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Abstract The Surflex flexible molecular docking method

has been generalized and extended in two primary areas

related to the search component of docking. First, incor-

poration of a small-molecule force-field extends the search

into Cartesian coordinates constrained by internal ligand

energetics. Whereas previous versions searched only the

alignment and acyclic torsional space of the ligand, the

new approach supports dynamic ring flexibility and all-

atom optimization of docked ligand poses. Second,

knowledge of well established molecular interactions be-

tween ligand fragments and a target protein can be directly

exploited to guide the search process. This offers advan-

tages in some cases over the search strategy where ligand

alignment is guided solely by a ‘‘protomol’’ (a pre-com-

puted molecular representation of an idealized ligand).

Results are presented on both docking accuracy and

screening utility using multiple publicly available bench-

mark data sets that place Surflex’s performance in the

context of other molecular docking methods. In terms of

docking accuracy, Surflex-Dock 2.1 performs as well as the

best available methods. In the area of screening utility,

Surflex’s performance is extremely robust, and it is clearly

superior to other methods within the set of cases for which

comparative data are available, with roughly double the

screening enrichment performance.

Keywords Virtual screening � Enrichment � rmsd �
Force field � Flexibility � Scoring function

Introduction

Discovery of novel lead compounds through computational

exploitation of experimentally determined protein struc-

tures, either derived from screening of databases or through

focused design exercises, is well established [1], and

methodological development within the docking field re-

mains an active area of investigation for a large number of

research groups. Many docking methods have been de-

scribed, and they vary in their approaches to two compo-

nents: scoring functions and search methods [2–15]. The

searching and scoring problems are intimately tied together

for two reasons. First, many search strategies make direct

use of their scoring functions even deep within the search

space in order to prune poor partial solutions. Second, the

construction of a search strategy may make implicit

assumptions about the space of ligand configurations. For

example, a docker may choose to vary only the six trans-

lational and rotational parameters of alignment along with

the dihedral angles of acyclic rotatable bonds (collectively

called the pose parameters). Implicit in this treatment is the

idea that the space covered by varying the pose parameters

alone includes a high-scoring ligand pose that is close to

correct. Earlier versions of Surflex-Dock were restricted

purely to exploration of this pose parameter space [16, 17].

The focus of this work is in moving beyond the limitations

of exploring the pure pose parameter search space and,

when appropriate, in exploring it with the benefit of prior

knowledge of a protein ligand interaction.

This paper presents three methodological enhancements

to the search process:

1. Ligand energetic modeling: Limited to pure pose

parameter variation, a docker may be unable to recover

from poor initial ligand coordinates that result in high
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strain. Also possible are cases where slight changes in

a ligand that are achievable only through bending and

flexing the structure are required to take a nearly

correct but low-scoring ligand pose to a correct and

high-scoring ligand configuration. Implementation of a

small-molecule force field within Surflex-Dock 2.1

increases its robustness, particularly with respect to

screening effectiveness.

2. Ring flexibility: With the internal implementation of a

force field, a general method to dynamically search

ring systems became straightforward. The method is

both fast and general, and is not limited to a specific set

of pre-computed ring structures. This feature is par-

ticularly useful in terms of enhancing docking accu-

racy, though it enhances screening utility in cases

where the active ligands have flexible rings.

3. Knowledge-based docking: In practical use, it is very

commonly the case that a ligand design exercise in-

volves synthetic analogs of a compound whose bound

structure is known. In such cases, a particular inter-

action may be well understood: for example a hinge

interaction in a kinase, a metal chelation geometry in a

metalloenzyme, or a P1 specificity pocket interaction

in a serine protease. Both for efficiency in workflow

and for direct comparison of different analogs, speci-

fication of the position of a molecular subfragment can

be advantageous. Surflex-Dock 2.1 implements this

feature in a way that allows sensitive control of the use

of the placed molecular fragment.

The practical appeal of these algorithmic enhancements

will be generally evident to those who make use of

docking tools since each of these algorithmic enhance-

ments, on first-principles arguments, should result in im-

proved performance. This paper establishes the

quantitative results of applying these procedures with

respect to both docking accuracy and screening utility.

The former measures the proportion of cases where a

docking algorithm is able to identify the correct bound

configuration of a ligand from a starting pose unrelated to

the bound one, either among the top set of returned poses

or as the top scoring pose. The latter measures the ability

of a docking algorithm, given a single protein structure, to

correctly rank a set of known active ligands against a

background of putative inactives (called decoys). A recent

and valuable trend within the field has been the use of

standard benchmarks on multiple methods [16–22]. For

the work reported here, benchmarks were selected either

for which previous versions of Surflex-Dock had been

tested [16, 17, 19] in order to show the effects of new

features, or where protein and ligand structures were

publicly available along with performance of widely used

methods [23, 24].

The four publicly available benchmarks addressed either

screening utility or docking accuracy:

1. Screening utility, 27 proteins: This set consists of 27

protein structures, each with from 5 to 20 known li-

gands along with two different sets of decoy mole-

cules. The set incorporates the widely used estrogen

receptor and thymidine kinase test cases of Rognan’s

group [13, 16–19]. This will be called the Pham set.

2. Docking accuracy, 81 complexes: This set consists of

81 protein/ligand complexes forming a subset of the

134 from the report of Jones et al. [11] and also used in

the original report of Surflex-Dock [16]. This will be

called the Jain set.

3. Screening utility, 4 proteins: Cummings et al. reported

on the performance of four docking systems against

four targets of pharmaceutical interest: HIV protease,

thrombin (THR), protein-tyrosine-phosphatase 1b, and

HDM2 (also called MDM2, a protein that binds to and

inactivates the tumor suppressor p53) [24]. This set of

four proteins, known actives, and a decoy set derived

from the MDL Drug Data Report (MDDR) will be

called the J&J set.

4. Docking accuracy, 100 complexes: Perola et al. [23]

reported both docking accuracy and screening utility

for three different docking systems, but the screening

data were proprietary. Half of the docking accuracy

data (100 complexes) were publicly available. This

will be called the Vertex set.

Extensive validation experiments show that increasing

Surflex-Dock’s exploration of the energetically accessible

configurational space of ligands increases the robustness of

the docking process. Very substantial enhancements in

screening utility were made possible by overcoming issues

with ligand strain that are common with widely used 3D

structure generation techniques and which can arise from

the docking process itself. More modest, but potentially

important, enhancements in docking accuracy were seen

with the explicit use of ring conformation exploration as an

augmentation to the docking process.

Surflex-Dock 2.1, employing standard screening

parameters on the Pham and J&J sets, obtained mean

maximal enrichments of 100-fold and 43-fold, respec-

tively, and mean enrichments at 1% coverage of 37-fold

and 15-fold, respectively. Compared with other docking

methods on the J&J benchmark, the Surflex screening

protocol yielded average enrichments that were twice as

good as each of Glide, GOLD, Dock, and DockVision at

both the 2 and 5% coverage levels. Surflex-Dock 2.1, with

standard parameters for geometric docking, identified

excellent poses among the top 20 returned ~85–95% of the

time based on the Jain and Vertex benchmarks. Variability
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was higher in identifying the correct pose as the top scor-

ing, ranging from 50 to 75%. Docking accuracy of Surflex,

Glide, and GOLD were comparable on the Vertex set.

Surprisingly, small changes in protein proton positions

were capable of producing large shifts in performance. This

affected the comparison somewhat, but the observation

also suggests that local protein optimization may be a

viable avenue for improving pose ranking.

The software that implements the algorithms described

here is available free of charge to academic researchers for

non-commercial use (see http://www.jainlab.org for details

on obtaining the software). Molecular data sets presented

herein are also available.

Methods

The present study makes use of a number of publicly

available data sets to demonstrate improvements, both

tangible and operational, in the Surflex-Dock suite of

algorithms. The following describes the molecular data

sets, computational methods, detailed computational pro-

cedures, and quantification of performance.

Molecular data sets

The three primary criteria for evaluating docking strategies

are geometric docking accuracy, screening utility, and

scoring accuracy. Geometric docking accuracy depends

both upon the scoring function of the docker having an

extremum in the correct location of the energy landscape as

well as the search strategy effectively exhausting the space

of reasonable ligand configurations. Utility in screening

requires that a docking method’s scoring function will have

a larger magnitude at (or near) its extremum for each true

ligand that is large relative to the extrema for non-ligands.

