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Abstract— In video-based training, clinicians practice and
advance their skills on surgeries performed by their colleagues
and themselves. Although microsurgeries are recorded daily,
training centers are lacking the workforce to manually annotate
the segments important for practitioners, such as instrument
presence and position. In this work, we propose intelligent
instrument detection using Convolutional Neural Network
(CNN) to augment microsurgical training. The network was
trained on real microsurgical practice videos for which human
annotators manually gathered a large corpus of instrument
positions. Under challenging conditions of highly magnified
and often blurred view, the CNN was capable to correctly
detect a needle-holder (a dominant tool in suturing practice)
with 78.3% accuracy (F-score = 0.84) with recognition speed
above 15 FPS. The result is promising in the emerging domain
of augmented medical training where instrument recognition
presents benefits to the microsurgical training.
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I. INTRODUCTION

Watching a brilliant surgeon’s video will not

make you one, but recognizing what is possible and

seeing it done will inspire to be a better surgeon

and to achieve the goal.

Robert F. Spetzler, June 2016

Microsurgery is considered one of the most demanding
fields of medicine. Despite the great needs for effective
microsurgical training methods, today’s microsurgical train-
ing heavily relies on non-interactive video-based materials.
While residents are increasingly given access to hands-
on practice during real procedures, the availability of such
training is limited. Instead, cases recorded in live operating
rooms (OR) are typically annotated by expert surgeons
and then used as the primary training media. In video-
based training, clinicians learn, practice and advance their
skills on prior surgeries, performed by themselves or by
their colleagues. Skill development in microsurgery, however,
cannot be achieved by observations only [1].

Some of the goals of the training are to install bimanual
dexterity, increase the speed and accuracy, in order to reduce
errors and risks and ensure safety of the patient. Another goal
of the microsurgical technical skills training is an objective

(a) Raw view of the operative field

(b) Augmented view with detected instruments

Fig. 1: Real microsurgical procedure during the closing act
with a micro forceps (left), a needle-holder (right) and a
suture needle (middle). To guide attention of the users, the
prototype system automatically detects the needle-holder real
time. Heatmap on (b) was created by calculating the gradient
of the network.

evaluation of the skill development. Although developed
for decades [2] and shown to strengthen expertise [3], the
current evaluation frameworks focus merely on the outcome
evaluation, as suture quality and execution time.

To augment the microsurgical training, we envision an
intelligent system capable of tracking fine movements inside
the operation cavity and providing real-time feedback on



the process, training tasks and materials. The functionality
has a large potential for future training and intra-operative
interactive surgical systems, ranging from automatic an-
notations of real microsurgeries, studies of surgeon’s eye-
hand coordination, safety applications, to building situation
awareness models of microsurgeons [4].

Microsurgeries are recorded daily using the infrastructure
available at hospitals, however, instrument recognition, de-
tection, and annotation of instrument trajectories are tremen-
dously time demanding. Based on our experiences, complete
annotation of a single microinstrument in a 2.5 minutes long
video demands at least two hours of focused human attention.
Understandably, training centers do not posses workforce,
technical skills, and equipment to annotate surgical videos
manually.

Existing automatic systems for instrument detection and
tracking are unsuitable for microsurgical scenes. There are
many reasons why traditional object recognition algorithms
fail in this settings. The scenes recorded under the mi-
croscope are visually complex, blurred due to unfocused
microscope, shaky because of repositioning of microscope,
unstable because of tissue handling, and unevenly illumi-
nated, as illustrated in Figures 1 and 2. Furthermore, surgical
instruments have non-canonical appearance in general and
are only partially visible in the magnified field of view.

To augment human capabilities, advance user experience
in watching the surgical and practice videos and to lay
groundwork for future mixed- and virtual reality solutions,
we propose intelligent instrument detection using Convolu-
tional Neural Network (CNN). Here we investigate the use
of deep learning for instrument detection in microsurgery
practice videos. Advances in convolutional neural networks
(CNN) have been fruitful in various domains as face recog-
nition [5] and object detection [6], with promising overlap
to emerging domains as surgical tool tracking.

Our work has the potential to improve learning from
surgical and practice materials, increase engagement and
direct the focus of the audiences towards the fine orchestra
of neurosurgeon’s microinstruments working on the ever-
changing but fragile human tissue.

