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ABSTRACT

This paper proposes to use a recurrent neural network for black-
box modelling of nonlinear audio systems, such as tube amplifiers
and distortion pedals. As a recurrent unit structure, we test both
Long Short-Term Memory and a Gated Recurrent Unit. We com-
pare the proposed neural network with a WaveNet-style deep neu-
ral network, which has been suggested previously for tube ampli-
fier modelling. The neural networks are trained with several min-
utes of guitar and bass recordings, which have been passed through
the devices to be modelled. A real-time audio plugin implement-
ing the proposed networks has been developed in the JUCE frame-
work. It is shown that the recurrent neural networks achieve sim-
ilar accuracy to the WaveNet model, while requiring significantly
less processing power to run. The Long Short-Term Memory re-
current unit is also found to outperform the Gated Recurrent Unit
overall. The proposed neural network is an important step forward
in computationally efficient yet accurate emulation of tube ampli-
fiers and distortion pedals.

1. INTRODUCTION

Virtual analog modelling is an active area of research, which seeks
to create software that can accurately emulate popular music hard-
ware, such as instruments, audio effects or amplifiers [1]. Nonlin-
ear systems with memory, such as guitar amplifiers and distortion
pedals are particularly challenging to emulate [2}|3]. Generally, the
approaches to virtual analog modelling fall into three categories,
“white-box” [2} 14115, 16]], “grey-box” [[7,18]], and “black-box” [9}10]
modelling. This paper is concerned with black-box modelling of
tube amplifiers and distortion pedals using a recurrent neural net-
work (RNN).

This is a very timely topic, as the first attempts to model non-
linear audio circuits with a Long Short-Term Memory (LSTM)
neural network were published last year [111[12]]. Schmitz and Em-
brechts used a hybrid neural network consisting of a convolutional
layer in front of an RNN [12]]. Zhang et al. tested tube amplifier
modelling using an LSTM neural network with many hidden lay-
ers but only a few units per layer. They reported that the sound
quality of the emulation was not good enough, as there were clear
audible differences with respect to the real amplifier [11].

In recent works [13} [14], we adapted the WaveNet convolu-
tional neural network to model nonlinear audio circuits such as
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tube amplifiers and distortion pedals. In [14] it was shown that
the WaveNet model of several distortion effects was capable of
running in real time. The resulting deep neural network model,
however, was still fairly computationally expensive to run.

In this paper, we propose an alternative black-box model based
on an RNN. We demonstrate that the trained RNN model is capa-
ble of achieving the accuracy of the WaveNet model, whilst re-
quiring considerably less processing power to run. The proposed
neural network, which consists of a single recurrent layer and a
fully connected layer, is suitable for real-time emulation of tube
amplifiers and distortion pedals.

The rest of this paper is organized as follows. Section 2 dis-
cusses the two nonlinear circuits, which are used as target devices
in this study, as well as the creation of the training data. Section
3 introduces the neural network architecture that we use for mod-
elling. Section 4 focuses on the training of the RNNs. The real-
time implementation of the RNN is presented in Section 5. Section
6 reports experiments and comparisons we have conducted to val-
idate this work. Section 7 concludes the paper.

2. MODELLED DEVICES

Two commonly used types of nonlinear audio circuits are distor-
tion pedals and guitar amplifiers. As such, for this study, we chose
to model the Electro-Harmonix Big Muff Pi distortion/fuzz pedal
and the Blackstar HT-1 combo guitar amplifier.

The Big Muff is a famous guitar pedal, whose first version was
released by Electro-Harmonix in 1969 [15]. Since then, numerous
versions of the pedal have appeared, each with slight differences
to the original circuit. The Big Muff is known for its heavily dis-
torted sound, which is produced by its two cascaded diode clipping
stages. The pedal has a “sustain” knob for controlling the pre-gain,
i.e. the gain applied to the signal before the clipping stages, a “vol-
ume” knob for controlling the post-gain, as well as a “tone” knob
for controlling the shape of the filter in the tone stage. Several
researchers have studied the digital modelling of the Big Muff dis-
tortion pedal prior to this work [16}[17,[14].