The search requirement is not as stringent; some pose

whose score is near the extremum must be identified.

Scoring accuracy sufficient to produce correct rankings

within a set of true ligands requires greater accuracy in

magnitude estimation. This can be very important in

medicinal chemistry exercises, but it is not the focus of the

present study.

A number of recent studies have made available public

benchmarks for evaluation of docking methods. In this

paper, four are used, two each to evaluate aspects of

screening utility and docking accuracy. Figure 1 shows

representative ligands for each of the four data sets:

J&J screening enrichment set

Cummings et al. [24] reported comparative performance of

DockVision, Dock, GOLD, and Glide with respect to their

ability to identify known ligands of HIV Protease (HVR),

the human homolog of the mouse double minute 2 onco-

protein (HDM2), protein tyrosine phosphatase 1b (PTP1b),

THR, and urokinase plasminogen activator (uPA). Of

these, the ligands used for the first four were available from

the authors. The protein structures correspond to PDB

codes 1HVR, 1T4E, 1QBV, and 1C84, respectively. In all

but the HDM2 case, the PDB structure was the same as in

the original paper [24]. In the HDM2 case, the structure

was proprietary at the time of publication, but PDB

structure 1T4E was released by the group subsequently.

The decoy set (1,000 presumed inactive molecules) was

derived from Version 2002.1 of the MDL MDDR, and

roughly matched the active ligands with respect to log P

and numbers of acceptors and donors. One aspect of the

original preparation of the ligand structures was unusual.

Structures for the active molecules were generated using

CORINA [25], since it preserved the specified chirality but

eliminated any ‘‘memory’’ of the bound conformations.

However, structures were generated by Concord for the

1,000 MDDR decoys.

In making use of this benchmark, with the exception of

adding protons to the protein structures (required for Sur-

flex, whereas other programs may require only polar

hydrogens), all structures were used unmodified, in order to

provide a fair comparison to the reported performance of

the other methods.

Pham screening enrichment set

Pham and Jain [17] reported performance of Surflex-Dock

Version 1.3 on 29 proteins, each with known ligands

ranging in number from 5 to 20. Two decoy sets were used,

one being a modified version of that made available by

Rognan’s group [18, 19], and the other being derived from

the ZINC database. Three sources were used to generate

the protein test cases. First, the two cases from the com-

parative paper of Bissantz et al. [18] were used, since they

have become a common benchmark. These included pro-

tein structures for HSV-1 thymidine kinase (1KIM) and

estrogen receptor alpha (3ERT), ten known ligands of TK

in arbitrary initial poses, and ten known ligands of ERa in

arbitrary initial poses. Second, inhibitors of PARP and PTP

were taken from the results of a combination of both virtual

and high-throughput screening [26, 27]. Third, the PDB-

bind database [28] was used to generate a large number of

additional cases for testing screening utility. From the full

800 complex set, all proteins were identified that were

represented with at least five different ligands. The final set

included serine proteases, kinases, phosphatases, isome-

rases, aspartyl proteases, metalloproteases, nuclear hor-

mone receptors, and a number of other protein types.

Importantly, the range of ligand binding affinities was
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large, with a substantial number of lower affinity ligands.

Half of the ligands had pKd <6.0 (micromolar or worse Ki

or Kd), with just one fifth having pKd >9.0 (subnanomolar

or better).

In the present paper, the Rognan and ZINC decoy sets,

as well as all active ligands, have been reprocessed by

removing all protons, adding protons back using a fully

automated procedure, and minimizing the resulting struc-

tures (see below for computational details). This was done

to address structural inconsistencies in a portion of the

molecules that had been introduced by an incorrect pro-

tonation procedure. Additionally, two of the 29 proteins

have been dropped. The 2AMV case was dropped due to

duplicate ligands and an annotation error regarding multi-

ple binding sites. After corrections, there were too few

cognate ligands to include this case. The PTP case was

dropped since the bulk of the nominal true ligands appear

not to be competitive reversible inhibitors of the enzyme.

Note that these changes did not significantly affect the

reported results from the Pham and Jain report [17] (dis-

cussed further below).

The Pham benchmark represents one of the largest sets

for evaluation of screening efficiency that is publicly

available. The present version (called revision 1) consists

of 27 proteins, with 256 cognate ligands, and two decoy

sets, the one derived from Rognan’s work containing 861

molecules, and the one derived from drug-like ZINC

screening molecules containing 1,000 structures.

Vertex docking accuracy set

Perola et al. [23] reported the docking accuracy of Glide,

GOLD, and ICM on 200 complexes, 100 of which were

available from the authors. This was a detailed study, in
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Fig. 1 Four representative

ligands from each of the four

benchmark data sets. The

ligands span a broad range of

physicochemical properties and

binding affinities
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which the specific effects of scoring function application

(including local optimization) after docking were exam-

ined. Complexes were selected where a binding constant

was available, where the ligand and protein interaction was

non-covalent, and where crystallographic resolution was

<3.0 Å. Ligands were selected to have molecular weight

between 200 and 600, 1–12 rotatable bonds, be drug/lead-

like, and be structurally diverse. Proteins were selected

from multiple classes to be relevant for drug discovery.

In making use of this benchmark for this study, all

structures were used completely unmodified for direct

comparison to the reported performance of the other

methods. Further experiments that considered aspects of

protein conformational optimization began from the ori-

ginal coordinates provided by the Perola et al. [23].

Jain docking accuracy set

Primarily for comparison with previous Surflex version, the

81 protein ligand complex set from the original Surflex-

Dock paper was also used here [16]. It is a subset of the

134 complexes reported by the authors of GOLD [11], and

it is described in more detail in the original publications.

One change made for this work has been to report per-

formance beginning with a single random pose, in contrast

with the previous reports’ use of ten random starting poses.

This has been done for the sake of congruence with a

converging standard in the field.

Computational methods

The core computational methods within Surflex-Dock have

been reported in previous papers and will be described only

briefly here. Those methods that represent modifications

and enhancements will be presented in detail.

Scoring function

There are three approaches for addressing the scoring

problem in molecular docking that are in wide use [29].

Two, typically termed physics-based and knowledge-

based, share in common a direct grounding in physics. The

former constructs functions-based directly on the theoreti-

cal physics that underlie molecular mechanics force-fields.

The latter make use of knowledge of atomic contact pref-

erences and are related to the statistical physics approach

that employs potentials of mean force. Surflex employs one

of the so-called empirical methods that take a different

approach. The idea is to define a function composed of

terms that are related to known physical processes that

underlie the physics of protein ligand binding, and estimate

the parameters of the function based on protein-ligand

complexes of known affinities and structures. The scoring

function used in Surflex (and in Hammerhead, which was

Surflex’s antecedent) borrowed heavily from the approach

of Bohm [2, 3, 9, 30]. Bohm’s approach had terms for

hydrophobic contact, polar interactions, and entropic fixa-

tion costs for loss of torsional, translational, and rotational

degrees of freedom. The family of empirically constructed

scoring functions generally comprise this same basic set of

terms, but the details of the underlying functional forms,

the data used for parameterization, and the methods for

optimization of parameters vary [4, 11, 12, 15, 31–35].

While sharing many aspects, the scoring function used

in Hammerhead and Surflex makes a significant departure

from other approaches in two important respects [2, 9, 30].

First, the function is composed of a sum of non-linear

terms and it is continuous and first-order piecewise dif-

ferentiable. Second, the parameter estimation regime for

the function takes direct account of the problem of ligand

pose variation. Very small changes in ligand pose can yield

large differences in the nominal value of a scoring func-

tion. Rather than taking the precise pose from a crystal

structure, the approach is to find the nearest local optimum

and define the score at that optimum as the score for the

ligand. This follows the approach developed for Compass,

which established the conceptual framework for this ap-

proach, termed multiple instance learning within the

computational machine learning field [36–39]. The scoring

function was tuned to predict the binding affinities of 34

protein/ligand complexes (overlapping significantly with

the Bohm training set), with its output being represented in

units of -log(Kd) [2]. The range of ligand potencies in the

training set ranged from 10-3 to 10-14 and represented a

broad variety of functional classes.