A. Background

The operative field magnified by a surgical microscope
poses a challenge for instrument detection and annotation.
Visually restricted field of view, incorrect depth perception,
inconsistent illumination and pervasive image blurriness are
inevitable in microscope views. Additionally, the surgical
scene is highly dynamic. The human tissue on the ”back-
ground” may be pulsing, bleeding and shaking with micro-
tremor caused by the human physiology and repositioning of
the microscope, resulting in motion blur in the videos.

With no surprise, understanding the operative field requires
training of selective attention for a human observer [7], and
numerous scene-specific input data for the detection algo-
rithms. Still, traditional object detection algorithms perform
poorly when encountering the surgical materials [8].

Fig. 2: Real view on microinstruments. The left column
presents well distinguishable instruments, the right column
presents the challenging conditions. No post-processing was
applied on the frames.

For this reason, a current practice of instrument tracking
heavily relies on camera systems and reflexive track points,
followed by reconstruction of the trajectories in 3D space.
These methods are less of favor among practitioners since the
microinstruments gain a significant weight due to the mark-
ers and thus, make the training conditions unrealistic [9].
Additionally, motion capture systems often cannot register
the fine micro-movements under the microscope.

To detect the instrument trajectories unobtrusively, prior
research has attempted to combine various computational
techniques. To estimate the position of needle holder in
suturing task, Furtado et al. has employed HSV filtering,
Watershed algorithm and Harris corner detectors in pipeline
for detection, and KLT for optical instrument tracking [8].



Fig. 3: Architecture of CNN for microinstruments detection.

CNN properties Value

Parameter initialization Random
Learning rate 0.001
Network depth 7
Stride size 2⇥ 2
Padding Same
Activation function ReLu
Pooling method Max pooling
Optimizer method Adam optimizer [10]

TABLE I: CNN parameters

Receiving 0.9978 correlation, the proposed methods esti-
mated well a position of a single tool in the simulated and
stable laparoscopical environment. Also in the laparoscopy
settings, Jiang et al. detected and tracked the tip of in-
strument using combination of background subtraction and
object detection [9]. In comparison to human annotators,
their object detection estimated the instrument position with
98.4% accuracy.

In both studies, the simulation environment and available
camera systems were dealing with a simplified task under
clear image conditions, ideal for object tracking. In this work,
we investigate instrument detection in the microsurgical prac-
tice scene with realistic instrument movements. Although the
scene is partially simplified due to a task board (see Figure
1), instruments movements, in terms of speed, angles and
directories, represent the actual microsurgical practice. For
automatic recognition, the condition of input frames presents
a difficult case for thresholding methods; therefore, deep
learning is employed in this work.

Multi-layered neural networks and Deep Learning have
gained momentum in numerous object recognition tasks [11].
In the medical domain, Deep Learning and Convolutional
Neural Networks, in particular, have been employed in detec-
tion, classification, and segmentation of human tissues [12].
In microscopy image analysis, Deep Learning has offered
efficient and objective computer-aided diagnosis grounded
in raw data [13]. In these cases, however, the input image
sets (as in case of brain tumors, breast cancer) present static
high-dimensional frames.

Intelligent recognition of instruments and understanding
of neurosurgeon’s interaction in the magnified field of view
is rare. In the endoscopy, Zhang et al. applied CNN for
automatic operation scene detection and annotation [14].
Using similarity-based augmentation, CNN could recognize
endoscopic instruments (snare tip, forceps tip, and cable)
from background frames with 95% accuracy and equal F1
score. The achieved performance has been motivating also

in this study, although the input image characteristics differ
fundamentally in the microscopy imaging.

To our best knowledge, we are the first to study instru-
ment detection under high microscope magnification using
Convolution Neural Network in microneurosurgical videos.

II. INSTRUMENT DETECTION IN MICROSURGERY

During our joint discussions with the local neurosurgeons,
the act of cutting and suturing was selected as an compelling
candidate for automatic instrument detection. Suturing (e.g.
stitching a wound at the end of the surgery) is an important
part of neurosurgical toolkit. In intestinal anastomosis, for
example, a prospective neurosurgeon needs to learn fine hand
movements and tool handling under the high magnification
of the microscope. Figure 4 illustrates the complicated path
of the instrument in one suture.
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Fig. 4: A trajectory of needle holder during a single suture.
Clustered segments present knotting when the needle holder
loops around the forceps.