The Blackstar HT-1 is a small 1-Watt vacuum tube ampli-
fier [[18]]. It has two channels: a high-gain and a low-gain channel.
In this work, the high-gain channel was used, as it introduces more
distortion to the signal. The amplifier has an unconventional tone
stage. The “ISF” tone knob on the amplifier allows for continuous
shifting between two distinct tone settings, which the manufac-
turer describes as the “American” and “British” tones. The ampli-
fier also has a “gain” knob and a “volume” knob, which control the
pre-gain and the post-gain respectively.
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2.1. Training Data

One issue which is common to many neural network applications
is the collection of training data. Often this is a very labour in-
tensive process, as a large collection of training examples needs to
be gathered and labelled. For this application the process is rela-
tively straightforward, as training data can be generated simply by
inputting audio signals to each of the devices being modelled. The
resulting output can then be recorded from the devices and used as
the ground truth.

The input audio files were taken from the guitar and bass guitar
datasetq |“|described in [[19}120]], respectively. The full dataset used
consists of 8 minutes and 10 seconds of audio. The dataset was
split into a training set of 5 min and 42 s, a validation set of 1 min
and 24 s and a test set of 1 min and 4 s. The audio was split so
that each data subset contained approximately equal proportions
of guitar and bass recordings. All of the training data audio used
during this study was recorded at a sampling rate of 44.1 kHz.

The recording was carried out using a MOTU UltraLite-mk3
USB audio interface. One output of the audio interface was con-
nected to the input of the device being measured. The output of
the device being measured was recorded by connecting it to one
of the inputs of the audio interface. The direct signal coming out
of the audio interface was also measured by connecting one of its
outputs to one of its inputs. The test audio was then output from
both interface output channels and recorded through both input
channels. The recorded direct signal from the audio interface and
the recorded output signal from the device being measured makes
up the input/output pairs which were used during network training
and testing.

This process was adapted slightly for the HT-1 amplifier. The
HT-1 amplifier has an emulated line out, which applies a speaker
cabinet simulation to the signal. For the purposes of this study
we are not interested in modelling this, so the speaker output of
the amplifier was used instead. To allow for connection from the
amplifier speaker output to the audio interface input, a Bugera PS1
power attenuator was used. The HT-1 amplifier speaker output was
connected to the power attenuator and the line-out of the power
attenuator was connected to the input of the audio interface. Addi-
tionally the speaker output of the power attenuator was also con-
nected to a speaker cabinet.

The authors acknowledge that the choice of load will affect
the output of the amplifier. Specifically whether the load is re-
sistive or reactive has been shown to influence the output of tri-
ode tubes [21]. Whilst the amplifier is connected, indirectly, to
a reactive load (the speaker cabinet), it is still thought that the
output will be influenced by the presence of the power attenua-
tor. Ideally the amplifier could be connected to a speaker cabinet,
and the amplifier output could be recorded directly. This is diffi-
cult to achieve in practice. One option is to record the output of
the speaker cabinet using a microphone, however this introduces a
number of additional effects to the amplifier output. Namely the
speaker cabinet nonlinearities and frequency response [22], as well
as the coloration of the signal introduced by the microphone and
its placement [23]. For these reasons, we chose to use the power
attenuator for the collection of the training data.

For each device, the entire dataset was processed five times.
Each time the user control being modelled was adjusted. For the
HT-1 the control being modelled was the “ISF” control, and for
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Figure 1: Proposed neural network architecture, where x[n] is the
input signal, s|n] and s[n — 1] are recurrent unit states, h[n] is the
recurrent unit output and §[n] is the neural network’s predicted
output sample.

the Big Muff it was the “Tone” control. For each measurement
the control was set to one of five equally spaced settings, from the
minimum (0) to the maximum (10) possible value.

For all recordings the HT-1 “gain” and “volume” knobs were
set to 5 and 10 respectively. For the Big Muff the “volume” and
“sustain” knobs were set to 10 and 5 respectively.

3. RECURRENT NEURAL NETWORK MODEL

The proposed model is a gated RNN based on either LSTM or
Gated Recurrent Units (GRUs). The precise behaviour of LSTM
units and GRUs is described in Sections [3:1] and [3.2] this section
describes the general behaviour of the model and applies whether
the recurrent unit selected is an LSTM or a GRU.

The proposed model consists of two hidden layers, a recur-
rent unit, followed by a fully connected layer. This architecture
is shown in Figure[I] Unlike feedforward neural network layers,
recurrent units have a state, which is used in the computation of
the output and then updated at each time step. The model can
be thought of as a function which is trained to predict the current
output sample value, based on the current input signal value, the
recurrent unit’s state and the model’s learned parameters:

g[n] = f(z[n], s[n - 1],0), 1)

where n is the discrete time index, 6 are the model’s learned pa-
rameters and s(n — 1) is the recurrent unit’s state at the previous
time step. In this study, §[n] represents the model’s prediction of
a single output sample and z[n] the unprocessed input signal.

