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Abstract

This study systematically evaluated linear predictive models between vegetation indices (VI) derived from radiometrically corrected

airborne imaging spectrometer (HyMap) data and field measurements of biophysical forest stand variables (n=40). Ratio-based and soil-line-

related broadband VI were calculated after HyMap reflectance had been spectrally resampled to Landsat TM channels. Hyperspectral VI

involved all possible types of two-band combinations of ratio VI (RVI) and perpendicular VI (PVI) and the red edge inflection point (REIP)

computed from two techniques, inverted Gaussian Model and Lagrange Interpolation. Cross-validation procedure was used to assess the

prediction power of the regression models. Analyses were performed on the entire data set or on subsets stratified according to stand age. A

PVI based on wavebands at 1088 nm and 1148 nm was linearly related to leaf area index (LAI) (R2=0.67, RMSE=0.69 m2 m�2 (21% of the

mean); after removal of one forest stand subjected to clearing measures: R2=0.77, RMSE=0.54 m2 m�2 (17% of the mean). A PVI based on

wavebands at 885 nm and 948 nm was linearly related to the crown volume (VOL) (R2=0.79, RMSE=0.52). VOL was derived from

measured biophysical variables through factor analysis (varimax rotation). The study demonstrates that for hyperspectral image data, linear

regression models can be applied to quantify LAI and VOL with good accuracy. For broadband multispectral data, the accuracy was

generally lower. It can be stated that the hyperspectral data set contains more information relevant to the estimation of the forest stand

variables LAI and VOL than multispectral data. When the pooled data set was analysed, soil-line-related VI performed better than ratio-based

VI. When age classes were analysed separately, hyperspectral VI performed considerably better than broadband VI. Best hyperspectral VI in

relation with LAI were typically based on wavebands related to prominent water absorption features. Such VI are related to the total amount

of canopy water; as the leaf water content is considered to be relatively constant in the study area, variations of LAI are retrieved.
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1. Introduction

Most of the forests located in the midlatitudes of the

Northern Hemisphere act as a carbon sink, however, with

considerable spatial and temporal variations and uncertain-

ties (Canadell et al., 2000; Schimel et al., 2000; Valentini et

al., 2000). Quantifying the strength of the carbon sink for

present or future times can be achieved through ecosystem

simulation models together with remotely sensed estimates

of biophysical variables, such as leaf area index (LAI)

(Wicks & Curran, 2003). As such, there is a considerable

interest in developing algorithms for the estimation of LAI

from remotely sensed vegetation reflectance (Tian et al.,

2002).

Forests are generally challenging targets as a conse-

quence of architectural heterogeneity, clumping of optically

active surfaces at multiple scales and spatial–temporal

foliage dynamics. Remote sensing of forest biophysical

variables such as LAI is further complicated by the

contribution of understory vegetation, litter, soil, bark as
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well as plant and relief shadow, all of which influence the

radiometric signal (Chen et al., 1999; Soudani et al., 2002;

Spanner et al., 1990a).

A lot of research has been done on the estimation of

forest LAI from remote sensing data within about the last 15

years. A selection of literature results is presented in Table 1.

Most of these studies were carried out in western coniferous

forests with large LAI gradients (Running et al., 1986;

Spanner et al., 1990b; White et al., 1997). In coniferous

forest plantations, the ranges in LAI are usually lower and

relationships between LAI and vegetation indices (VI) may

be disturbed as other biophysical stand characteristics (such

as stem density, canopy closure, tree height, etc.) influence

the reflectance signal (Danson & Curran, 1993; Treitz &

Howarth, 1999).

Most of the studies on forests used one or two ratio-based

VI, such as the simple ratio (SR) or the normalised

difference vegetation index (NDVI), computed from broad-

band remote sensing data (Curran et al., 1992; Herwitz et

al., 1990; Peterson et al., 1987; Spanner et al., 1990a,b). A

systematic investigation on the performance of various

broadband multispectral and narrow band hyperspectral

vegetation indices has been done on agricultural crops

(Boegh et al., 2002; Broge & Mortensen, 2002) and very

recently, also in forests. For instance, Gong et al. (2003)

estimated forest LAI using vegetation indices derived from

Hyperion hyperspectral data. Lee et al. (2004) performed a

comparative analysis of hyperspectral versus multispectral

data for estimating LAI in four different biomes. Using

canonical correlation analysis, the authors found that

individual, narrow bands of AVIRIS data yielded better

relationships with LAI than broadband data for grassland

and forest biomes. Given the few studies undertaken, it is

still not sufficiently investigated whether the high spectral

resolution data offer advantages over broadband data. It was

shown that the spectral bandwidth of the red and near

infrared (nIR) bands commonly used to form the VI had a

considerable influence on their specific values (Teillet et al.,

1997). Therefore, it seems to be interesting to compare

narrow band hyperspectral with broadband multispectral VI.

The overall aim of the work was to evaluate the

information content of hyperspectral remote sensing data

for the estimation of forest stand variables in comparison

with broadband data. More specifically, the objectives were

(i) to identify useful stand variables out of the measured

ones or generate new stand variables that could be correlated

Table 1

A selection of literature results on the estimation of forest biophysical variables

Sensor VI/Method Variable Range N Relation Reference

ATM RVI/BRA LAI (various conifers) 1–16 18 R2=0.82 (Running et al., 1986;

Peterson et al., 1987)

TM qRed, qnIR /BRA LAI (aspen) 0.5–3.5 29 No relation (Badhwar et al., 1986)

AVHRR NDVI/BRA LAI (various conifers) 1–13 19 R2=0.70–0.79 (Spanner et al., 1990a)

TM NDVI/BRA LAI (various conifers) 1–16 73 r=0.60 (Spanner et al., 1990b)

TM RVI/BRA LAI (pine) 4–7 15 No relation (Herwitz et al., 1990)

TM NDVI/BRA LAI (pine) 2–10 16 R2=0.35–0.86,

RMSE=0.74

(Curran et al., 1992)

CASI NDVI/MLR LAI (various conifers) 1–12 30 R2N0.80, RMSEb1.0 (Gong et al., 1995)

Helicopter-

borne data

REIP/BRA LAI (spruce) 5–11 14 r=0.91 (Danson & Plummer, 1995)

LAI

TM NDVI/BRA Crown closure

(various conifers)

0.5–3.5 22 R2=0.38–0.66 Chen & Cihlar, 1996

RVI /BRA 0.05–0.85 R2=0.26–0.63

TM RVI/MLR LAI (various conifers) 1.0–4.5 10 R2=0.71 (Fassnacht et al., 1997)

NDVI/MLR R2=0.91

TM RVI, NDVI /BRA LAI (various vegetation types) 2–15 39 R2=0.65–0.90 (White et al., 1997)

TM NDVI/BRA LAI (various forest types) Not

specified

17 R2=0.15 (all species) (Franklin et al., 1997)

R2=0.93 (conifers)

TM CRM inversion LAI (various vegetation types) 0–7 Not

specified

LAI pattern in good

accordance to the

land use map

(Kuusk, 1998)