The terms, in rough order of significance, are: hydro-

phobic complementarity, polar complementarity, entropic

terms, and solvation terms. By far the most dominant

terms are the hydrophobic contact term and a polar con-

tact term. The polar term has a directional component and

is scaled by formal charges on the protein and ligand

atoms. These terms are parameterized based on distances

between van der Waals surfaces, with negative values

indicating interpenetration. Each atom on the protein and

ligand is labeled as being non-polar (e.g., the H of a C–

H,) or polar (e.g., the H of an N–H or the O of a C=O),

and polar atoms are also assigned a formal charge, if

present. The key terms that are parameterized by distance

are as follows:

steric score ¼ l1 exp� r þ n1ð Þ2=n2

þ l2
1þ expn3 rþn4ð Þ þ l3 max 0; r þ n5ð Þ2;

ð1Þ
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polar score ¼ l4 exp� r þ n6ð Þ2=n7

þ l5

1þ expn3 rþn8ð Þ þ l3 max 0; r þ n9ð Þ2:

ð2Þ

The formal charge of atoms in a pairwise interaction

scales the polar scoring term quadratically [2]. Each of the

terms is composed of a Gaussian, a sigmoid, and a qua-

dratic term that are dependent on r, which is defined as the

atomic center-to-center distance of atom pairs less the sum

of their radii (negative distances arise with nominally

interpenetrating atomic radii). The first two terms of each

equation were parameterized in the original report [2], and

the latter was recently added to provide a formally esti-

mated clashing term [30]. The parameters l1 and l4 are

analogous to the lipophilic and hydrogen-bond weighting

terms from other empirical functions. The polar term is

also scaled by directionality and by formal charge, if

present. Figure 2 shows plots of the hydrophobic term and

the polar term for a hydrogen bond. The hydrophobic term

(bottom curve, solid line) yields ~0.1 U of pKd per ideal

hydrophobic atom/atom contact. The top curve (dashed

line) shows that a perfect hydrogen bond yields about

1.2 U of pKd and has a peak corresponding to 1.97 Å from

the center of a donor proton to the center of an acceptor

oxygen.

As with Bohm’s work, the Surflex scoring function in-

cludes an entropic penalty term that is linear in the number

of rotatable bonds in the ligand, intended to model the

entropic cost of fixation of these bonds, and a term that is

linearly related to the log of the molecular weight of the

ligand, intended to model the loss of translation and rota-

tional entropy of the ligand. The solvation terms have little

effect and are the subject of current investigation. For a

more detailed discussion of the Surflex scoring function,

please refer to the specific reports of the derivation and

refinement of the function [2, 30].

Search strategy overview

A detailed account of the Surflex-Dock search algorithm

can be found in the original paper [16]. Surflex employs an

idealized active site ligand (called a protomol) as a target to

generate putative poses of molecules or molecular frag-

ments. Surflex’s protomols utilize CH4, C=O, and N–H

molecular fragments. The molecular fragments are tessel-

lated in the protein active site and optimized based on the

Surflex scoring function. High-scoring fragments are re-

tained, with redundant fragments being eliminated. The

protomol is intended to mimic the ideal interactions made

by a perfect ligand to the protein active site that will be the

subject of docking.

Surflex utilizes the morphological similarity function

and fast pose generation techniques described previously

[40] to generate putative alignments of fragments of an

input ligand to the protomol. Poses of the molecular frag-

ments that tend to maximize similarity to a protomol are

used as input to the scoring function and are subject to

thresholds on protein interpenetration and local optimiza-

tion. The partially optimized poses of the fragments form

the basis for further elaboration of the optimal pose of the

full input ligand. Since the scoring function is based on

atom–atom pairwise interactions, it is possible to generate

a score for any fragment of a docked pose. The procedure

identifies high-scoring fragments that have compatible

geometries to allow for merging in order to assemble a

high-scoring pose of the full input ligand. The whole

molecules resulting from the merging procedure are pruned

based on docking score, and are subjected to further gra-

dient-based score optimization. The procedure returns a

fixed number of top scoring poses.

Local optimization: a quasi-newton method

In the original Surflex-Dock approach [16], local optimi-

zation of both partial and complete ligands was accom-

plished using a very simple implementation of gradient-

descent, making use of numerically computed gradient

information. The procedure was not optimized carefully,
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nor did it employ stopping criteria that could respond to

magnitude changes in either the gradient or the stepwise

improvement in ligand score. For Version 2.1, a quasi-

Newton method (Broyden–Fletcher–Goldfarb–Shanno,

BFGS) [41] was implemented, in addition to implementa-

tion of analytical derivatives for the Surflex-Dock scoring

function. BFGS is a modified Newton’s method for opti-

mization that only requires direct computation of the first

derivative of the function to be minimized. It works by

computing an approximation to the inverse Hessian of the

function, rather than requiring its explicit computation. The

new method is both faster and more effective in terms of

quality of optimization than was the pure gradient-descent

approach of earlier versions.

The field of non-linear function optimization is well-

developed, but the specific optimization protocol that is

ideal for a particular function and specific landscape

characteristics is highly problem-dependent and is also

dependent upon the precise implementation of the opti-

mizer. In comparison with the steepest descent approach

that the BFGS approach has replaced, convergence is sig-

nificantly faster, owing primarily to a reduction in the total

number of function evaluations (both with and without

gradient computation) that are required. Docking speed is

proportional to an input ligand’s number of rotatable

bonds. Under default parameters, the median docking time

per rotatable bond using Version 2.1 was 2 s compared

with 3 s for Version 1.3 (2.8 GHz Intel Xeon processor

under Windows). This represents an improvement of

roughly 30%.

Covalent forces: access to the cartesian space

The original versions of Surflex-Dock varied molecular

pose only by changing the six parameters of alignment

(three translational and three rotational) and the dihedral

angles of rotatable bonds. Neither flexibility in rings (ex-

cept through independent dockings of multiple ring con-

formers) or more subtle bending and flexing of molecules

were possible. Addressing such motions in the general case

involves changing bond angles and bond lengths, which

requires a force field in order to trade the internal ligand

energetics against the interactions between the ligand and

protein. The problem of parameterizing a force field to suit

a wide variety of organic structures was addressed by

Mayo et al. [42] with their DREIDING force field, which

employed a limited number of atom types and yields broad

coverage of small molecule structures. The tradeoff in

employing such a force-field is that with the limitation on

atom types comes a limitation on the specificity of force-

field terms that can result in non-optimal energy estima-

tion. However, the degree of structure normalization

afforded by this approach is beneficial, as will become

clear in the Results.

Surflex-Dock 2.1 implements the DREIDING force

field’s bond angle, bond length, torsional, and apolar non-

bonded terms. Neither the inversion terms (to directly

characterize planarity constraints) nor the polar non-bon-

ded terms (for intramolecular hydrogen bonds and Co-

loumbic interactions) were implemented. The former were

excluded for simplicity, and the latter since typical mole-

cules for study in docking simulations tend to have few

intramolecular electrostatic interactions compared with

inter-molecular ones. This also avoided a requirement for

computation of conventional partial charges. The imple-

mentation computes explicit analytical derivatives, and

minimization of molecules makes use of the BFGS algo-

rithm in the same manner as optimization for the Surflex-

Dock scoring function. Input ligands may be minimized

without docking (‘‘surflex-dock min prot ligand_archive.-

mol2 min-file-prefix’’), minimized prior to docking

(‘‘surflex-dock -premin dock_list...’’), or have simulta-

neous optimization of internal energetics along with pro-

tein ligand interactions after docking (e.g., with ‘‘surflex-

dock -remin dock_list...’’).

Ring flexibility

There are two particularly straightforward approaches to

addressing ring flexibility in docking algorithms. The first

is to employ a separate tool to pre-search each ligand to

generate potential ring conformations and to then dock

each ligand beginning from multiple starting configura-

tions. The second is to pre-compute ring geometries for

common ring systems, and then to use a substructure

matching approach to generate the appropriate variants of

the input ligand during conformational search. Both ap-

proaches are perfectly reasonable, but both have some

limitations. In the former case, the quality of the results

will depend on the interaction between the ring confor-

mation generation process with the docking procedure

employed, which may be unknown. In the latter case, it is

very difficult to pre-compute ring geometries for all

potentially interesting flexible ring systems. For example,

in Fig. 1, the benzodiazepinedione (HDM2), the central

ring of the Dupont Merck protease inhibitor (HVR), and

the substituted sulfonamide-containing ring (1A42) may be

well-known now, but may not have been well-enough

known at the time of their modeling and synthesis to have

been included in standard ring libraries.