At each time step an output is produced by the recurrent unit
and fed into the fully connected layer. The size of the recurrent
unit’s output is determined by its hidden size, which is a model
parameter defined by the user. Generally a greater hidden size
produces a model capable of emulating more complex behaviour,
but also requiring increased computational resources to train and
run. The fully connected layer therefore consists of a single neu-
ron, with a number of inputs equal to the recurrent unit hidden
size. The output of this layer represents the networks predicted
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Figure 2: Diagram of an LSTM unit, where c represents the cell
state, h the hidden state and x[n] is the input signal at time step n.

sample value for that time step. In addition to this, the recurrent
unit’s state is also updated at each time step, based on the previous
state, current input and the model’s learned parameters. As each
state update is a function of the previous state, this means that the
model has a potentially unlimited memory and in practice learns
through training the effective memory required for the system be-
ing modelled.

The neural network model can also include conditioning, which
allows for the emulation of the target device’s user controls. To add
conditioning, the input signal is extended to include an additional
value representing the user control’s setting, as suggested in [13].
At each time step the input signal will then be a vector containing
the input sample and one or more conditioning values, depending
on how many controls are included in the model.

It is possible to add additional recurrent layers before the final
fully connected layer, however, preliminary testing indicated that
this had little influence on the resulting model’s accuracy. As such,
the model was limited to just a single recurrent layer for this study.

3.1. Long Short-Term Memory

In an LSTM [24], the unit’s state consists of two vectors, the cell
state, ¢, and the hidden state, h. At each time step, the inputs are
the current time step input, xz[n], the initial cell state, ¢[n — 1], and
the initial hidden state, h[n — 1]. The LSTM produces two outputs,
the updated hidden state, h[n], and the updated cell state, c[n].
An LSTM unit is depicted in Figure 2] The outputs are produced
according to the following functions:

i[n] = o(Wisz[n] + bii + Whih[n — 1] + ba,), (2)

fln] = o(Wiszln] + big + Wiphln — 1] +brs), ()
é[n] = tanh(Wicx[n] + bic + Wheh[n — 1] 4+ bre), (4
oln] = c(Wioz[n] + bio + Whoh[n — 1] + bro), 5)

c[n] = flnjeln — 1] +inje[n, (©)

h[n] = o[n|tanh(c[n]), (7)

where i[n] is the input gate, f[n] is the forget gate, ¢[n] is the can-
didate cell state, o[n] is the output gate, tanh(.) is the hyperbolic
tangent function and o (.) is the logistic sigmoid function.
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Figure 3: Diagram of a GRU, where h represents the hidden state
and x[n] is the input signal at time step n.

The LSTM unit state consists of the hidden state and the cell
state. The state update of the LSTM unit is determined by the
eight weight matrices and eight bias vectors, denoted by W and
b respectively in the above equations. It should be noted that the
biases in the neural network are simply constant offsets applied
during the unit computation, and are in no way related to bias in
electronic circuits. These weights and biases make up the learnable
parameters of the LSTM unit, which are learned during training.
The size of the weight matrices and bias vectors is determined by
the input size and the LSTM’s hidden size. The updated cell state,
c[n], and the updated hidden state, h[n], are used as the initial state
for the next time step, n + 1. The updated hidden state is also used
as the output of the LSTM for the current time step, n, which is
input into the fully connected layer in our model.

3.2. Gated Recurrent Unit

A GRU [25] is an alternative recurrent unit, which can be used
in the proposed architecture shown in Figure [l In a GRU, the
unit state consists of a single hidden state vector, h. At each time
step, the inputs are the current time step input, zz[n] and the initial
hidden state, h[n — 1]. The GRU produces a single output, the
updated hidden state, h[n]. A GRU unit is depicted in Figure 3]
The hidden state is calculated according to the following functions:

r[n] = o(Wirz[n] + bir + Whrh[n — 1] + bar), ®

z[n] = o(Wizz[n] + biz + Whzhn — 1] 4 b)), 9)
h[n] = tanh(Winz[n] + bin + r[n](Wanh[n — 1] + bpr)), (10)
h[n] = (1 — z[n])ﬁ[n} + z[n]h[n — 1], (11

where r[n] is the reset gate, z[n] is the update gate and h[n] is the
candidate hidden state.