TM RSR/BRA LAI (pine, spruce) 0.5–6.0 35 R2=0.55–0.70 (Brown et al., 2000)

AVHRR NDVI/BRA LAI (pine, aspen, spruce) 2.0–4.0 10 R2=0.46 (Boyd et al., 2000)

VI3/BRA R2=0.76

CASI REIP/BRA LAI (spruce, pine) 3–12 16 r=0.94 (Lucas et al., 2000)

CASI CRM inversion LAI (various conifers) 1.0–3.0 20 R2=0.51–0.86 (Hu et al., 2000)

CASI CRM inversion LAI (pine) 1.0–3.0 20 R2=0.16–0.67 (Fernandes et al., 2002)

TM CRM inversion Cover (pine) 0.1–1.0 33 R=0.33–0.38 (Gemmell et al., 2002)

AVHRR RSR/BRA LAI (various conifers) 0.5–10.5 N50 R2=0.62 (Chen et al., 2002)

RMSE=1.48

Sensors: ATM—airborne thematic mapper, TM—thematic mapper, AVHRR—advanced very high resolution radiometer, CASI—compact airborne spectral

imager; vegetation index (VI): RVI—ratio vegetation index, NDVI—normalised difference vegetation index, RSR—reduced simple ratio, REIP—red edge

inflection point, VI3=(nIR�mIR)/(nIR+mIR); method: BRA—bivariate regression analysis, MLR—multiple linear regression, CRM—canopy reflectance

model.
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with reflectance, (ii) to determine spectral VI that are best

suited for characterising those stand variables and (iii) to

compare and contrast traditional broadband and hyper-

spectral VI in terms of basic statistical characteristics of the

predicted stand variables relative to the observed stand

variables. The research was restricted to Norway spruce as

only forest stands of this single species occur at a sufficient

number within the selected test site.

2. Material and methods

2.1. Study site and field measurements

The Idarwald forest (49845VN, 7810VE) is located on the

north–western slopes of the Hunsrqck mountain ridge,

Germany. It covers an area of about 7500 ha. The terrain

elevation in the study area ranges from 400 to 800 m above

sea level. In 1999, 42 relatively homogenous Norway spruce

(Picea abies) stands were identified at the Idarwald study

area. Within these stands, 42 square 0.09 ha plots were

established. The central location of each ground plot was

determined with an accuracy of about F5 m using a

differential global positioning system (GPS). Signal dis-

tortion within the forest stands did not give as high accuracies

as specified by the manufacturer. From a total of 42 stands,

one was not covered by the HyMap imagery, and another one

was thinned in the period between ground data collection and

the HyMap overpass. These two stands were excluded from

the analysis reducing the data set to 40 stands.

At each plot, measurements of forest biophysical

parameters were carried out during summer and autumn of

2000. Biophysical parameters measured include leaf area

index (LAI), stem density (DEN), canopy closure (COV),

perimeter at breast height (PBH) and stand height (HEI).

LAI was estimated using a Li-Cor LAI-2000 Plant Canopy

Analyser (PCA). The LAI-2000 PCA estimates effective

LAI using measurements of diffuse solar radiation above

and below the forest canopy. Several factors such as sky

conditions, topography, foliage clumping, woody materials

and plant phenology all affect LAI estimates (Fournier et al.,

2003). The LAI-2000 was only operated under overcast sky

conditions during 10–16 h daytime. A 2708 view restrictor

was used on the sensor. Within each plot, below canopy

measurements were taken at 10 regularly spaced points from

which the average was calculated. As no second device was

available to operate the LAI-2000 in a two-sensor mode,

above the canopy measurements were taken in a nearby

open field before entering the plots. It was carefully paid

attention to stable sky conditions between the open field and

plot measurements. None of the outer rings were eliminated

in the gap-fraction inversion. Despite the non-random

distribution of leaves, no corrections for shoot level

clumping and stand level clumping were applied. Also no

contributions of woody surfaces were subtracted as the

influence of woody components on the measurements is

difficult to assess. It was assumed that the underestimation

of LAI due to clumping effects was somehow compensated

by the overestimation of LAI through woody structures

(Fournier et al., 2003). As no corrections were applied, the

retrieved LAI-2000 PCA measurements represent an effec-

tive plant area index instead of the real leaf area index. In

the following sections these measurements are named

effective leaf area index and abbreviated as LAI.

DEN was obtained by counting the number of trees in a

plot. COV was visually estimated in steps of 5% crown

closure. PBH is defined as the trunk perimeter at 1.3 m

above the forest ground. It was measured for 10 randomly

selected trees within each plot and the stand average was

calculated. HEI was calculated from the mean height of

three dominant trees that were randomly selected within

each plot. The height of each tree (from the ground to the

top) was estimated from angular measurements. As forest

stands at Idarwald consist of trees of the same age, dominant

trees within a stand have similar heights. Hence, the

selection of three trees to represent HEI was considered to

be appropriate.

Assuming that the volume of a single stem can be

approximated by a cone, a new variable stem biomass

(SBM, unit: t ha�1) was calculated from PBH, HEI and

DEN:

SBM ¼ p PBH
2p

� �2
d HEI

3
d DENd dWOOD ð1Þ

where dWOOD is the density of fresh wood (for Norway

spruce: 0.47 g/cm3 at 12–15% moisture content, Sedlmayer,

2004). Additionally, a variable related to crown volume

(VOL) was generated from factor analysis (Section 3.1).

To improve LAI mapping, it has been suggested to derive

land cover specific VI-LAI relationships using land cover

maps (Chen et al., 2002; Cohen et al., 2003; Franklin et al.,

1997). This statistical stratification of sampled stands is

usually based on the species type. As in the present study

just one single species is considered, it was decided to

stratify the data set according to stand age (Table 2).

Information about stand age was provided by a Forest

Geographic Information System (FoGIS) that had been

compiled for the Idarwald (Vohland, 1997).

2.2. Image data and processing

The hyperspectral HyMap sensor, designed and built by

Integrated Spectronics, Australia, has the following speci-

Table 2

Resulting subsets after stratification according to forest stand age

Subset Designation Abbreviation Age [years] n

1 Total (pooled dataset) t 10–148 40

2 Medium to old mo 30–148 35

3 Old o 80–148 17

4 Medium m 30–79 18

5 Young y 10–29 5
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fications: the instrument collects data in across-track

direction by mechanical scanning and in along-track

direction by movement of the airborne platform. Its

instantaneous field of view (IFOV) is 2.5 mr along-track

and 2.0 mr across-track and the field of view (FOV) is 608
(512 pixels). The swath width at altitudes of 2000–5000 m

above ground level is 2.3 to 4.6 km and the ground

resolution 5 to 10 m (along-track). A complete spectrum

over the range of 0.45–2.48 Am is recorded in a sampling

interval of 13–17 nm by 4 spectrographic modules. Each

spectrographic module provides 32 spectral channels giving

a total of 128 spectral measurements for each image pixel.

Ground-based measurements of SNR indicated a peak

signal-to-noise ratio of 1000:1 or better (Cocks et al., 1998).