Surflex-Dock 2.1 takes a different approach, made

possible by the DREIDING implementation. For rings of

five, six, and seven members, prototype conformations of

cyclopentane, cyclohexane, and cycloheptane are used to
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produce variants of an input structure. These variants are

then subjected to minimization and redundancy elimina-

tion. Figure 3 shows the central ring of the HVR inhibitor

from Fig. 1 in the conformation that was generated by

CORINA in the J&J screening benchmark. The arrows

mark a bad clash that is impossible to alleviate through

rotation of acyclic bonds but is alleviated using minimi-

zation. In the ring searching algorithm, minimization is

carried out after making nitrogen inversions (if necessary)

and prior to the process of identifying, matching, and

instantiating the prototype conformations of flexible rings.

The central depiction shows 28 new ring conformations of

the input structure, each derived from the alignment of a

single conformation of cycloheptane to one of its 14

possible matches to the seven-membered ring. Note that

atom types do not participate in the ring matching, so any

combination of atoms may be present in the input struc-

ture. Following the alignment of a prototype conforma-

tion, the relationship between the pendant functionality of

the original structure to the new conformation is com-

puted, and the proper transformation is applied such that

the newly generated conformation will not have a bias to

pull the new ring geometry back into the starting con-

figuration. Note in the inset overlay that all of the ligand’s

pendant functionality waves along with the changes in the

ring configuration. Of course, by using saturated hydro-

carbons, both the bond lengths and angles of the original

ligand are perturbed in this process, necessitating a final

minimization. Not that while rare, this type of process can

invert chiral centers. For this reason, chiral centers are

checked against the original input structure after final

minimization and conformations that contain any inver-

sions are eliminated.

Ring searching is selected by the ‘‘-ring’’ option, and

the behavior may be modified by changing the threshold

beyond which high-energy ring conformations are deleted

(the default being 5 kcal/mol). For the molecule shown in

Fig. 3, the process of moving from the highly strained in-

put conformation to the final set of five final conformations

(one of which is shown) takes less than a second on stan-

dard desktop hardware. In cases where there are a number

of flexible rings within a molecule, necessitating a com-

binatorial search of joint ring conformations, the process

can be significantly longer. However, the dominant addi-

tional processing time in large libraries is the cost of

docking multiple ring conformations rather than the gen-

eration process itself.

Knowledge in docking: placed substructural fragments

One of the key practical aspects in applying docking sys-

tems in drug design is in the situation where one is

exploring a chemical structural space of analogs of some

parent compound. In these cases, where it is reasonable to

posit that a particular substructure will remain largely

stationary in an active site (as with, for example, metal

chelation moieties), making direct use of that knowledge to

constrain the search space offers advantages in terms of

workflow, speed, and direct comparison of different ana-

logs. Surflex-Dock’s fragment-based docking mode sup-

ports this type of analysis, and the ability to impose a real-

valued constraint on the degree to which the placed frag-

ment must ‘‘hold’’ the docked ligand offers the modeler a

method to control pose variation.

The procedure is simple and is illustrated in Fig. 4.

Panel A shows the Surflex-Dock protomol for HDM2 from

Fig. 3 The skeleton of the central ring system of the HVR inhibitor

from Fig. 1 is shown progressing through the ring flexibility

algorithm. The input conformation used in the J&J benchmark set

had a significant clash (indicated by the arrows). The minimization

step relieved the clash, but the ring conformation was still strained.

The circle indicates a superimposition of the 28 new ring

conformations obtained by instantiating two cycloheptane conformers

with 14 possible graph-based matches each. The conformation

highlighted in green led to the lowest energy ring conformation

shown at right. Note that the bond lengths of what should be the C–N

bonds were too long in the instantiated version since they came from

cycloheptane. Also, the ring substituents moved based on changes in

the ring atom positions, but they were not optimal. The final

minimization addressed these considerations
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the J&J set along with a placed fragment specified for a

narrow hydrophobic cleft within the binding pocket. A

placed fragment (in this case toluene, shown in purple)

serves as a guide to the alignment of ligands that contain

the fragment. Matches may be done either by ignoring all

hydrogens (as in the example) or by explicit match of all

atoms, and heuristics are employed to make intuitive

choices with respect to hybridization of ligand atoms and

fragment atoms. The ligand to be docked is aligned based

on the fragment position, and its conformational space is

enumerated depth-wise from the fragment outward. For

each particular depth, if the conformational change to the

parent pose affects the geometry of the atoms within the

matched substructure, the alignment is recomputed. Then,

the new conformation is scored with respect to its simi-

larity to the protomol, using a rapid approximate compu-

tation. The best scoring of the new poses (shown in blue)

are subjected to local optimization using the Surflex-Dock

scoring function. This process may produce deviations

from the initial alignment, as shown in the example. For

molecules with a large number of rotatable bonds, the

process iterates from the highest scoring poses after each

round of local optimization. The process terminates when

all rotatable bonds have been optimized. Panel D shows the

relationship between the top scoring pose and the bound

pose, a deviation of 1.0 Å.

Fragment-guided searching is selected by the ‘‘-fmatch’’

option, which requires a specified fragment molecule, and

the behavior may be modified by imposing a real-valued

penalty on the deviation from the placed fragment (‘‘-cpen’’

in units of pKd/Å2). For screening a library of molecules, the

user may specify that molecules not containing the specific

fragment be skipped (‘‘-fskip’’) and that hydrogens on the

fragment should be matched explicitly (‘‘-fhmatch’’). Gi-

ven an accurate location of a subfragment, the docking

process can be sped up several-fold using the fragment-

guided docking procedure compared with the de novo pro-

cedure required to produce results of similar quality.

Computational procedures

Computational procedures in studies such as this can have

a remarkable impact on results, both with respect to the

actual performance of algorithms but also as to the com-

parability of different methods that have been run on

nominally the same benchmarks. Wherever possible,

choices were made in the application of procedures to

preserve meaningful comparisons across different studies.

Fig. 4 Panel A shows the Surflex-Dock pocket characterization with

a placed fragment specified for the HDM2 hydrophobic binding

pocket. The protomol was composed of three types of fragments:

methane (shown without hydrogens), N–H, and C=O. The fragment

(toluene, in purple), matched the pendant chlorophenyls of the ligand

(white) in two ways each, resulting in four different alignment

matches. The alignment match that gave rise to the highest scoring

final conformation is shown in Panel B. The poses depicted in blue

sticks were the highest scoring conformations of the ligand-based

solely on a fast similarity computation relative to the protomol (50

from a total of over 20,000). Panel C shows the particular pose that

gave rise to the top scoring final conformation, following all-atom

optimization within the HDM2 binding pocket. Panel D shows the

relationship between the top scoring pose and the bound pose, a

deviation of 1.0 Å. The docking took 11 s of real time on standard

2.8 GHz desktop hardware
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In particular, this required either using public benchmarks

in their unmodified state or showing the effects of modi-

fication. The publicly available data archive associated

with this paper contains all protein, ligand, and protomol

structures as well as example scripts for the primary

experiments described. The following summarizes the

procedures used.

Ligand preparation

For the experiments on the J&J and Vertex benchmark sets,

all ligands were used in docking procedures completely

unmodified as input to Surflex-Dock. For the J&J set, this

involved ligands in SDF file formats, generated by either

CORINA or Concord, as described above. For the Vertex

set, this involved CORINA-generated ligands in SDF for-

mat.

For the experiments on the Pham set, as mentioned

above, the 256 active ligands and the 1,861 decoys ligands

were processed to remove all protons, re-add them using

rules to yield appropriate protonation states at physiologi-

cal pH, and to minimize the result. The command was

‘‘surflex-dock –fp –remin prot ligand_archive.mol2 pro-

t_ligand_archive.’’ This was done to address a problem

with some of the structures within the decoys data sets

relating to fused aromatic ring systems as well as the

protonation state of certain nitrogen atoms. Note that

symmetric treatment of all actives and all decoys is an

extremely important feature in systematic screening

enrichment experiments, as will become apparent later.