The GRU unit state consists of the hidden state vector, which
is determined by the six weight matrices and six bias vectors, de-
noted by W and b respectively in the above equations. These
weights and biases are the learnable parameters of the GRU. The
size of the weight matrices and bias vectors is determined by the
input size and the GRU’s hidden size. The updated hidden state,
h[n], is used as the initial state for the time step, n + 1, as well as
being used as the output of the GRU for the current time step n.
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3.3. Fully Connected Layer

The fully connected layer, which can be seen in Figure[]] is not
followed by an activation function, so the output sample predicted
by the network is simply an affine transformation of the hidden
state vector:

gln) = Wrehln] + by, (12)
where Wy, and by, are the fully connected layer’s weight matrix
and bias vector respectively and h[n] is the recurrent unit hidden
state at time n. As the model outputs a single value at each time
step, the fully connected layer consists of just a single neuron. As
such the weight matrix reduces to a vector and the bias vector con-
sists of a single value in this case.

4. TRAINING

Recurrent Neural Networks are generally considered to be harder
to train effectively in comparison to feedforward networks [26].
As such this section describes, in detail, the training process and
techniques used in the completion of this study. All the RNN mod-
els produced for this paper were trained using the Adam optimizer
[277]], with an initial learning rate of 5 x 1074

4.1. Loss Function

The loss function used during training is based on the error-to-
signal ratio (ESR) with pre-emphasis filtering, as used in [13} [14].
The ESR is the squared error divided by the energy of the target
signal. A pre-emphasis filter was applied to the output and target
signals before computing the ESR. The pre-emphasis filter helps
the network learn to model the high-frequency content. For a seg-
ment of training signal of length IV, the pre-emphasised ESR is
given by:

N— N
> o |ypln] — gp[n]l?
N—
>onzo lys[n]l?
where y,, is the pre-emphasised target signal, and ¢, is the pre-

emphasised neural network output. The pre-emphasis filter was
chosen to be a first-order high-pass filter with transfer function

Epsr = ) 13)

H(z)=1-0.85z"". (14)

Additionally, a DC term was added to the loss to reduce the
DC offset in the model outputs. The DC loss term is given by:
_ w2t (i) = gn))?
Epc = ME=n=0 S (15)
~ 2m—o Y[l
The DC term was introduced as early tests showed the model out-

puts contained a DC offset. The final loss function used for train-
ing is given by:

& = &esr + Epc. (16)

4.2. Truncated Back-Propagation Through Time

When training RNNSs it is possible to update the network parame-
ters at each time step, however this comes with a very high com-
putational cost. An alternative approach is to allow the RNN to
process an entire sequence and then update the parameters. This
involves backpropagating through the entire sequence to find the
required gradients, as such this is often referred to as Backprop-
agation Through Time (BPTT) [28]. When modelling very long

sequences, updating once per sequence results in slow training as
the network parameters are updated infrequently. In addition to
this, each update requires backpropagation through the entire se-
quence, which is computationally expensive.

Truncated BPTT [29] is a method in which parameter updates
are carried out during the processing of a sequence. This means
that updates can be carried out frequently and the recurrent unit
state can persist between updates. The frequency of parameter
updates and the number of time steps to run BPTT through for each
update are training hyperparameters that are chosen by the user
[26]. Our model is trained on audio sampled at a rate of 44.1 kHz,
so the sequence length is very long even for a second of audio. As
such truncated BPTT was used during the training of the RNNs
in this study. The parameter updates were carried out every 2048
samples, with BPTT being run over 2048 time steps each update,
as this was found to be an effective update frequency during our
early experiments.

4.3. Batch-Processing

The training dataset was split into half-second segments. This was
done for two reasons, firstly, by creating a large number of sepa-
rate sequences, the short sequences can be processed in parallel,
greatly reducing the time required to process the entire dataset.
Secondly, having short segments allows the dataset to be shuffled
at each epoch, which is known to improve network convergence
rates [30]. The training data segments were shuffled at the begin-
ning of each epoch and processed in mini-batches of 40 segments.
At the start of each mini-batch the recurrent unit’s initial state is
set to 0. The first 1000 samples are then processed without up-
dating the network parameters, to allow the recurrent unit state to
initialise. The remaining samples are then processed, with back-
propagation and parameter updates being carried out every 2048
samples. This is repeated until the entire training dataset is pro-
cessed. The training dataset is then shuffled for the next training
epoch.