The task of instrument detection splits into following
detection subtasks: instrument detection, classification and
position localization. In this work, we apply Convolutional
Neural Network to investigate instrument detection with ad-
ditional segmentation for localization. The established CNN
is trained on real microsurgical practice videos annotated by
human coders.

A. Architecture of Convolutional Neural Network

Convolutional neural network is a multi-layer network,
employing convolution to discover patterns in the input
image with respect to the labeled output. Our aim is to
detect instrument presence in a magnified video. The network



consists of the following layers: input, convolution, pooling,
flattening, dense layer, dropout and output.

Figure 3 illustrates the structure of our CNN model. In
the first layer, CNN accepts frames from the microscope
video stream. The input layer is three dimensional (height,
width and color channels) and connected to a convolution
layer of same size in height and width; however, the third
dimension is dedicated to various convolution filters. The
value of each tensor of the convolution layer is calculated
from the convolution of respective point in the input layer.
The connection weights from the previous layer determine
the convolution mask. Each of the convolution filters learns a
different pattern from the input frame. The convolution layer
is connected to the pooling layer which is half the width and
the height of the previous convolution layer but retains the
filter axis. The value of each tensor is then calculated with
maximum pooling; the value is determined by the tensor with
strongest connection from its group of tensors in the previous
layer.

In our case, we connect two of these convolution layer and
pooling layer pairs together so that the second convolutional
layer is connected to the first pooling layer. These layers are
trained to find patterns in the input layer. The latter pooling
layer is flattened to a single dimensional layer and connected
to the dense layer. In dense layers, each tensor is connected
to every tensor of its previous layer. The weights of these
connections are again trained to pick the most useful patterns
from the pooling layers to predict the instrument of interest.

In the training phase, we enable dropout in the dense layer.
The task of the dropout is to leave some of the tensors out
of the training to prevent over-fitting. The dropout is set to
keep 40 % of the values of the tensors. The dropout layer
is connected to the last - logits- dense layer (length=2).
The logits contain likelihoods corresponding to instrument
presence in the frame. Using softmax and argmax operations,
the likelihoods are transformed into a binary decision.

In training, the order of frames in the dataset is randomized
and group individual training samples are split into mini-
batches. This settings improves the parallelization and the
training speed on a GPU.

B. Dataset: Microsurgical suturing

The original dataset was gathered for practice purposes in
collaboration with a local hospital and Neurosurgical Center.
In the practice videos, residents were performing sutures in
a predefined task board under two magnifications (0.4 and
0.6); the higher magnification increased the task difficulty
and allowed the residents to practice for deep microsurgery.

Four microinstruments, as illustrated in Figure 2, were
used in the suture practice. A needle-holder and a micro

forceps were hold in the dominant and the non-dominant
hand, respectively, interchanging a needle in between, when
suturing and knotting. When the suture was completed, the
needle holder was removed from the view, the micro forceps
hold the suture wire and the microscissors were employed
to cut the loose wire endings. The practice was repeated 12
times, resulting in a recording of 30 minutes approximately.

Fig. 5: Annotations of the microinstruments. The human
annotators were instructed to annotate the needle holder
(right) frame by frame. The instrument is in the dominant
hand, carrying the needle during the suturing act, while the
micro forceps (left) assists.

13 human annotators annotated the presence and position
of needle-holder frame-by-frame (as illustrated in Figure 5)
in VGG Image Annotator (VIA) [15], with additional post-
visualization of quality check. Overall, the annotations of a
single tool required 39 hours of human focused work.

When creating a training dataset, we were primarily inter-
ested in the needle-holder for its role in the overall resident’s
training. With permissions of Center of Neurosurgery, we
gathered 57 834 positive and 40 098 negative frames from
microsurgical practice videos (97 932). When constructing a
training, validation, and test sets, all frames from the videos
were gathered and randomly shuffled. The dataset was split
into the training (96%), validation (2%) and test set (2%)
with unseen frames. The frames in these sets were captured
using a built-in Zeis OPMI microscope camera, recording at
30 Hz with resolution of 720⇥ 486 pixels.