The automated procedures have been implemented in order

to provide an objective method for molecule preparation to

eliminate bias in benchmarking. Users are encouraged,

however, to think carefully about their treatment of protons

on both proteins and ligands and to use knowledge where

appropriate.

For the experiments on the Jain set, instead of using

ten random input conformations (the file ‘‘random10.-

mol2’’ in the archive from that study), a single random

conformation was used (‘‘ran1.mol2’’ in the supplemen-

tary data for this paper). This was done to conform more

closely with what has become the standard for testing

docking accuracy: a single conformation and starting

alignment of each test ligand that is unrelated to its

crystallographic pose.

Protein preparation

Protein structures from the Vertex, Pham, and Jain sets

were used unmodified from previous reports for all

comparative experiments. The Vertex proteins were in

MacroModel ‘‘.dat’’ format. The Pham and Jain sets

employed SYBYL ‘‘.mol2’’ formats. Protein structures for

the J&J set had hydrogens added where missing, beginning

from PDB structures, and the resulting structures were

saved as SYBYL ‘‘.mol2’’ files (using WebLabViewer).

Protomols were generated using standard fully automated

Surflex-Dock procedures [16]. Note that file formats do not

materially affect the algorithms as long as atomic coordi-

nates do not change and assignment of atom hybridization

is unambiguous.

Screening experiments

Exploration of the effects of various algorithmic modifi-

cations on screening utility is a focus of this work. Direct

comparisons to the Surflex-Dock Version 1.3 code were

made using no new optional parameters (‘‘surflex-dock

dock_list test_archive.mol2 p1-protomol.mol2 pro-

tein.mol2 log’’). In what follows, the effect of pre-docking

ligand minimization is described as ‘‘preminimization’’ or

abbreviated as ‘‘ligand pre-min’’ and corresponds to add-

ing the ‘‘-premin’’ switch to the docking protocol (‘‘sur-

flex-dock –premin dock_list test_archive.mol2 p1-

protomol.mol2 protein.mol2 log’’). The effect of post-

docking all-atom ligand minimization, combining the

Surflex-Dock intermolecular scoring function with the

DREIDING force-field, is described as ‘‘re-minimization’’

or as ‘‘all atom minimization’’ and corresponds to adding

the ‘‘-remin’’ switch to the docking protocol (‘‘surflex-

dock –premin –remin dock_list test_archive.mol2 p1-pro-

tomol.mol2 protein.mol2 log’’). This protocol is also

implemented as a single parameter switch (‘‘-pscreen’’),

reflecting its utility in producing robust screening perfor-

mance. As discussed above, in the J&J HDM2 case, the

fragment-based docking method was used with the toluene

fragment shown in Fig. 4 (‘‘surflex-dock –fmatch frag.-

mol2 ...’’) with no other options. Consequently, all ligands

in the test database for HDM2, both actives and inactives,

that contained a pendant phenyl group were docked by

matching to the placed toluene and all other ligands were

docked in the normal fashion.

Docking accuracy experiments

Parameter choices for measuring docking accuracy were

made to provide directly comparable data on the Vertex

benchmark, for which the performance of Glide and GOLD

were available. That study employed parameter choices

that resulted in mean running times of 1–3 min per ligand

for Glide and GOLD, with 20 poses returned at the end of

docking. Surflex-Dock’s geometric docking accuracy pro-

tocol is implemented as a single parameter (‘‘-pgeom’’)

and resulted in a mean time per ligand on the Vertex set of
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2 min. The search procedure is approximately fivefold

slower than with the screening parameters (‘‘surflex-dock –

pgeom dock_list test_corina_ligand.sdf p1-protomol.mol2

protein.dat log’’) and shares the pre-minimization and re-

minimization features. The effect of exploring ring flexi-

bility was also explored, and this corresponds to adding the

‘‘-ring’’ switch to the docking protocol (‘‘surflex-dock –

pgeom –ring dock_list test_corina_ligand.sdf p1-proto-

mol.mol2 protein.dat log’’). With the particular distribution

of frequency of flexible rings in the Vertex set, this in-

creased the mean docking time by a factor of 2. The same

parameters were used for the Jain set.

Quantification of performance

Quantification of screening utility seeks to measure the

enrichment of known ligands over decoys ligands based on

a ranking generated by a virtual screening protocol (as seen

in a number of recent reports of both docking and molec-

ular similarity [13, 16, 18–20, 30, 43]). Quantification of

the degree of separation between true positive ligands and

false positives was done using enrichment plots in the case

of the J&J data, where specific enrichments for other

methods were available from the published data [24].

For the Pham set, following previous work, receiver

operating characteristic (ROC) curves along with their

corresponding areas were used. Given a set of scores for

positives and negatives, the ROC curve plots the true po-

sitive proportion (Y-axis) with the corresponding false

positive proportion (X-axis) at all possible choices of some

threshold that would mark a binary distinction between a

prediction of positive or negative class membership. The

perfect ROC curve goes from [0,0] to [0,1] to [1,0] and

results in an area of 1.0. Complete intermixing of positive

and negative scores gives an area of 0.5, with areas <0.5

reflecting the case where true positives are ranked lower

than false positives. In screening enrichment datasets, the

number of positives (true ligands) is, of necessity, much

smaller than the number of negatives (decoys). Conse-

quently, it can be informative to compute confidence limits

on the ROC areas, since perturbations in the ranks of a

small number of positives can lead to very large changes in

the computed ROC area. Multiple methods exist within

statistics for confidence interval estimation in ROC anal-

ysis, but a particularly widely used method, called the

bootstrap percentile, allows for computation of confidence

intervals in a non-parametric fashion and is used here [44].

ROC analysis is employed in this study because it is a well-

characterized statistical method, other types of perfor-

mance measures are derivable from ROC curves (e.g.,

enrichment plots, maximal enrichment values, specific TP

and FP rate tables), and ROC curves are insensitive to the

effects of relative size of positive and decoy sets.

Table 1 shows the performance of Surflex-Dock Version

1.3 on the original Pham benchmark along with perfor-

mance on revision 1 (i.e., with the reprocessed structures),

which is the subject of the present study (see above). The

last column of the table gives the 95% confidence interval

for the ROC area on the revised data using the bootstrap

percentile method. Values are highlighted with bold

underlining for improvements and (parentheses) for

degradations where the confidence limits exclude the value

under the previous condition. In situations where the

number of positive examples is small, the confidence limits

will be wider than when the number of positive examples is

Table 1 Effects of decoy set revision for Rognan ACD database

Protein N Rognan decoys Rognan decoys (revision1)

Version 1.3 Version 1.3 Version 1.3 95% CI

1AJQ 6 0.922 0.893 0.82–0.95

1B5J 16 1.000 1.000 1.00–1.00

1B7H 6 0.999 1.000 1.00–1.00

1BXO 5 0.746 0.875 0.66–0.99

1BZH 12 0.917 0.897 0.86–0.93

1C4V 20 0.876 0.879 0.81–0.94

1E66 6 0.764 0.804 0.64–0.92

1EIX 5 0.996 0.998 0.99–1.00

1F4G 10 0.693 (0.545) 0.43–0.67

1FH8 6 0.997 0.993 0.99–1.00

1FJS 6 0.980 0.962 0.88–1.00

1FMO 8 0.764 0.787 0.54–0.97

1GJ7 12 0.953 0.956 0.89–0.99

1PRO 20 0.862 0.829 0.71–0.92

1QBO 20 0.990 0.964 0.91–1.00

1QHC 6 0.791 0.830 0.69–0.96

1RNT 5 0.952 0.930 0.82–1.00

2QWG 7 0.965 0.954 0.89–0.99

2XIS 5 0.958 0.926 0.85–0.97

3PCJ 8 0.948 0.957 0.92–0.98

3STD 5 0.844 0.918 0.85–0.98

4TMN 13 0.828 0.808 0.67–0.93

7CPA 8 0.901 0.816 0.67–0.93

7TIM 6 0.966 0.978 0.96–0.99

ER 10 0.922 0.998 0.94–1.00

TK 10 0.963 0.971 0.95–0.99

PARP 15 0.846 0.860 0.77–0.93

For the 27 protein structures in the revised Pham/Jain benchmark,

comparative ROC areas are shown along with the 95% confidence

interval for the ROC area with the revised data set. One protein

(1F4G) shows performance falling below the original data set version,

indicated in parentheses. One protein (ER) shows performance

exceeding the original version, indicated in bold and underlined. This

convention will be used in subsequent tables to highlight significant

performance changes moving from left to right by columns
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large (presuming identical variance of positive scores).