5. REAL-TIME IMPLEMENTATION

A real-time implementation of the RNN was developed in C++.
The implementation was built using the JUCE framework and the
Eigen library for matrix and vector operations. JUCE can be used
to build real-time audio plugins in the common VST, AU, and
AAX formats supported by modern digital audio workstations.
The developed plugin can be used to process audio through the
trained models.

5.1. Recurrent Layer Computations

Algorithm [T] shows how the state update for the LSTM, as given
by Equations (2)—(7), is carried out in practice. The eight matrix
multiplications in Equations (Z)—(3), which involve the input = and
hidden state h, are performed as two bigger matrix multiplications.
Furthermore, the eight bias terms in these equations can be com-
bined to a single bias term.

The result of these matrix multiplications and the bias addi-
tion are stored in the vector v, which contains the non-activated
values of the input gate i[n], forget gate f[n], output gate o[n],
and the candidate cell state ¢[n]. The hyperbolic tangent and lo-
gistic sigmoid activation functions are applied to v elementwise
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Algorithm 1 LSTM State Update

Require: Layer input x, hidden state h, cell state ¢, hid-
den size N, input weight W;, state weight W), bias b,
[conditioning term beond]

v+ Wiz +Wrh+b

2 if beona Was given then v <— v + beond

: foreach ¢ in [0, N[ do

cli] <= o(v[N + i])c[i] + o([v[i])tanh(v[2N 4 i])

h[i] < o(v[3N + 7])tanh(c][7]

: return h, ¢

when computing the new cell state ¢ and the new hidden state h.
The GRU computations are carried out in a similar fashion.

In the real-time implementation, the conditioning is not given
to the layer in the input vector = in the same way as it was de-
scribed in Section[3] Instead, since the conditioning is not typically
updated at audio rate, processing power is saved when the effect
of the conditioning in the layer activation is computed separately,
and stored into a vector beond, Which is then added to v at each time
step.

5.2. Computational Load

The computational load of the implementation was tested with dif-
ferent RNN configurations. Models using LSTM units and GRUs
were tested with different hidden state sizes. The results are shown
in Figure[d The processing speed is reported in terms of compute
time required to process one second of audio, which was estimated
by running the models on an Apple iMac with an 2.8 GHz Intel
Core i5 processor. The GRU models run faster than LSTM mod-
els using the same hidden size. Using a single recurrent layer, an
LSTM network runs faster than real time up to a hidden size of
160, whereas a GRU runs faster than real time up to a hidden size
of 192.

6. COMPARISON OF MODELS

Models of the devices were created using two neural network ar-
chitectures, the RNN model described in this paper, and the con-
volutional WaveNet-like neural network described in [[13}[14].

For the RNN model, both the LSTM and GRU recurrent unit
types were tested, with the hidden size ranging from 32 to 96. Each
model was trained for 20 hours on a Nvidia Tesla V100 Graphics
Processing Unit (GPU). The validation error was calculated every
other epoch. Once the training was complete, the test loss was
calculated using the model parameters from the epoch with the
lowest validation loss. An example of the validation and train-
ing loss during training is shown in Figure[5] It can be seen that
around epoch 250 there is a large increase in both the training and
validation loss. It is not entirely clear why this sudden increase in
loss occurs, however this was found to be fairly common during
the training of the RNN models. As the spike includes both the
training and validation loss, it does not indicate that the network is
overfitting to the training dataset.

For the WaveNet model, the three configurations presented in
[[14] were used. The models vary in the number of convolutional
layers and in the number of channels in the convolutional layers,
i.e. the hidden size. All models use gated activations. Training
the WaveNet models took approximately two to three hours on the
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Figure 4: Compute time of the real-time implementation for pro-
cessing 1 s of audio at a 44.1-kHz sample rate, using different
hidden sizes.
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Figure 5: Validation and Training loss for an RNN model of the
Big Muff pedal.

GPU. The processing speed of the WaveNet models was estimated
using the C++ implementation presented in [14].

Model accuracy is evaluated in terms of the ESR loss, com-
puted without pre-emphasis filtering, achieved on the unseen test
dataset. The processing speed is reported in terms of compute time
required to process one second of audio. A comparison between
the RNN and WaveNet models of the HT-1 and the Big Mulff is
shown in Tables [T]and 2] respectively.