HyMap was flown over the Idarwald test site at 17th July

1999. The data were recorded at 13:00 h Central European

Time at an average flying height of 1980 m above ground

level and free of cloud cover. The resulting ground

resolution was about 5 m with a full scene covering

approximately 3 km�10 km. The flight line was run in a

NE–SW direction parallel to the mountain ridge. From the

original data cube with 128 bands between 400 and 2500

nm, 14 HyMap spectral channels with high noise were

identified as bad bands and removed from the data set.

Consequently, subsequent analyses were restricted to the

remaining 114 bands.

Sensors with a large total field of view are typically

affected by changes in the sensor view angle (Kennedy et

al., 1997). To determine the magnitude of these effects, the

digital numbers (DN) representing coniferous forest were

plotted against image pixel number in the across scan

direction (Fig. 1). A systematic increase of DNs with view

angle in the down-Sun viewing direction and a decrease in

the opposite-Sun viewing direction was observed. This

well-known trend can be attributed to the effect of

anisotropy and canopy shadow. As most vegetation

canopies show a backward scattering characteristic the

backlit side of the scanned image receives less reflected

energy than the forlit side (Hildebrandt, 1996). To correct

this view angle effect an across-track illumination correc-

tion was applied to each spectral band independently

(ENVI 3.4, Research Systems). For this purpose, the image

pixels representing coniferous forest were averaged by

across-track position. The centre pixel was treated as

correct. A second-order polynomial was fitted to the data.

Based on the fitted polynomials, a normalisation procedure

was applied. The corrected data showed almost no

variation with change in across-track position, though a

slight increase in DN at the very right side of the image

could be observed (Fig. 1).

Additional radiometric correction of remote sensing

imagery is exceptionally important for coniferous forests,

as the small reflectance signal generated by conifer canopies

is strongly influenced by terrain and atmospheric effects

(Peterson & Running, 1989). When quantitative attributes

are to be estimated from remote sensing data, surface

reflectance is the preferred or required data type (Peddle et

al., 2003).

Atmospheric correction of the HyMap data sets was

achieved with an in-house developed software package

(AtCPro 3.01) which is originally based on the formulation

of radiative transfer in 5S and 6S (e.g., Tanré et al., 1990).

For an efficient and fast correction of image data acquired

with multi- or hyperspectral sensors this code has been

modified and extended, i.e., by integrating modules to

account for varying terrain height and sensor altitude (Hill &

Sturm, 1991), to estimate the aerosol optical thickness

directly from dark objects in the image (Hill, 1993) and to

correct for illumination effects (Hill et al., 1995). Recently,

the software package has been refined to cope with specific

Fig. 1. Raw (left) and cross-track illumination corrected (right) image HyMap profiles (upper part) and corresponding portions of the HyMap scene (lower

part). The yellow lines in the images indicate the course of the profiles. Profiles are shown for the red (Bd. 15), nIR (Bd. 34) and mIR (Bd. 83) domains. Images

are displayed at band combination 34-83-15 (RGB).
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requirements of airborne hyperspectral image data by

adding a module that, taking up concepts originally

developed by Gao and Goetz (1990), produces spatially

distributed maps of atmospheric water vapour to be included

into the atmospheric correction (Hill & Mehl, 2003).

The atmospheric correction of the HyMap data set

considered in this paper further refers to information

collected for a specific calibration flight performed during

the same day in another area only 30 km away from the

Idarwald study site. There, measurements of atmospheric

beam transmittance were conducted with a CIMEL photo-

meter between 6:00 and 12:00 GMT of June 10, 1999 (i.e.,

during the time of both flights). Their evaluation yielded

an aerosol optical depth of sa=0.33 at k=0.550 Am (i.e., a

horizontal visibility of approximately 15 km). Contempo-

rarily, bi-directional reflectance measurements from 11

carefully selected ground targets with different surface

characteristics (gravel, asphalt, dense lawn and water) were

collected with an ASD FieldSpec II instrument to

reconstruct, in combination with the derived aerosol optical

depth and a water vapour concentration of 3.8 g/cm2

(iterative approximation based on several MODTRAN

runs), a set of updated HyMap in-flight calibration

coefficients. It turned out that, except for single noisy

bands with limited radiometric performance (e.g., band

1=0.403 Am, all bands N2.410 Am) the resulting adjust-

ments remained within F15% of the HyMap pre-flight

calibration values. Using these updated calibration coef-

ficients with our extended implementation of 5S (AtCPro

3.01) it was possible to reconstruct a spatially differ-

entiated water vapour map for the HyMap scene acquired

over Idarwald which, in a final run, was integrated into the

atmospheric correction processing of this image. This

correction also included a correction for terrain induced

illumination effects, for which specific DEM-derivates

(slope, aspect and the proportion of the visible hemi-

spherical sky at each pixel) had been transferred to the

geometry of the original HyMap image using the para-

metric image processing software PARGE developed by

Schläpfer et al. (1998). The visual impression of relief

present in the raw data was removed after applying the

topographic correction. The obtained reflectance spectra

indicated a good data quality, ensuring a sound basis for

quantitative data exploration.

The image data were geometrically corrected using the

parametric geocoding software PARGE (Schläpfer et al.,

1998). For this purpose, the required DEM with an original

pixel size of 20 m was resampled to 5 m using bilinear

interpolation. Thirty ground control points measured in the

field by differential GPS were used to calibrate the in-flight

auxiliary data. Image resampling was performed using

triangulation coding from centre pixels (Schläpfer et al.,

1998). The RMS error of the geometric correction was 4.3

m in x-direction and 4.8 m in y-direction. With an image

pixels size of 5 m, the geometric correction was accurate to

within a pixel.

Reflectance spectra were extracted from the image data

for the forest stands under investigation. Only pixels

located within circles of certain radii (7 m, 12 m, 17 m,

22 m, 32 m, 42 m and 52 m) around the central position of

the field plots were included. Pixels not representing

spruce forest were cut out from the circles through a GIS-

operation resulting in circle segments. Mean and standard

deviation of spectral reflectance were obtained for seven

radii. Coefficient of variation was plotted against radius

(not shown). Values of the variation coefficient were

lowest at a radius of 42 m. Therefore, for most of the

forest stands, a radius of 42 m was considered to be the

critical size from where local heterogeneity is not further

increasing. For all forest stands, mean reflectance spectra

were extracted from the image using pixels of 42-m radius

around the central position.

2.3. Computation of VI

Both, hyperspectral and broadband VI were computed

from the radiometrically corrected HyMap imagery (114

spectral bands).

2.3.1. Broadband VI

Ratio-based and soil-line-related (orthogonal) broadband

VI (see Table 3 for definitions) were calculated after the

HyMap data had been resampled to Landsat TM spectral

bands involving the appropriate Landsat TM5 filter func-

tions; the ratio-based VI were SR and NDVI; the orthogonal

VI were PVI and TSAVI; additional VI were MVI, and GVI.

2.3.2. Hyperspectral VI

Hyperspectral indices were computed for RVI and PVI

involving all possible two-band combinations of 114

channels. Additionally, the red edge inflection point (REIP)

was calculated using two different methods, the inverted

Gaussian Model (IGM), and the Lagrange Interpolation

(LGI).