Since the training and activation frames might reflect the
optics employed in the microscope, we aimed to test how
the CNN trained on the field of view from one model of
the microscope will perform when the microscope model
changes. An additional test set (Test set 2) was recorded us-
ing a different microscope (the built-in Zeiss Pico microscope
camera), sampling at 30 Hz with resolution of 720 ⇥ 480.
The differences in the resolutions were resolved in the input
layer during image downscaling. The suturing practice and
instruments employed remained same. Table II summarizes
properties of the datasets.

C. CNN Experiments

We use Convolutional Neural Networks (CNN) as basis
for image classification and developed two separate ways of
utilizing CNNs. First of these approaches, CNN1 in Table
III, splits the image into small, overlapping images which
are then classified with a CNN. The second approach, CNN2,
takes a more traditional path and rescales the whole image
into appropriate size (see Figure 3 for the network scheme).
Convolutional neural networks are implemented in Python
3.4 using TensorFlow [16].

Both CNNs share the same training video set. For CNN1
we split the frames into images of 128 ⇥ 128 px windows



Video content Suturing practice under the microscope
recorded using Zeiss OPMI and ZeissPico

Frame rate 30 Hz

Resolution 712⇥ 484 (Zeis OPMI) and 720⇥ 480 (Zeiss Pico)

Class labels Manually annotated by 13 trained annotators

Training set Whole frame needle-holder 55 491
(Zeiss OPMI) background 38 523
Validation set Frames needle-holder 1 181
(Zeiss OPMI) background 778
Test set 1 Frames needle-holder 1 162
(Zeiss OPMI) background 797
Test set 2 Frames needle-holder 275
(Zeiss Pico) background 226

TABLE II: Properties of training and testing datasets.

with small (2 px) and large (32 px) shifts over the image.
This sliding window scans the whole frame area from left
to right and from top to bottom with partially overlapping
windows. The rationale for the segmentation was to test CNN
capabilities in both instrument detection and instrument tip
location detection by classifying small parts of the frame
at a time. In contrast, CNN2 aims to detect whether the
instrument is presented in the frame and is trained and tested
on the full frames in the input layer.

The CNN networks were trained using server nodes of a
computer cluster Taito at CSC data center with restriction
to 24 training hours. The nodes were equipped with four
Nvidia Tesla P100 cards and two Xeon E5-2680 v4 CPUs.
As TensorFlow can utilize graphics cards for computations,
we used one P100 card for TensorFlow model training and
six CPU cores for training. The CPU cores were utilized
mainly at the beginning of the training process when raw
data is extracted from surgical videos. 96 GB of memory
was reserved for training on the video data, most of the
memory was used to hold downscaled raw video frames
for the network. On the other hand, the training on the the
windowed sample data consumed only 4GB memory.

Human-made annotations were pixel coordinates of the
instrument tip. These were converted to binary annotations
representing instrument existence. Using this information
the annotated frames were randomly labeled to belong to
training, validation or test set, so that each set contains
approximately the same ratio of positive and negative frames.
The binary labels were directly fed to CNN2 that predicts
existence of the tool in full frames. In addition, we extracted
128 ⇥ 128 pixel windows using the position annotations
to create training set for CNN1 that classifies windows.
The first extraction saved samples of positive windows that
have the tool tip at the center of the window; the second
extraction saved negative samples from the background.
Finally, malformed samples were removed from the training
data.

III. RESULTS

The task in the work was to recognize the presence of the
instrument in the microsurgical video. In evaluation of the
CNN performance, we measured recognition performance in

terms of accuracy, precision, F-score and processing speed.
Since the datasets were approximately balanced, accuracy
was employed as the main metric. Table III summarizes the
performance of CNN-based detection of the needle-holder
on the test (unseen) dataset.

The best performance on the test sets was achieved with
the full frames in the activation layer; in experiment E3,
CNN2 predicted the presence of the needle holder with
78.3% accuracy (F-score = 0.84) with the recognition speed
above 15 fps.

Interestingly, the segmentation of the input frame with 32
px window shift decreased both the performance as accuracy
dropped to 67.3% (F-score = 0.78) and the processing speed
was almost halved (8.84 fps). The finest window shift (2 px)
was tested for instrument localization; CNN was still capable
to deliver a performance above the chance level, however, the
speed was unsuitable for real-time recognition.

The microscope optics undoubtedly played the important
role in the recognition. The evaluation performed on the
unseen frames from the second microscope decreased by 12
to 17% in accuracy and 0.07 to 0.22 in F-score, respectively.
The results clearly suggest transfer learning will be required
to adapt the CNN to particular microscope vendors.

