The
utility transparently supports most of the features
introduced in Fortran 90/95/2003, and will han-
dle nearly all Fortran 77 source as well. Fwrap
does not currently support derived types or func-
tion callbacks, but support for these features is
scheduled in an upcoming release.

Thanks to the C interoperability features supplied
in the Fortran 2003 standard – and supported in
recent versions of all widely-used Fortran 90/95
compilers – Fwrap generates wrappers that are
portable across platforms and compilers. Fwrap is
intended to be as friendly as possible, and handles
the Fortran parsing and generation automatically.
It also generates a build script for the project that
will portably build a Python extension module
from the wrapper files.

Fwrap is similar in intent to other Fortran-Python
3 Hierarchical Equal Area isoLatitude Pixelization,

Górski et al, http://healpix.jpl.nasa.gov/

6 IEEE Computing in science and Engineering

http://healpix.jpl.nasa.gov/

tools such as F2PY, PyFort and Forthon. F2PY is
distributed with NumPy and is a capable tool for
wrapping Fortran 77 codes. Fwrap’s approach dif-
fers in that it leverages Cython to create Python
bindings. Manual tuning of the wrapper can be
easily accomplished by simply modifying the gen-
erated Cython code, rather than using a restricted
domain-specific language. Another benefit is re-
duced overhead when calling Fortran code from
Cython.

Consider a real world example: wrapping a sub-
routine from netlib’s LAPACK Fortran 90 source.
We will use the Fortran 90 subroutine interface
for dgesdd, used to compute the singular value de-
composition arrays U, S, and VT of a real array A,
such that A = U * DIAG(S) * VT. This routine
is typical of Fortran 90 source code – it has scalar
and array arguments with different intents and
different datatypes. We have augmented the ar-
gument declarations with INTENT attributes and
removed extraneous work array arguments for il-
lustration purposes:

SUBROUTINE DGESDD(JOBZ, M, N, A, LDA, S, &
& U, LDU, VT, LDVT, INFO)
! .. Scalar Arguments ..

CHARACTER, INTENT(IN) :: JOBZ
INTEGER, INTENT(OUT) :: INFO
INTEGER, INTENT(IN) :: LDA, LDU, LDVT &

& M, N
! .. Array Arguments ..

DOUBLE PRECISION, INTENT(INOUT) :: &
& A(LDA, *)

DOUBLE PRECISION, INTENT(OUT) :: &
& S(*), U(LDU, *), VT(LDVT, *)
! DGESDD subroutine body

END SUBROUTINE DGESDD

When invoked on the above Fortran code, Fwrap
parses the code and makes it available to C,
Cython and Python. If desired, we can generate
a deployable package for use on computers
that don’t have Fwrap or Cython installed.
To use the wrapped code from Python, we
must first set up the subroutine arguments—in
particular, the a array argument. To do this,
we set the array dimensions and then create the
array, filling it with random values. To simplify
matters, we set all array dimensions equal to m:

>>> import numpy as np
>>> from numpy.random import rand
>>> m = 10
>>> rand_array = rand(m, m)
>>> a = np.asfortranarray(rand_array,
... dtype=np.double)

The asfortranarray() function is important –
this ensures that the array a is laid out in column-
major ordering, also known as “fortran ordering.”
This ensures that no copying is required when
passing arrays to Fortran subroutines.

Any subroutine argument that is an INTENT(OUT)
array needs to be passed to the subroutine. The
subroutine will modify the array in place; no
copies are made for arrays of numeric types. This
is not required for scalar INTENT(OUT) arguments,
such as the INFO argument. This is how one would
create three empty arrays of appropriate dimen-
sions:

>>> s = np.empty(m, dtype=np.double,
... order=’F’)
>>> u = np.empty((m, m), dtype=np.double,
... order=’F’)
>>> vt = np.empty((m, m), dtype=np.double,
... order=’F’)

The order=’F’ keyword argument serves the
same purpose as the asfortranarray() function.

The extension module is named fw dgesdd.so
(the file extension is platform-dependent). We
import dgesdd from it and call it from Python:

>>> from fw_dgesdd import dgesdd
specify that we want all the output vectors

>>> jobz = ’A’
>>> (a, s, u, vt, info) = dgesdd(
... jobz, m, n, a, m, s, u, m, vt, m)

The return value is a tuple that contains all ar-
guments that were declared intent out, inout
or with no intent spec. The a argument (intent
inout) is in both the argument list and the return
tuple, but no copy has been made.

We can verify that the result is correct:

>>> s_diag = np.diag(s)
>>> a_computed = np.dot(u,
... np.dot(s_diag, vt))
>>> np.allclose(a, a_computed)
True

7

Here we create a computed which is equivalent
to the matrix product u * s diag * vt, and we
verify that a and a computed are equal to within
machine precision.

When calling the routine from within Cython
code, the invocation is identical, and the argu-
ments can be typed to reduce function call over-
head. Again, please see the documentation for
details and examples.

Fwrap handles any kind of Fortran array declara-
tion, whether assumed-size (like the above exam-
ple), assumed-shape or explicit shape. Options
exist for hiding redundant arguments (like the ar-
ray dimensions LDA, LDU and LDVT above) and are
covered in Fwrap’s documentation.

This example covers just the basics of
what Fwrap can do. For more informa-
tion, downloads and help using Fwrap, see
http://fwrap.sourceforge.net/. You can
reach other users and the Fwrap devel-
opers on the the fwrap-users mailing list,
http://groups.google.com/group/fwrap-users.