2.3.2.1. Narrow band VI. The narrow band RVI and PVI

were systematically calculated for all possible 114�
114=12,996 band combinations. RVI was computed accord-

ing to

RVI ¼ qBd1
qBd2

ð2Þ

PVI requires site-specific soil line slopes (a) and intercepts

(b). As no soil spectral data was available, soil line

parameters were fixed to arbitrary values (a=0.9; b=0.1):

PVI ¼
q
Bd1� aqBd2 � b

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p ð3Þ

It was assumed that the soil line concept, originally defined

for the red-nIR feature space, can be transferred into other

spectral domains (Thenkabail et al., 2000). Hence, it was

supposed that soil lines exist between all wavebands.
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2.3.2.2. Red edge inflection point. The red edge inflection

point (REIP) has been used to indicate vegetation stress and

senescence (Horler et al., 1983; Rock et al., 1988). The

REIP depends on the amount of chlorophyll seen by the

sensor (Dawson & Curran, 1998). The chlorophyll amount

present in a vegetation canopy is characterised by the

chlorophyll content of the leaves and the leaf area index

(LAI). Danson and Plummer (1995) suggested that the REIP

should provide a useful tool for LAI estimations particularly

for taking advantage of high spectral resolution data. In

previous work, Atzberger and Werner (1998) studied the

spatial variation of leaf chlorophyll concentration (Ca+b) at

Idarwald test site on the basis of 39 Norway spruce stands.

They found that the inter-stand variation of Ca+b was

relatively low (mean=4.22 mg g�1 dry matter, standard

deviation=1.00 mg g�1 dry matter). This can be attributed to

the rather poor nutrient supply of the soils, derived from the

underlying schist and quartzite rocks prevalent to the entire

region. It is therefore concluded that the chlorophyll amount

present in the spruce canopies is determined more by the

LAI than by leaf chlorophyll concentration and that the

REIP can be related to LAI.

The REIP was computed using two different approaches,

inverted Gaussian model (IGM) and Lagrange Interpolation

(LGI). IGM (Bonham-Carter, 1988) describes the variations

of reflectance Rest as a function of wavelength (k) at the red
edge as follows:

Rest kð Þ ¼ Rs � Rs � R0ð Þd e
k�k0ð Þ2
2r2 ð4Þ

where Rs is the reflectance maximum (bshoulderQ reflec-

tance), usually at approximately 780–800 nm; R0 is the

reflectance minimum, usually at about 670–690 nm; k0 is

the wavelength of the reflectance minimum; r is the

Gaussian shape parameter with unit nanometre. The red

edge inflection point REIPIGM is then derived as

REIPIGM=k0+r. The IGM method fits a Gaussian normal

function to the reflectance at the red edge and the estimated

REIP is then the midpoint on the ascending part of the

modelled curve. The function is fitted through the measured

reflectance data points Rmes(k) by adjusting the values of Rs,

R0, k0 and r in such a way that the root-mean-square error

(RMSE) is minimized.

LGI (Dawson & Curran, 1998) is applied to the

approximate first derivative of the reflectance spectrum,

which is computed as follows:

Dmes kj
� � ¼ R kjþ1

� �� R kj
� �

kjþ1 � kj
ð5Þ

where Dmes(kj) is the measured first derivative trans-

formation at the midpoint with wavelength j between the

wavebands j and j+1; R(kj) and R(kj+1) are the reflectances
at the bands j and j+1, respectively. A second order

polynomial is fitted directly to three bands of the first-order

derivative spectrum (Dawson & Curran, 1998):

Dest kð Þ ¼ k� kið Þd k� kiþ1ð Þ
ki�1 � kið Þd ki�1 � kiþ1ð Þ d Dmes ki�1ð Þ

þ k� ki�1ð Þd k� kiþ1ð Þ
ki � ki�1ð Þd ki � kiþ1ð Þ d Dmes kið Þ

þ k� ki�1ð Þd k� kið Þ
kiþ1 � ki�1ð Þd kiþ1 � kið Þ d Dmes kiþ1ð Þ ð6Þ

where Dest(k) is the first derivative estimated by the LGI

model at any wavelength k; ki is the band having the

maximum first derivative; ki�1 and ki+1 are the bands on the
left and right side of ki, respectively; Dmes(ki), Dmes(ki�1)

and Dmes(ki+1) are the measured first derivative values. The

REIP is located at the wavelength REIPLGI were Dest(k) is
maximum; to determine this position (and thus, the position

of maximum slope of reflectance), the first derivation on

Dest(k) is performed, representing the second derivative of

the reflectance. The equation is resolved, for when the first

Table 3

Broadband vegetation indices investigated in this study

Name Abbreviation Equation Reference

Simple ratio SR
qTM4

qTM3

(Pearson and Miller, 1972)

Normalised difference vegetation index NDVI
qTM4 � qTM3

qTM4 þ qTM3

(Rouse et al., 1974)

Perpendicular vegetation index PVI
qTM4 � aqTM3 � b

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p

a=0.9, b=0.1

(Richardson & Wiegand, 1977)

Transformed soil-adjusted vegetation index TSAVI
a qTM4 � aqTM3 � bð Þ
aqTM4 þ aqTM3 � ab

a=0.9, b=0.1

(Baret et al., 1989)

Mid-infrared vegetation index MVI
qTM4

qTM5

(Fassnacht et al., 1997)

Greenness vegetation index GVI
� 0:2848qTM1 � 0:2435qTM2

� 0:5436qTM3 þ 0:7243qTM4

þ 0:0840qTM5 � 0:1800qTM7

(Christ & Cicone, 1984)

q—reflectance, TM—thematic mapper.
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derivative of Dest(k) is zero, giving (Dawson & Curran,

1998):

REIPLGI ¼ Ad ki þ kiþ1ð ÞþBd ki�1 þ kiþ1ð ÞþCd ki�1 þ kið Þ
2d Aþ Bþ Cð Þ

ð7Þ
where

A ¼ Dmes ki�1ð Þ
ki�1 � kið Þd ki�1 � kiþ1ð Þ ;

B ¼ Dmes kið Þ
ki � ki�1ð Þd ki � kiþ1ð Þ ;

C ¼ Dmes kiþ1ð Þ
kiþ1 � ki�1ð Þd kiþ1 � kið Þ ð8Þ

2.4. Regression models

A widely used empirical approach for modelling the

relationship between two variables is regression analysis

(Cohen et al., 2003). Commonly, one variable is difficult or

costly to measure (e.g., LAI from field sampling) and the

other is relatively inexpensive to measure (e.g., VI from

remote sensing). VI is often related to LAI through a linear

or exponential regression model, depending on the presence

of saturation effects. However, the saturation of VI with

increasing LAI depending on tree species and canopy

structure is not sufficiently investigated (anonymous

reviewer). For conifers it has been shown that linear

regression models seem to be appropriate as saturation

occurs only at relatively high densities. For instance,

Peterson et al. (1987) found that the saturation level was

reached at an LAI of approximately 8 in the red domain.