IV. DISCUSSION AND CONCLUSION

Particularly for novice neurosurgeons and residents, ev-
erything in the operative field is interesting [17]. Compared
to trained experts, novices struggle to direct attention to
proper and relevant locations and to focus on the tips of
the instruments when needed [7]. In high risk situations,
the operative field can get rapidly unreadable due to pulsing
brain tissues covered in blood. For practitioners in training,
intelligent instrument detection can ease the situation and
redirect the focus towards instrument movements. In this
work, we presented a first step toward augmented micro-
surgical video training using CNN.

The best recognition rates (accuracy = 78.3%, F-
score=0.84 on the unseen set) were received with CNN
trained on full frames without additional segmentation. The
recognition performance achieved was in line with the cur-
rent research. Compared to [14], for example, we have omit-
ted data augmentation to increase sample size in the classes.
Interestingly, even without augmentation, CNN trained on
whole frames achieved better performance compared to CNN
with traditional augmentation. The proposed similarity based
augmentation will likely improve the recognition perfor-
mance and belongs to our future work.

The recognition speed achieved with CNN trained on full
frames exceeded 15 fps, suitable for real-time processing.
The processing time can be easily improved. The processes
for frame extraction and frame saving were implemented
with CPUs and covered operations such as resizing and
blending; these are suitable candidates for parallelization on
GPU cores. Overall, instrument detection is expected to get
faster by adding more CPU cores or GPU cards since most
components of the process are well parallelizable.



Experiment Network Test set Segmentation Accuracy Precision F-Score Processing speed [fps]

E1 CNN1 Test set 1 128⇥ 128, shifted by 32 px 0.673 0.650 0.784 8.864
E2 CNN1 Test set 1 128⇥ 128, shifted by 2 px 0.601 0.600 0.750 0.066
E3 CNN2 Test set 1 Full frame 0.783 0.735 0.846 15.186

E1 CNN1 Test set 2 128⇥ 128, shifted by 32 px 0.553 0.551 0.710 8.789
E2 CNN1 Test set 2 128⇥ 128, shifted by 2 px 0.551 0.550 0.710 0.066
E3 CNN2 Test set 2 Full frame 0.519 0.546 0.625 17.893

TABLE III: Detection rates on the testing sets.

Finer segmentations delivered lower performance. The
finer window shift could have introduced more possibilities
for false predictions. Additionally, interaction with tissues
and instruments under the microscopy has been known
to be prone to depth distortion and motion blur [7]. As
systematically evaluated by Dodge and Karam, currently
available deep learning models are highly impacted by image
quality, especially by blur and noise [18]. In future work,
we will follow Dodge and Karam’s recommendation to train
CNN specifically targeting blurry microscope input.

In future work, instrument detection will benefit from
advanced neural network concepts, for example transfer

learning, multi-object learning and end-to-end learning [11].
Each of the concepts solves a different obstacle. Training and
re-training of a whole network is tremendously time demand-
ing. Transfer learning will potentially use an existing larger
pre-trained networks with pre-trained low-level features and
adapt the last layers to microsurgical settings.

Multi-object deep learning presents an expected exten-
sion of the current CNN as majority of microsurgeries
are performed with several tools at once. Finally, multi-
instrument detection and localization is too complex for a
single classifier; therefore, end-to-end learning will allow us
to split the problem to different recognition pipelines and
utilize the result in the end.

A. Medical applications and future work

Instrument detection offers numerous emerging applica-
tions both in realistic surgical training and in live neuro-
surgeries in OR. In this work, we envisioned residents and
microsurgeons in training who learn not only from pre-
recorded video surgeries but also from regular visits at OR
where the microscopic view is duplicated at side screens. In
these contexts, real-time instrument augmentation allows for
better understanding of expert actions and for faster learning
of expert’s skills.

In the OR teams, responsible for assisting the neuro-
surgeons with the right instrument at right time, instru-
ment detection presents a computer-mediated technique for
improving interaction between the neurosurgeon and the
team. Instrument detection is a first step for augmenting the
field of view with instrument description and characteristics.
Instrument detection and tracking is a crucial part in studies
of surgeon’s expertise [9] and in all domains where a
human operator needs to practice a fine orchestra of micro-
movements to achieve mastery in eye-hand coordination.
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