Limitations

When compared to writing code in pure Python,
Cython’s primary disadvantages are compilation
time and the need to have a separate build phase.
Most projects using Cython are therefore writ-
ten in a mix of Python and Cython, as Cython
sources don’t need to be recompiled when Python
sources change. Cython can still be used to com-
pile some of the Python modules for performance
reasons. There is also an experimental “pure”
mode where decorators are used to indicate static
type declarations, which are valid Python and ig-
nored by the interpreter at runtime, but are used
by Cython when compiled. This combines the
advantage of a fast edit-run cycle with a high
runtime performance of the final product. There
is also the question of code distribution. Many
projects, rather than requiring Cython as a de-
pendency, ship the generated .c files which com-
pile against Python 2.3 to 3.2 without any modi-
fications as part of the distutils setup phase.

Compared to compiled languages such as Fortran
and C, Cython’s primary limitation is the limited
support for shared memory parallelism. Python

is inherently limited in its multithreading capa-
bilities, due to the use of a Global Interpreter
Lock (GIL). Cython code can declare sections as
only containing C code (using a nogil directive),
which are then able to run in parallel. How-
ever, this can quickly become tedious. Currently
there’s also no support for OpenMP programming
in Cython. On the other hand, message passing
parallelism using multiple processes, for instance
through MPI, is very well supported.

Compared to C++, a major weakness is the lack
of built-in template support, which aids in writ-
ing code that works efficiently with many differ-
ent data types. In Cython, one must either repeat
code for each data type, or use an external tem-
plating system, in the same way that is often done
for Fortran codes. Many template engines exists
for Python, and most of them should work well
for generating Cython code.

Using a language which can be either dynamic
or static takes some experience. Cython is clearly
useful when talking to external libraries, but when
is it worth it to replace normal Python code with
Cython code? The obvious factor to consider is
the purpose of the code – is it a single exper-
iment, for which the Cython compilation time
might overshadow the pure Python run time? Or
is it a core library function, where every ounce of
speed matters?

It is possible to paint some broad strokes when
it comes to the type of computation considered.
Is the bulk of time spent doing low-level number
crunching in your code, or is the heavy lifting done
through calls to external libraries? How easy is it
to express the computation in terms of NumPy
operations? For sequential algorithms such as
equation solving and statistical simulations it is
indeed impossible to do without a loop of some
kind. Pure Python loops can be very slow; but
the impact of this still varies depending on the
use case.

Further reading

If you think Cython might help you, then the next
stop is the Cython Tutorial [tutorial]. [numerics]
presents optimization strategies and benchmarks
for computations.

As always, the online documentation at

8 IEEE Computing in science and Engineering

http://fwrap.sourceforge.net/
http://groups.google.com/group/fwrap-users

http://docs.cython.org provides the most
up-to-date information. If you are ever stuck,
or just wondering if Cython will be able
to solve your particular problem, Cython
has an active and friendly mailing list at
http://groups.google.com/group/cython-users.

References
[Alted] F. Alted. Why modern CPUs are starv-

ing and what can be done about it. CiSE 12,
68, 2010.

[comparison] I. M. Wilbers, H. P. Lang-
tangen, A. Oedegaard, Using Cython to
Speed up Numerical Python Programs,
Proceedings of MekIT‘09, 2009. URL:
http://simula.no/research/sc/publications/
Simula.SC.578

[fwrap] K. W. Smith, D. S. Selje-
botn, Fwrap: Fortran wrappers
in C, Cython & Python. URL:
http://conference.scipy.org/abstract?id=19
Project homepage:
http://fwrap.sourceforge.net/

[numerics] D. S. Seljebotn, Fast numerical com-
putations with Cython, Proceedings of the 8th
Python in Science Conference, 2009. URL:
http://conference.scipy.org/proceedings/
SciPy2009/paper 2

[NumPy] S. van der Walt, S. C. Colbert, G.
Varoquaux, The NumPy array: a structure for
efficient numerical computation, CiSE, present
issue

[Pyrex] G. Ewing, Pyrex: A language for
writing Python extension modules. URL:
http://www.cosc.canterbury.ac.nz/greg.ewing
/python/Pyrex/

[Sage] William A. Stein et al. Sage Mathematics
Software, The Sage Development Team, 2010,
http://www.sagemath.org.

[Theano] J. Bergstra. Optimized Symbolic Ex-
pressions and GPU Metaprogramming with
Theano, Proceedings of the 9th Python in Sci-
ence Conference (SciPy2010), Austin, Texas,
June 2010.

[numexpr] D. Cooke, F. Alted, T.
Hochberg, G. Thalhammer, numexpr
http://code.google.com/p/numexpr/

[tutorial] S. Behnel, R. W. Bradshaw, D. S. Sel-
jebotn, Cython Tutorial, Proceedings of the
8th Python in Science Conference, 2009. URL:
http://conference.scipy.org/proceedings/
SciPy2009/paper 1

9

http://docs.cython.org
http://groups.google.com/group/cython-users
http://simula.no/research/sc/publications/Simula.SC.578
http://simula.no/research/sc/publications/Simula.SC.578
http://conference.scipy.org/abstract?id=19
http://fwrap.sourceforge.net/
http://conference.scipy.org/proceedings/SciPy2009/paper_2
http://conference.scipy.org/proceedings/SciPy2009/paper_2
http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/
http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/
http://www.sagemath.org
http://code.google.com/p/numexpr/
http://conference.scipy.org/proceedings/SciPy2009/paper_1
http://conference.scipy.org/proceedings/SciPy2009/paper_1

	Abstract
	Introduction
	Cython at a glance
	A simple example
	Writing fast high-level code
	Some typical usecases
	Sparse matrices
	Data transformation and reduction
	Optimization and equation solving
	Non-rectangular arrays and data repacking

	Fwrap
	Limitations
	Further reading
	References