Other results suggest a saturation of the NDVI at an LAI of

about 5 (Chen & Cihlar, 1996; Turner et al., 1999) or no

saturation effect at all in the case of the RVI (Chen et al.,

2002). Therefore, in this study, linear regression was

employed to evaluate the relationships between biophysical

stand variables and VI.

2.5. Validation

We used the cross-validation procedure to validate the

regression models. Cross-validation is a method of assessing

the accuracy and validity of a calibration model. This

required for each regression variant to develop 40 separate

models, each time with data from 39 observations. The

calibration model was then used to predict the observation

that was left out. Because the predicted samples are not the

same as the samples used to build the model, the cross-

validated RMSE is a good indicator of the accuracy of the

model in predicting unknown samples. Another advantage

of cross-validation is its ability to detect outliers. If the

predicted observations for a single sample is far off the

measured observation, the sample is probably an outlier

(Duckworth, 1998).

3. Results and discussion

3.1. Forest stand variables

From the summary statistics (Table 4), it can be seen that

the variables PBH, COV and LAI have a similar variability,

whereas COV is less variable and SBM and DEN are more

variable. The large variability of DEN can be attributed to the

extraordinary large density values of young forest stands.

Table 5 lists linear correlation coefficients between forest

stand variables. Strong relationships between stand varia-

bles were found for PBH, DEN and HEI. These variables

are closely related to stand age; with increasing age, trees

grow in height and diameter and PBH and HEI increase,

while DEN is reduced due to thinning. An inverse relation-

ship can be observed between LAI and age. The inverse

relation between LAI and stand age seems to be related to

the fact that during stand development, crowns of individual

trees expand and increase utilization of available growing

space. The point at which crowns of different trees begin to

interact is considered as being the peak LAI after which a

Table 4

Summary statistics for forest stand variables (n=40)

Mean Standard deviation Maximum Minimum Range Coefficient of variation

PBH [m] 1.09 0.32 1.63 0.27 1.36 0.294

DEN [ha�1] 640 458 2444 244 2200 0.716

COV [%] 48 11 70 30 40 0.229

HEI [m] 25.1 7.9 39.1 5.0 34.1 0.315

LAI [m2 m�2] 3.24 0.97 5.47 1.66 3.81 0.299

SBM [t ha�1] 201 109 654 11 643 0.54

Table 5

Linear correlation between forest stand variables (n=40)

PBH DEN COV HEI LAI SBM

PBH 1.00

DEN �0.87T 1.00

COV �0.55T 0.72T 1.00

HEI 0.88T �0.86T �0.58T 1.00

LAI �0.72T 0.70T 0.68T �0.70T 1.00

SBM 0.81T �0.59T �0.20 0.80T �0.48T 1.00

AGE 0.85T �0.72T �0.49T 0.82T �0.66T 0.77T

T Correlation coefficient significant at Pb0.01.
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rapid decrease takes place due to competition between the

individual trees (Vose et al., 1994). It has been shown that

stands of slow growing species (Pinus contora) reached its

maximum LAI at age 40 and that it lasted for about 30 years

(Long and Smith, 1992).

Prevalent forestry practices in Germany aim to maximise

the profitability of a site. Thinning, the extraction of some of

the young trees in a forest so that the remainder grow and

develop fully, has an additional, major influence on the

temporal LAI dynamic. At Idarwald, after a maximum LAI

value at an age of 20–30 years is reached, stands of Norway

spruce are usually thinned at an age of 30–50. Therefore,

relatively low LAI values can be expected. After 60–70

years an increase in LAI may take place up to an age of 100

where logging can lead to gaps in the canopy cover.

Depending on the application of thinning measures,

maximum variation of LAI can be expected at age 30–70

(Vohland, 1997). In Fig. 2, LAI is plotted against stand age

for the sampled Norway spruce stands of Idarwald test site.

Here, a peak LAI can be assumed at an age of 20. From an

age of 20 onwards, a gradual decline in LAI from up to age

150 is evident. Maximum variation of LAI occurs at age 60–

70. Obviously, some stands have been thinned lately

whereas others have been thinned long time ago. After an

increase of LAI up to age 100 a decrease of LAI is caused

by gaps related to logging measures. It can be concluded

that the observed age course of Norway spruce based on the

probed sample is a result of both natural circumstances and

actual management practices. It is also clear from Fig. 2 that

LAI can vary considerably within a single age class and

thus, information on LAI cannot simply be derived from an

age class map.

At first, relationships between the forest stand variables

and single band reflectance were examined (Table 6). The

stand variables were most strongly correlated with TM4,

and less correlated with TM3 and TM5. Correlations were

positive for DEN, COVand LAI and negative for PBH, HEI

and SBM. PBH, DEN and HEI were more strongly

correlated with reflectance whereas COV, LAI and SBM

were less correlated with reflectance. Attributes related to

canopy cover (LAI, COV) are usually expected to have

negative correlations with red reflectance. At Idarwald, we

found weak positive correlations between LAI and red

reflectance (TM3). However, red reflectance varied only

between 2.7 and 3.0% and possibly, saturation in the red has

already occurred at low LAI values. Another explanation

could be that green leaves and the underlying soil and litter

have similar reflectances in the red and that an increase in

LAI or COV would not have an influence on red

reflectance. Finally, effects of shading could be responsible

that old stands of relatively low LAI also have low

reflectances in the red domain. One could also expect

negative correlations between LAI and reflectance in the

mIR (TM5) (Brown et al., 2000). Although we found such

negative correlations for wavebands located in the water

absorption features, we observed positive correlations for

wavebands located at the reflectance maximum between the

1.4-Am and 1.9-Am water absorption features. Again,

shading could be a possible explanation for these findings.

The correlation coefficients (r) between biophysical

variables and both reflectance and first derivative reflec-

tance spectra are presented as correlograms (Fig. 3). The

strength of the relation generally decreased from near-

infrared (nIR) to mid-infrared (mIR) wavebands and was

greater for first derivative reflectance spectra in opposition

to reflectance spectra. The decreasing r values with

increasing wavelength from the nIR to the mIR reflected

the decrease in signal-to-noise ratio of the data. In this

respect the correlograms were similar to those reported in

other studies (e.g., Curran et al., 2001). Correlations were

positive throughout all wavelength regions for DEN, COV

and LAI and negative for PBH, HEI and SBM. The nIR

region of reflectance spectra revealed strongest correlations

followed by the green peak, the mIR region, and the

chlorophyll absorption features in the red and blue wave-

bands. For the correlation between reflectance and LAI,

similar curves were obtained in other studies (Thenkabail et

al., 2000). However, one major difference was the positive

correlation between LAI and reflectance in the red which

has been already discussed in the previous paragraph.

From the strong intercorrelations between the stand

variables (Table 5), it was evident that no single variable

Fig. 2. LAI as a function of stand age for Norway spruce stands at Idarwald

test site (n=40).