Similarly, small variance among the positive scores leads

to narrower confidence limits. In making the data revision,

one case showed a significant decrease in performance

(1F4G), but this was related to an inefficiency in local

optimization. One case showed a significant increase in

performance (ER), and was apparently related to an

improvement in the geometry of one of the active ligands.

Overall, performance was unaffected by the data revision.

Results

In what follows, the results of systematic application of

Surflex-Dock’s new computational procedures are pre-

sented on the four benchmark data sets described earlier

(see Methods for details about the data sets, computational

methods, and specific procedures).

Screening enrichment

Systematic screening experiments were carried out on the

J&J and Pham screening benchmarks to test the effects and

importance of searching beyond pure pose parameter

space.

J&J benchmark

Benchmark data sets made available by pharma companies

are of great interest, owing to the fact that the composi-

tional choices tend to reflect the pharmaceutical relevance

of the specific targets selected and also reflect the opera-

tional use of computational methods. One of the charac-

teristics of large corporate structural databases is the extent

to which, over time, different procedures may have been

used, for example, to generate 3D structures from the pri-

mary 2D records. In the J&J benchmark, an aspect of this

manifested in a difference between the preparation of the

active ligands and the decoy ligands (see the Methods for

details). While the intention of this choice was to provide

greater fidelity in terms of chirality for the active ligands,

there was an unintended consequence with respect to the

strain energies of the different ligand sets.

Figure 5 shows cumulative histograms of the strain en-

ergy for the ligands of each of the four target proteins along

with that of the decoy ligands (plot A, computed used

Surflex’s DREIDING force-field). The decoy ligands had a

median strain of roughly 60 kcal/mol (light blue curve).

The distribution of strain energies for the PTP ligands

matched this closely (magenta curve). However, the ligands

of HVR, HDM2, and THR showed markedly larger strains,

with medians of roughly 140, 145, and 190 kcal/mol,

respectively (green, red, and blue curves). Many docking

algorithms, including Surflex-Dock in its default mode,

alter the pose of their input ligands only through translation,

rotation, and dihedral angle variation in rotatable bonds. Of
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Fig. 5 Panel A shows the cumulative histograms of strain energies

for the positive (red, green, blue, and magenta curves) and decoy

ligands within the J&J benchmark set (light blue curve). The strain

energies were high as a general feature, but the key issue was that a

significant number of the cognate ligands had higher strain than the

decoys. Panel B shows the self-penetration penalties in Surflex’s

output units of pKd. For the PTP ligands (magenta curve), there was a

relative advantage over the decoys, as with a small number of the

THR ligands. For the remaining THR ligands and the full sets of HVR

and HDM2 ligands, there was a strong and systematic bias against the

cognate molecules
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necessity, such algorithms must avoid introducing intra-

molecular clashes within the ligand; Surflex does this by

imposing a restraint against self-clashing that is the same as

the term that prevents intermolecular clashing with the

protein. However, some input ligand geometries will result

in internal clashes that are unresolvable by bond rotation

(see the ring system in Fig. 3 for an example). In Fig. 5, plot

B shows the magnitude of the unresolvable self-clashing

penalties for the J&J ligands sets, which paralleled the strain

energies. While the PTP ligands showed an advantage rel-

ative to the decoys (roughly 0.5 pKd at the medians), the

other ligand sets showed disadvantages of 1–3.5 U of pKd.

In assessing the results of a screening exercise, whether for

methodological evaluation or for actual practical lead dis-

covery, the difference between the distribution of docking

scores between the actives and the inactives is all that is

measured. In the case of methodological evaluation, an

a priori bias of multiple log units against the known ligands

will result in poor nominal performance. In the case of an

actual lead discovery exercise, such a bias may result in

missing the true ligands of the target protein altogether.

This observation should not be interpreted as a criti-

cism of the J&J benchmark or of the study itself [24].

Rather, it highlights the need for virtual screening meth-

ods to offer options that are robust to these types of real-

world variation in input structure preparation, since pro-

grams such as CORINA and Concord are widely used and

well respected methods for database preparation. Note

also that the energetic strain effects were chemical class

specific, with CORINA generated PTP ligands having low

strain but CORINA generated HVR ligands having very

high strain. Figure 6 shows the effect of docking the HVR

inhibitor from Fig. 1 under different parameter choices

for Surflex-Dock, all beginning from the highly strained

input structure (the central ring of which is depicted in

Fig. 3). Panel A shows the result of docking under the

assumption that the input conformation only requires

changes in alignment and in its acyclic rotatable bonds.

Not only was it clearly a poor result in terms of the

geometric match to the bound pose, but it scored very

poorly (1.2 pKd). Panel B adds ligand minimization prior

to docking and within the active site after docking,

resulting in a vastly improved score (9.1) and a somewhat

improved geometric quality. In this case, all atom opti-

mization within the binding pocket allowed the hard in-

termolecular and intramolecular clashes to be eliminated

while still allowing occupancy of the four hydrophobic

pockets within the protease. Panel C adds ring flexibility,

resulting in another improvement in score (pKd of 13.6

for this subnanomolar compound) as well as an excellent

geometric result (1.3 Å rmsd).

Figure 7 (plot A) shows the effect of ligand minimi-

zation on the distributions of self-penetration for the four

active ligand sets and the decoys. While the HVR ligands

still showed a slight disadvantage, it was <0.5 U, the

distributions of the other ligand groups became quite

homogeneous. Plot B shows the effect of adding pre-

docking ligand minimization, post-docking all-atom min-

imization, and ring flexibility successively on screening

enrichment with full ROC curves. Completely ignoring

the strain issues of the input ligands resulted in docking

performance that was worse than random (red curve).

Adding ligand minimization prior to docking very sig-

nificantly improved performance (green curve). Adding

post-docking all atom optimization resulted in excellent

performance (blue curve, ROC area 0.940), and adding

ring flexibility added another marginal increase in per-

formance (magenta curve). The effect of each successive

change in protocol on screening performance reflected the

degree to which each change affected the scores of the

Fig. 6 Panel A shows the overlay of the unminimized docked HVR

inhibitor from Fig. 1 with the crystallographic conformation (green).

The magenta lines indicate self-clashes that were unresolvable

through rotation of acyclic bonds. These were due to the highly

strained ring conformation (see Fig. 3). Panel B shows the effect of

the -premin and -remin Surflex-Dock parameters, which relieved all

such interpenetrations and increased the score by ~8 U of pKd. Panel
C shows the effect of adding the -ring parameter, in which the

conformational space of the seven-membered central ring is searched.

The resulting docking was excellent (1.3 Å rmsd)
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actives relative to the inactives. Based on Fig. 5, it would

be possible to make a confident a priori prediction that

pre-minimization would yield an improvement for HVR.

However, the effects of the other protocol changes de-

pended largely on whether a significant number of flexible

ring systems existed in a set of actives compared with

inactives. Given active ligands containing flexible ring

systems, both post-docking all atom optimization and ring

flexibility improved performance, but otherwise occa-

sionally not.

Table 2 shows the effects of these protocol variations on

the ROC areas of each of the four J&J protein test cases. In

both the HVR and HDM2 cases, where flexible rings were

important in the binding of the cognate ligands, ligand pre-

minimization and post-docking all atom optimization sig-

nificantly improved enrichment performance. Ring flexi-

bility added only a marginal improvement. In the case of

THR, ligand pre-minimization significantly improved per-

formance, with marginal and insignificant decreases asso-

ciated with the remaining two variations. Last, in the case

of PTP, we see what might be considered a paradoxical

result: each successive refinement in protocol lead to a

marginal decrease in performance. However, recall from

Fig. 5, PTP was the only case where the cognate ligands

were less strained than the decoys. This advantage disap-

peared as the docking protocol took ligand strain out of the

equation.