In terms of speed the results show a clear improvement for
the RNN in comparison to the WaveNet model. The fastest RNN
requires just 0.097 s to process a second of audio. The slowest
RNN takes 0.41 s, which is less than the fastest WaveNet which
takes 0.53 s to process a second of audio.

In terms of accuracy, the results vary depending on the de-
vice being modelled. In the case of the Big Muff pedal, the most
accurate RNN model shows a considerable improvement over the
most accurate WaveNet model. For the HT-1 amplifier the most
accurate WaveNet outperforms the RNN. A comparison of audio
processed by the best performing RNN model and the HT-1 ampli-
fier is shown in the time domain in Figure[6]and in the frequency
domain in Figure[7] The plots show good agreement between the
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Table 1: Error-to-signal ratio and processing speed for the
Wavenet and the proposed GRU/LSTM models of the HT-1 Am-
plifier. The best results are highlighted.

Model Hidden Layers Number of ESR Time (s) /s
Size Parameters of Output
WaveNet 16 10 24065 | 2.2% 0.53
WaveNet 8 18 11265 | 1.2% 0.63
WaveNet 16 18 43265 | 0.79% 0.91
GRU 32 1 3393 | 3.3% 0.097
LSTM 64 1 17217 | 1.8% 0.24
LSTM 96 1 38113 | 1.1% 0.41

Table 2: Error-to-signal ratio and processing speed for the
Wavenet and proposed LSTM models of the Big Muff pedal. The
best results are highlighted.

Model Hidden Layers Numberof ESR  Time(s)/s
Size Parameters of Output
WaveNet 16 10 24065 11% 0.53
WaveNet 8 18 11265 | 9.9% 0.63
WaveNet 16 18 43265 | 9.2% 0.91
LSTM 32 1 4513 | 10% 0.12
LSTM 48 1 9841 | 6.1% 0.18
LSTM 64 1 17217 | 4.1% 0.24

model output and the target device, however in future work lis-
tening tests should be conducted to verify the performance of the
models.

6.1. Conditioning

The test loss was also computed separately for each of the five
conditioning values the RNN models were trained on. For each
model, the conditioning value with the greatest test loss was com-
pared to the average test loss over all the conditioning values. The
most extreme deviation from the average test loss was 16%, with
the average deviation being 8%. This demonstrates that the mod-
els achieve a similar level of accuracy for each of the conditioning
values.

On the devices modelled, the control knobs are continuous,
allowing the user to select any value between the minimum and
maximum setting. The models have been trained on data sam-
pled at just five of the possible control knob settings, however the
trained model is not limited to just these five settings. In order
to test how well the RNNs can extrapolate to conditioning values
not seen in training, a model was trained with the center condi-
tioning value removed from the training dataset. The test lost was
then computed for the unseen center conditioning value, and com-
pared to the average test loss. For both the HT-1 and Big Muff the
test loss for the unseen conditioning value was within 0.2% of the
average. Informal listening tests also indicate that the models pro-
duces realistic outputs when the conditioned value is set to a value
not seen during model training.

Audio examples of the models are available at the accompa-
nying web page [31]).

7. CONCLUSIONS

This work has compared the performance of two types of neural
network for the real-time emulation of a distortion pedal and a vac-

Time (ms)

Figure 6: Waveform of a guitar sound processed through the HT-1
guitar amplifier; and through the most accurate RNN model.
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Figure 7: Spectrum of a guitar sound processed (top) through
the HT-1 guitar amplifier, and (bottom) through the most accurate
RNN model. The circles indicate the level of the first 15 harmonics
in the upper spectrum.

uum tube amplifier. The single layer RNN model presented in this
paper requires much less processing power to run in comparison
to a previously presented WaveNet-like convolutional neural net-
work, and can be run in real time. The accuracy of the RNN model
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was also comparable to or better than the WaveNet, depending on
the device being modelled. Whilst listening tests have been car-
ried out previously for the WaveNet-like model [13]], future work
should include listening tests to validate the proposed RNN model.

Of the two types of the recurrent unit tested, the GRU was
shown to run slightly faster than the LSTM, for equivalent hid-
den sizes. However, we recommend the LSTM network over the
GRU, as our tests indicate that for LSTM and GRU networks of
roughly equivalent running speed, the LSTM generally achieved
higher accuracy.
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