Table 6

Linear correlation between forest stand variables and HyMap reflectance

resampled to TM spectral bands (n=40)

TM3 TM4 TM5

PBH �0.60TT �0.80TT �0.55TT
DEN 0.72TT 0.86TT 0.66TT
COV 0.41TT 0.69TT 0.38T
HEI �0.57TT �0.84TT �0.57TT
LAI 0.36T 0.76TT 0.33T
SBM �0.50TT �0.64TT �0.51TT

T Correlation coefficient significant at Pb0.05.
TT Correlation coefficient significant at Pb0.01.
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could be regarded as causal to the reflectance in the TM

bands. Therefore, the principal components (PC) were

computed on the forest stand variables to reduce the data

and generate new variables that could be correlated with

reflectance. The input variables were standardised to zero

mean and unit standard deviation. From the five original

variables (all variables except SBM) five PC were derived.

The first 3 PC explained more than 95% of the variability of

the original data set. The eigenvectors of PC1 revealed

moderately large positive loadings on PBH and HEI and a

moderately large negative loading on DEN. While principal

components analysis is often preferred as a method for data

reduction, principal factors analysis is often chosen when

the goal of the analysis is to detect structure. Unlike

principal components analysis, in principal factors analysis

we only use the variability in a stand variable that it has in

common with the other stand variables. The goal of the

various existing rotational strategies is to obtain a clear

pattern of loadings, that is factors that are clearly marked by

high loadings for some variables and low loadings for others

(Harman, 1976; StatSoft, Inc., 2004).

The factor analysis was computed using the varimax

rotation. Again, the input variables were standardised to

zero mean and unit variance. After standardisation, one

common factor (CF) was computed from the five original

stand variables (Table 7). The p-value of 0.08 failed to reject

the null hypothesis of one common factor suggesting that

this model provides a satisfactory explanation of the

covariation in these data. A specific variance of 1 would

indicate that there is no common factor component in that

variable, while a specific variance of 0 would indicate that

the variable is entirely determined by common factors. The

estimated specific variances indicated that the stand

variables PBH, DEN, and HEI are determined by the

common factor. However, the common factor did not clearly

represent the variables LAI and COV. For interpretation of

the common factor, its loading has to be examined (Table 7).

CF1 has very high loadings on the variables PBH, DEN and

HEI, but only moderately high loadings on LAI and COV.

The loadings obtained by CF1 reveal a much clearer pattern

than those obtained by PC1. According to the loadings of

CF1, old stands consisting of large trees at low density

would have low scores on CF1. It was obvious, to interpret

CF1 as a variable that is inversely related to stand age. The

correlation between CF1 and stem biomass was moderately

strong (r=�0.74). Following an interpretation by Danson

and Curran (1993), CF1 was regarded as a variable

inversely related to crown volume (VOL).

In a next step, the common factor and the principal

components were correlated with the reflectance data in the

TM bands (Table 8). Statistically significant positive

relationships were found between CF1 and TM reflectance.

This indicated that stands for which a high reflectance was

recorded had a high score on CF1 and thus, a low VOL.

Also PC1 showed a close relationship to TM reflectance. No

correlations were observed between PC of higher order and

reflectance. From Fig. 4 it is evident that CF1 is closely

related to stand age. While up to stand age 60 a linear

relationship can be observed, saturation starts at higher age,

resulting in an exponential relation between stand age and

CF1.

A similar increase with stand age has also been observed

for total biomass in boreal spruce (P. abies) forests

Table 7

Statistics of the first component factor of the varimax rotation (CF1)

compared to the Eigenvector of the first principal component PC1 (n=40)

Stand variable Specific variance CF1 Loading CF1 Loading PC1

PBH 0.1268 �0.9345 0.4638

DEN 0.1275 0.9341 �0.4757

COV 0.5400 0.6782 �0.3972

HEI 0.1417 �0.9265 0.4633

LAI 0.4107 0.7677 �0.4315

Table 8

Linear correlation between the common factor and principal components

and HyMap reflectance resampled to TM spectral bands (n=40)

TM3 TM4 TM5

CF1 0.65T 0.88T 0.61T
PC1 �0.61T �0.89T �0.57T
PC2 �0.18 �0.02 �0.19

PC3 �0.29 �0.02 �0.28

T Correlation coefficient significant at Pb0.01.

Fig. 3. Correlograms (r) for six biophysical stand variables and both

reflectance (left) and first derivative reflectance (right) spectra (n=40). Data

points in first derivative reflectance correlograms are plotted as lines for

clarity.
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(Kazimirov & Morozova, 1973) but saturation did not occur

before age 120. This relationship between stand age and

total biomass was compared to the relationship between

stand age and stem biomass (SBM). When SBM is plotted

against stand age, apart from one extreme observation a

curvilinear relationship is observed, but even at high age no

saturation occurs (Fig. 5). The outlier is the oldest of all

sampled stands (age=148 years). In these stands very large

values of HEI and PBH and moderately large values of DEN

were measured resulting in very large values of SBM.

Despite a relatively large correlation coefficient between

VOL and SBM of �0.74, VOL and SBM were considered

as dissimilar variables in the subsequent analysis mainly due

to their different dependence on stand age.

3.2. VI relationships with forest stand variables

Most of the linear regression models indicated that the

best relationships were obtained using LAI or VOL; the

regression with PBH, HEI and DEN also provided several

good relations but were not considered due to their strong

intercorrelation; COV was not considered due to the strong

relation to LAI. Thus, the results presented restrict to LAI,

VOL and SBM.

3.2.1. Narrow band VI

To determine optimal narrow band VI, coefficients of

determination (R2) between all possible two-band VI and

forest stand variables were computed. The results are

illustrated in 2D-correlation plots (Fig. 6). Each point at

position (band 1, band 2) in the upper triangle of Fig. 6

represents the R2 value between LAI and the RVI

calculated from the reflectance values in that two wave-

bands. The lower triangle of Fig. 6 highlights band

combinations where R2 was larger than 0.75. Similar

correlation plots to the one in Fig. 6 were computed for the

other biophysical variables. Based on the R2 values in the

2D-correlation plots, band combinations that formed the

best indices were determined for LAI, VOL and SBM.

These were considered as optimal indices and were named

RVI_opt and PVI_opt. Up to three best performing indices

were considered when they occurred in different wave-

length regions. For example, in Fig. 6, the indices that

have highest correlation with LAI were identified in the

lower triangle of the 2D-correlation plot: the three most

dominant indices occur in the regions around 1346 nm/

1207 nm, 1134 nm/920 nm and 1802 nm/1163 nm (red

marks). The band positions were then tabulated in Table 9.

For the best performing narrow band index, cross-validated

R2 and RMSE were computed (Table 10).

3.2.2. Broadband VI

The first step in the analysis of broadband VI was to

compare ratio to soil-adjusted VI and to compare VI based on

Visible and nIR reflectance to those based on mIR and nIR

reflectance. Broadband ratio VI (RVI and NDVI) generally

showed relatively low values of R2 and relatively high values

of RMSE for all subsets. The soil-adjusted broadband models

(PVI and TSAVI) performed significantly better for the

pooled data set; obviously, background effects related to soil

and litter were reduced. Whereas younger stands revealed a

denser canopy with little background contribution to the

signal, in older stands with gaps and a more open canopy the

backgroundmay had a larger influence on reflectance. Hence,

when the total age dynamic is considered, TSAVI and PVI

performed better than RVI or NDVI but when age classes

were considered separately, no performance increase was

observed. The findings of Brown et al. (2000), that soil-

adjusted VI compared to the RVI have a decreased sensitivity

to forest LAI, could not be confirmed.