Given the overall tradeoffs in speed and screening

performance, the recommended screening protocol is to
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Fig. 7 Plot a shows the effect of ligand minimization on the

computed Surflex-Dock self-penetration. In contrast to a, nearly all of

the self-penetrations for all ligand sets were below 1 U of pKd. Plot b
shows the respective ROC curves for enrichment of HVR ligands

against the J&J decoy set under different parameter settings. Without

addressing the very high-ligand strain (red curve), only a single

cognate ligand was identified at a false positive rate of 5% or lower.

This increased to three cognate ligands (60%) with more aggressive

search (magenta and blue curves). Pre-minimization made a

significant improvement alone (green), but the addition of post-

docking minimization (blue) yielded excellent performance. While

adding ring flexing to the protocol improved the docking accuracy of

the cognate ligands (see Fig. 6), it only marginally improved

screening performance (magenta)

Table 2 Effects of Surflex-Dock procedural changes on screening

enrichment in the J&J screening benchmark

No

minimization

Pre-

minimization

Add re-

minimization

Add ring

flexibility

HDM2 0.303 0.827 0.906 0.911

HVR 0.400 0.740 0.940 0.951

THR 0.791 0.949 0.944 0.928

PTP 0.963 0.942 0.904 0.805

ROC areas are shown, with the same conventions as in Table 1. Due

to the substantial bias in internal strain energies of active ligands

versus decoys (see Figs. 1, 2), results without ligand minimization are

acceptable only in the THR and PTP cases, where the bias is less

unfavorable than for HDM2 and HVR. Adding ligand minimization

prior to docking substantially improves performance in three cases,

with a marginal change in the fourth. Adding post-docking all-atom

optimization of the docked ligands in their bound poses substantially

improves performance in the HDM2 and HVR cases, both of which

have a significant number of ligands with flexible rings. Adding ex-

plicit ring searching yields only a marginal improvement in screening

enrichment in those two cases, but increases docking time and gen-

erates marginal decreases in the THR and PTP cases which do not

have significant flexible ring constraints in their cognate ligands
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employ ligand pre-minimization and post-docking all atom

optimization (implemented in Surflex-Dock Version 2.1 as

the ‘‘–pscreen’’ parameter). On the J&J set, against the

large HVR site, the mean screening time per rotatable bond

increased from 3.0 to 4.1 s (real user time) with the

screening parameters compared with default parameters.

Figure 8 shows a direct comparison of Surflex-Dock’s

results with those reported in the original paper by Cum-

mings et al. for DockVision, Dock, GOLD, and Glide. At

the top end of the ranked database (2 and 5% levels),

Surflex-Dock performed better than all other methods for

HVR, HDM2, and THR. For PTP, Surflex’s performance,

using the screening parameters, was slightly better than

Glide’s but GOLD and DockVision performed better.

Overall performance of the methods across the different

targets paralleled what one would expect. In the three cases

with systematic bias against the actives, at least one of the

dockers performed at or worse than random, with all but

Surflex performing worse than random in at least one case.

In the case of PTP, where the prior bias embedded in the

ligands favored the actives over the decoys, no method

performed worse than random, and both DockVision and

GOLD performed very well. In this case, using default

parameters (and thus taking advantage of the prior bias),

Surflex’s performance was very similar to GOLD’s (data

not shown).

The issue of the fairness of this comparison will be

discussed later, but two points are worth elaborating here.

The first is that among all of the methods, only Surflex

and Glide employed all atom optimization of the docked

ligands as part of the computational procedure. This

would appear to explain the fact that Surflex performed

well in the non-PTP cases, as did Glide in the HVR and

THR cases, but both did relatively worse in the case of

PTP. The second is that the advantage of addressing

subtleties in ligand energetics is a genuine advantage in

the real world of virtual screening. For Surflex, at a rel-

atively low cost in terms of computational speed, sub-

stantial improvements in robustness were obtained in the

face of variations in input.

 0

 20

 40

 60

 80

 100

 100 50 20 10 5 2

%
 A

ct
iv

es
 F

ou
nd

% Database Screened

HIV

Random
DVision

Dock
Gold
Glide

Surflex

 0

 20

 40

 60

 80

 100

 100 50 20 10 5 2

%
 A

ct
iv

es
 F

ou
nd

% Database Screened

HDM2

Random
DVision

Dock
Gold
Glide

Surflex

 0

 20

 40

 60

 80

 100

 100 50 20 10 5 2

%
 A

ct
iv

es
 F

ou
nd

% Database Screened

THR

Random
DVision

Dock
Gold
Glide

Surflex

 0

 20

 40

 60

 80

 100

 100 50 20 10 5 2

%
 A

ct
iv

es
 F

ou
nd

% Database Screened

PTP

Random
DVision

Dock

Gold
Glide

Surflex

Fig. 8 The enrichment plots

show the comparative

performance of Surflex-Dock

Version 2.1 with DockVision,

Dock, Gold, and Glide. Data for

all programs but Surflex-Dock

were taken from Cummings

et al.[24]. In all but the case of

PTP, one of the programs

performed worse than random,

likely due to the differential

energetic bias among the

cognate ligands in the different

cases (see Fig. 5). In all but the

PTP case, Surflex’s

performance at the early

enrichment levels of 2 and 5%

was best. All programs but

Surflex performed worse than

random in at least one case.

Surflex’s performance is shown

with standard screening

parameters, and the HDM2 case

employed the fragment-based

docking protocol (see Fig. 4)
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Pham benchmark

There are four primary differences between the J&J

benchmark set and the Pham set for evaluating screening

utility. The first and most obvious is that the Pham set

contains 27 proteins, representing a broader set of target

types. The second is that the Pham set contains a high

proportion of ligands with relatively poor binding affinity

(pKd < 6.0 for 50% of the ligands). Third, for the ER

and TK targets, adapted from Bissantz et al. [18], there

are a number of comparative performance reports in the

literature. Last, the Pham set contains two different de-

coy sets, one derived from Bissantz et al. (termed the

Rognan decoys) and one derived from the ZINC data-

base.

Table 3 shows ROC areas for a number of conditions,

comparing both the old Version (1.3) with the new Surflex-

Dock Version 2.1, the effects of different decoys, and the

effects of making use of the recommended screening

parameters, which correspond to adding pre-docking ligand

minimization and post-docking all atom ligand optimiza-

tion to the default case. For the Rognan decoy set, the

change from Version 1.3 to 2.1 yielded significant

improvements in four cases (1BXO, 1F4G, 1FJS, and

1QHC), with no cases exhibiting a significant performance

decrease. The primary difference was the improvement in

local optimization using the BFGS algorithm (see Meth-

ods). Coupled with analytical gradients for the Surflex

scoring function, the new version, in addition to showing

quantitatively better performance, was ~30% faster. As

observed in the original report, changing from the Rognan

decoy set to the ZINC decoy set made little difference, with

just two cases showing marginally significant decreases in

performance.

Use of the recommended screening parameters made no

statistically significant change overall within the 27 protein

set, with a single case exhibiting a minor difference beyond

the 95% confidence interval of ROC area. The mean ROC

area for Version 2.1 was 0.91 (Rognan decoys, default

parameters), 0.90 (ZINC decoys, default parameters), and

0.88 (ZINC decoys, screening parameters). In terms of

population differences, none of these changes were statis-

tically significant. This reflected the fact that the Pham

actives and decoys were all pre-processed including a

minimization step, which reduced any impact of the

screening parameters. Also contributing to the level per-

formance, the Pham actives, as a group, did not have a high

proportion of centrally located flexible rings. Recall from

Table 2, the mean performance of Surflex Version 2.1 on

the J&J set changed from 0.61 (default parameters), to 0.86

(ligand pre-minimization), to 0.92 (screening parameters),

to 0.90 (adding ring searching). Ligand minimization sig-

nificantly improved performance in three of four cases, and

post-docking all atom optimization significantly improved

performance in two of four cases.