Broadband MVI was closer related to LAI and VOL than

broadband RVI and NDVI (subset m and mo). The mIR

band in combination with the nIR band seemed to contain

more information relevant to the characterisation of forest

canopies than the combination of red and nIR bands. A

Fig. 5. Stem biomass (SBM) as a function of stand age for Norway spruce

stands at Idarwald test site (n=40).

Fig. 4. First common factor (CF1) as a function of stand age for Norway

spruce stands at Idarwald test site (n=40). A low value of CF1 corresponds

to a large crown volume.
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closer relation of forest LAI to radiation in the mIR than to

radiation in the Visible was found by Boyd et al. (2000) for

tropical vegetation; the authors put forward that this could

be the case also with boreal forests. The results found in the

present study also support the suggestion by Fassnacht et al.

(1997) that mIR bands may improve LAI estimation,

particularly in more open forest stands. Recently, Lee et

al. (2004) stretched the importance of spectral channels in

the red edge and mIR regions in predicting LAI of different

biomes.

3.2.3. Broadband versus hyperspectral VI

In the second step of the analysis, broadband VI was

compared to hyperspectral VI to see if hyperspectral

indices improve the prediction accuracy. All best narrow

band RVI (RVI_opt) and PVI (PVI_opt) performed better

Table 9

Best narrow band RVI and PVI derived from 2D-correlation plots for different subsets

Subset t (10–148 years) Subset mo (30–148 years) Subset o (80–148 years) Subset m (30–79 years)

k [nm] r2 k [nm] r2 k [nm] r2 k [nm] r2

LAI RVI_opt 918/965 0.65 896/965 0.68 747/807 0.60 1346/1207 0.85

850/680 0.55 1802/1043 0.65 1134/920 0.85

1165/750 0.60 1346/1119 0.65 1802/1163 0.80

1088/1148 0.70 918/1134 0.83

PVI_opt 895/1134 0.64 1445/2060 0.56 1320/1220 0.82

1148/807 0.70 2220/457 0.72

SBM RVI_opt 472/1119 0.31 933/747 0.31 2354/2337 0.50 1279/1264 0.53

PVI_opt 777/900 0.46 933/747 0.32 2337/2354 0.41 948/747 0.46

VOL RVI_opt 671/702 0.74 996/1058 0.60 2385/2042 0.51 1011/1028 0.74

PVI_opt 981/1058 0.82 1073/981 0.60 2320/2449 0.41 1073/996 0.69

1417/1070 0.82

948/885 0.82

747/457 0.82

Each vegetation index is formed by a pair of wavebands. The wavelength positions and the coefficients of determination (r2) between the indices and the

biophysical variables are given. Subset y was excluded from the analysis due to the small number of samples.

Fig. 6. 2D-correlation plot that shows the correlation (R2) between LAI and narrow band RVI values (subset m). The matrix is symmetrical; therefore just

values above the diagonal are displayed. Below the diagonal, band combinations are marked in red where R2N0.75. The displayed average reflectance spectrum
of all measured forest plots eases the interpretation of the 2D-correlation plot. As the HyMap spectrum is not continuous, large squares of R2 values may belong

to single wavebands.
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than the corresponding broadband VI. RMSE values of

about 1 m2 m�2 or larger for regression models between

broadband RVI and LAI (subsets mo, o and m) decreased

to values as low as 0.5 m2 m�2 for the optimal narrow

band RVI. The improvement of the narrow band models

compared to the broadband models was not that distinct in

the case of the PVI. Regression between PVI and VOL

over all age classes (pooled data set) revealed almost

similar results for broadband and narrow band indices. The

reason that some of the broadband results were high could

be from having a very high signal-to-noise ratio (SNR).

However, this does not mean that sensors like TM5 could

be able to reproduce these results as they would have a

much lower SNR.

Comparing narrow band orthogonal VI with ratio VI

revealed that PVI_opt performed better than RVI_opt

(pooled data set); for subsets mo, m and o, however,

RVI_opt showed lower RMSE values than PVI_opt for LAI

and VOL. No correlation was observed between REIP (LGI

and IGM) and LAI over the total age dynamic, but for

subset m, LGI showed an RMSE value of less than 0.5 m2

m�2. This value is comparable to the RMSE value obtained

between RVI_opt and LAI. These findings were partly

supported by results obtained from other studies. Danson

and Plummer (1995) found a strong non-linear correlation

between plot LAI and the REIP for Sitka spruce (Picea

sitchensis) using helicopter-borne spectroradiometer data.

For the same tree species, forest LAI was recently related to

the canopy REIP computed from imaging spectrometer data

(CASI) with success (Lucas et al., 2000). Attempts to relate

the chlorophyll content of canopies to the REIP were

successful for grass canopies (Pinar & Curran, 1996), but

only partially successful for forest canopies (Curran et al.,

1991). Blackburn (2002) found no relation between REIP

and LAI for coniferous stands using CASI data.

In a summary, it was concluded that the best relationships

between remotely sensed reflectance and forest stand

variables were found using LAI and VOL. In a study on

agricultural crops, Thenkabail et al. (2000) also found the

Table 10

Cross-validated R2 (first line) and cross-validated RMSE (second line) for linear regression between broadband and hyperspectral (narrow band VI and REIP)

indices and forest stand variables LAI and VOL

LAI VOL

Subset t mo m o t mo m o

n 40 35 17 18 40 35 17 18

Broadband VI RVI 0.40 0.42 0.40 0.17 0.23 0.38 0.35 0.26

1.23 0.92 1.05 1.67 1.9 1.7 2.9 1.9

NDVI 0.43 0.44 0.44 0.17 0.24 0.34 0.31 0.25

1.13 0.86 0.95 1.72 1.8 1.7 2.8 1.9

PVI 0.57 0.29 0.23 0.22 0.76 0.35 0.35 0.10

0.87 1.29 1.7 1.7 0.58 2.2 4.9 3.1

TSAVI 0.61 0.36 0.30 0.24 0.68 0.37 0.36 0.07

0.80 1.06 1.35 1.55 0.69 1.8 3.6 3.9

MVI 0.38 0.54 0.58 0.35 0.19 0.51 0.45 0.15

1.3 0.71 0.71 1.83 2.3 1.1 1.3 85.5

GVI 0.58 0.31 0.24 0.24 0.75 0.36 0.35 0.07

0.85 1.2 1.62 1.55 0.59 2.1 4.7 3.8

Hyperspectral VI RVI_opt 0.62 0.64 0.77 0.57 0.70 0.59 0.70 0.45

0.78 0.58 0.45 0.57 0.68 0.91 0.65 1.1

PVI_opt 0.67 0.45 0.41 0.52 0.79 0.58 0.64 0.38

0.69 0.86 1.02 0.58 0.52 0.98 0.78 1.4

LGI 0.01 0.58 0.75 0.44 0.26 0.46 0.33 0.05

400 0.64 0.49 0.66 5.8 1.1 1.6 16.2

IGM 0.00 0.58 0.72 0.47 0.27 0.43 0.27 0.00

45 0.65 0.53 0.66 4.0 1.2 1.8 8.7

The best VI are typed in bold. Relations with SBM were generally poor and are not listed. Subset y was excluded from the analysis due to the small number of

samples.

Fig. 7. Linear regression between best narrow band PVI and LAI. Values of

R2 and RMSE are cross-validated. When the outlier at position 4.1/�0.104

is removed, cross-validated R2 increases to 0.77 and RMSE decreases to

0.54 m2 m�2.
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closest relations between hyperspectral VI and LAI or

biomass, whereas relationships with crop height, and

canopy cover were generally not as good. The major result

of the present study was that the hyperspectral data set

contained more information relevant to the estimation of the

forest stand variables LAI and VOL than multispectral data.

Lee et al. (2004) came to the conclusion that regression

models using AVIRIS channels performed better to predict

LAI than those based on broadband data. However, the

advantage of hyperspectral over multispectral data does not

always seem to be the case: for instance, Broge and

Mortensen (2002) came to the conclusion that hyperspectral

VI derived from field spectral measurements were not better

at estimating green crop area index (a variable related to

LAI) than traditional broadband VI. Then again, these

authors found that the prediction of canopy chlorophyll

density was improved using narrow bands across the red

edge. Results of the present study concerning old stands

(subset o) show that relatively poor relationships were

found in particularly for the broadband VI. Also other

studies reported problems with old stands that have been

ascribed to shadow effects and a relatively dark background

in the nIR (Spanner et al., 1990a).

In the scatter plot between PVI_opt and LAI (Fig. 7),

even at high values of LAI no saturation is evident. A closer

look reveals an outlier at position 4.1/�0.104. The

corresponding forest stand of age 34 was identified in the

image data. Whereas the 1999 image showed no abnormal-

ity in reflectance, in recently acquired HyMap data of 2003,

a striped pattern was detected. From the spectral reflectance

properties, the image pixels representing stripes could be

identified as a mixture between tree crowns and forest litter.

The striping pattern was caused by open strips that had been

cut into the forest between the image acquisition and field

measurements. Open strips allowed for the employment of

harvesters to remove trees that had been exposed to game

bite (Womelsdorf G., Personal communication).

Also the relationship between PVI_opt and VOL (Fig. 8)

is linear. In contrast to Fig. 7, two main clusters of data

points can be identified. Those data points with a value of

VOL larger than 1 refer to forest stands of an age less than

40 years.

3.2.4. Water absorption features

The best relations between both LAI and VOL and the

optimal narrow band VI used PVI based on wavelength

positions related to water absorption features. One of the

two wavebands forming PVI_opt typically lay at the

shoulder of the absorption feature, the other waveband lay

at the absorption minimum (Fig. 9). Obviously, PVI_opt

based on such wavebands is a measure of the total amount

of canopy water (MH20) seen by the sensor. MH20 (unit: kg

water per m2 ground area) depends on both leaf water

content (LWC; unit: mg water per cm2 leaf area) and leaf

area index (LAI):

MH2O ¼ LWCd LAI ð9Þ
When LWC does not vary between forest stands, PVI_opt

reflects spatial patterns of LAI.

3.3. Maps of effective leaf area index and crown volume

The best regression models that have been found for the

estimation of LAI (Fig. 10) and VOL (Fig. 11) were applied

to the HyMap image. Only image pixels representing

Fig. 8. Linear regression between best narrow band PVI and crown volume.

Values of R2 and RMSE are cross-validated. A high value of VOL

corresponds to a low crown volume and vice versa.

Fig. 9. Wavelength position of selected optimal narrow band VI for LAI (left) and VOL (right). Wavebands are associated with typical water absorption

features.
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coniferous forest were considered. Estimated values of LAI

were generally in a reasonable range. LAI values were

classified into five classes for cartographic reasons.

Although most of the forest stands in the LAI map appear

rather homogenous, certain variation within the stands can

be observed. This reflects the fact that even in highly

managed forests, stands do not develop evenly in space.

From the interpretation of the spatial patterns prevalent in

both parameter maps it can be seen that the values of the

crown volume map are in general inversely related to the

values of the LAI map. Young stands with low crown

volume have not undergone thinning measures and reveal

large LAI values and small crowns. Old stands with

relatively low values of LAI have built up large tree

crowns. From the resulting LAI map and the Forest

Geographic Information System, average values of LAI

Fig. 10. Map of effective leaf area index at Idarwald.
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were computed for 156 forest stands. Stand average LAI

was summarised into four age classes (Table 11). Mean LAI

is generally decreasing with increasing stand age. All forest

stands in the map support the age course of LAI observed

for the 40 stands that have been used to calibrate the

regression model (Fig. 2) and that were then used to

compute the map. Standard deviation of LAI is particularly

large for the age class of 31- to 50-year old stands. This

class also shows low minimum and large maximum values.

The reason for the large variability of the 31- to 50-year old

stands is that some stands of this age may be subjected to

thinning measures while others may remain undisturbed and

thinned at a later stage (Section 3.1).

The LAI map is a valuable resource. It was integrated

into the local Forest-GIS of Idarwald. Stand LAI may serve

to parameterise coarse scale ecological models (e.g., Biome-

Fig. 11. Map of crown volume at Idarwald.
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BGC) that are used to simulate net primary production and

carbon, nutrient and water cycling. The crown volume map

may help to assess the amount of standing biomass in

support of forest inventory procedures. Although remote

sensing methods rarely play a role in operational inventory

procedures, it may overcome certain limitations of tradi-

tional inventory practices.

4. Conclusions

This research intended to explore whether hyperspectral

data may improve estimation of biophysical forest variables

compared to multispectral data. Several narrow band and

broadband vegetation indices were compared. The follow-

ing conclusion were drawn from this study:

! Forest leaf area index (LAI) and crown volume (VOL)

were estimated with good accuracy from hyperspectral

remote sensing data;

! Orthogonal compared to ratio VI were better suited to

characterise forest LAI and crown volume;

! Hyperspectral data contain more information relevant to

the estimation of the forest stand variables than multi-

spectral data;

! Best hyperspectral VI in relation with LAI were typically

based on wavebands related to prominent water absorp-

tion features. However, more investigations are necessary

to confirm this result.

In future work we will explore image texture measures

applied to HyMap data for characterising forests. Besides

traditional measures of texture, geostatstical parameters

will be used to derive information about image objects. It

is hoped that this object information in addition to the

spectral information of single image pixels will allow a

better estimation of important biophysical forest stand

parameters. Empirical models developed on relatively

homogenous forest plantations have to be extended

towards mixed stands. For this purpose, the value of high

spatial resolution remote sensing data (e.g., Quickbird) has

to be evaluated. The rather limited potential of general-

isation inherent to empirical models suggests derivation of

forest parameters through physically based models. In the

next future we plan to use the INFOR model (Atzberger,

2000), a combination of the FLIM, SAIL and LIBERTY

models, to derive important forest parameters with an

accuracy comparable to that obtained with the empirical

regression models.
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