In terms of comparing results from the J&J set and the

Pham set, the ‘‘default’’ parameter case is not sensibly

comparable due to the asymmetric ligand energetics in the

J&J set discussed earlier. However, the comparison be-

tween the ligand pre-minimization protocol on the J&J set

and the Pham set using drug-like Zinc decoys is fair, with

Table 3 Effects of decoy set and Surflex-Dock version on screening

utility for the Pham benchmark

Protein N Rognan decoys (rev1) Zinc decoys (rev1)

Version

1.3

Version

2.1

Version

2.1

Version 2.1 -

pscreen

1AJQ 6 0.893 0.900 (0.828) 0.726

1B5J 16 1.000 1.000 1.000 1.000

1B7H 6 1.000 1.000 1.000 1.000

1BXO 5 0.875 0.958 0.965 0.986

1BZH 12 0.897 0.913 0.924 (0.861)

1C4V 20 0.879 0.938 0.927 0.926

1E66 6 0.804 0.765 0.736 0.619

1EIX 5 0.998 0.999 1.000 1.000

1F4G 10 0.545 0.702 0.643 0.605

1FH8 6 0.993 0.936 0.924 0.947

1FJS 6 0.962 0.986 0.988 0.997

1FMO 8 0.787 0.747 0.738 0.681

1GJ7 12 0.956 0.958 0.951 0.948

1PRO 20 0.829 0.896 0.888 0.952

1QBO 20 0.964 0.968 0.956 0.949

1QHC 6 0.830 0.927 0.917 0.894

1RNT 5 0.930 0.922 0.919 0.919

2QWG 7 0.954 0.945 0.938 0.939

2XIS 5 0.926 0.930 0.946 0.923

3PCJ 8 0.957 0.914 (0.868) 0.806

3STD 5 0.918 0.879 0.836 0.802

4TMN 13 0.808 0.845 0.849 0.881

7CPA 8 0.816 0.862 0.787 0.757

7TIM 6 0.978 0.962 0.961 0.927

ER 10 0.998 0.977 0.989 0.999

TK 10 0.971 0.961 0.960 0.955

PARP 15 0.860 0.846 0.821 0.699

Comparative ROC areas are shown, with the convention from Table 1

regarding significant differences. Four cases showed significant

improvement in moving from Surflex Version 1.3–2.1, with the pri-

mary change being improved local optimization using the BFGS

optimization scheme with analytical gradients. In sharp contrast to

other reports, the ZINC decoy set did not substantially decrease

performance, with only a two cases registering minor, but statistically

meaningful, decreases. Making use of the preferred screening

parameters, which are intended as a robust safeguard against biases in

ligand preparation, did not significantly alter performance. None of

the column pairs have significantly different populations of ROC

areas based on multiple statistics
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mean ROC areas of 0.86 and 0.90, respectively. Similarly,

the comparison using screening parameters is reasonable,

with mean ROC areas of 0.92 and 0.88 for the J&J and

Pham sets, respectively. It is striking that the comparable

results from two very different benchmarks yielded such

similar performance levels.

Summary: screening enrichment

The practical significance of what has been reported on the

combination of the J&J and Pham data sets is that by

employing a uniform procedure with Surflex-Dock’s ‘‘-

pscreen’’ option, one can obtain robust and reliable per-

formance across a wide variety of targets with varying

compositions of actives and inactives.

The results presented above focused on ROC areas,

since they support direct statistical comparisons. A some-

what more intuitive measure of screening efficiency is

enrichment, which corresponds to the ratio between the

actual number of active ligands identified versus the

number expected by chance given some proportion of a

ranked database. Maximal enrichment values are bounded

above by the ratio of the total number of compounds in a

library to the number of actives (up to 200-fold in the cases

discussed above) and are computed by considering all

possible coverage levels of the ranked database. Enrich-

ment values at fixed percentages are bounded above by the

reciprocal of the proportion of the library selected (e.g.,

100-fold for 1% coverage). Using Surflex’s screening

parameters, on the Pham set with the ZINC decoys, the

mean maximal enrichment was 100-fold, the mean

enrichment at 1% coverage was 37-fold, and at 5%, it was

12-fold. For the J&J set, the comparable numbers were 43-

fold, 15-fold, and 11-fold. With respect to the comparison

with other docking methods on the four targets of the J&J

benchmark, the Surflex screening protocol yielded average

enrichments that were twice as good as each of Glide,

GOLD, Dock, and DockVision at both the 2% and 5%

coverage levels. This corresponds well to the comparisons

of Surflex-Dock to other methods on the ER and TK

benchmarks of Rognan’s group from other studies [13, 16,

19, 21].

Note that comparisons of docking methods to ligand-

based methods for screening are complicated to interpret,

since there are subtle issues of inductive bias present in any

ligand-based approach. Direct knowledge of the actual

structures of some true positives are used to retrieve other

ligands. This is discussed extensively in a previous paper

on the Surflex-Sim methodology [43]. A recent paper by

Hawkins et al. makes a direct comparison between ROCS

and Surflex-Dock using the Pham set, showing comparable

performance of both methods [45]. However, in 50% of the

Pham set retrieval cases, a trivial 2D molecular similarity

method is able to perform nearly perfectly (>0.95 ROC

area) and in an additional 30%, the trivial method is able to

perform very well (>0.80 ROC area). Meaningful com-

parisons of ligand-based and protein structure-based

methods for virtual screening are an area of current

investigation.

Docking accuracy

One of the key applications of docking methodology is

in the modeling of synthetic analogs of compounds for

which a bound structure is known of a parent compound.

In these cases, a docker’s prediction of bound pose can

have a significant impact on synthetic choices, with the

decisions guided both by the extent to which a proposed

compound fits its new moiety in a desired place and

possibly also by the nominal predicted scores of the

proposed analogs. In such cases, it is frequently the case

that reliable knowledge exists about the placement of a

particular molecular substructure. By providing that

information to a docking system, a modeler can directly

explore the question of interest (‘‘Where do the new

pieces end up?’’) quickly and while factoring out some

aspects of variance in docking procedures. Figure 9

shows an example from the Vertex benchmark that is

typical of a number of metal catalyzed enzymes in the

set. In Panel A, the result of docking the inhibitor using

the constraint of the hydroxamic acid fragment (shown in

magenta) is shown overlayed with the true bound pose of

the ligand (green). In this docking, the inhibitor place-

ment is guided by the fragment but is not constrained by

it. Surflex-Dock allows the user to enforce a quantitative

constraint on the deviation from the placed fragment (see

Methods). With this constraint set at a high value, the

restraining force on the ligand restricts its movement,

with the result being perfect overlap with the known

ideal metal chelation geometry. This type of experiment

is common in the practical use of docking, but it is not

informative in assessing docking accuracy for compara-

tive purposes.

In evaluations of docking accuracy, it is typical to

employ a somewhat artificial test, one in which a docker

seeks to recover the true binding mode of a ligand given

the structure of a protein in the state in which it is

bound to the same ligand. This type of test can be

helpful in establishing an upper bound on the expected

performance of a docker performing in a de novo

docking mode with respect to the two criteria of best

returned pose by rmsd and rmsd of the top scoring re-

turned pose. The intention is that such characterizations

will effectively differentiate between algorithms that will

be reliable in practice.
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Surflex performance: the effect of ring search

Figure 10 shows Surflex’s performance on both the Jain 81

complex set and the Vertex 100 complex set, with

comparative performance for both Glide and GOLD from

the report of Perola et al. [23]. The plots are cumulative

histograms of rmsd, with results shown for Surflex using

the geometric optimization parameters (‘‘-pgeom’’) either

alone or with ring flexibility enabled. For the Jain set, the

proportion of cases in which the best pose of the 20 re-

turned poses has rmsd <2.0 Å was ~90% under both

parameter settings. For the top scoring pose, ring flexibility

improved performance by 7% points (from 67 to 74%). For

the Vertex set, performance was nearly as good with re-

spect to the best pose (84 and 83% with and without ring

flexibility, respectively). However, recognition of low-

rmsd poses as being the highest scoring was significantly

worse, with 54 and 50% success, respectively, at the 2.0 Å

accuracy level. Inclusion of ring flexibility was a clear

benefit, particularly in terms of improving choice of top

scoring pose, and it was also a benefit in increasing the

proportion of very low-rmsd solutions within the Vertex

set. There was a slight enhancement in performance over

Surflex Version 1.3 due to improvements in local optimi-

zation (data not shown).

Comparison to glide and GOLD: the effect of protein

optimization

In the foregoing results, all protein atoms (both hydrogens

and heavy atoms) were kept precisely in their original

positions. In this section alone, movement of protein atom

positions will be explored to investigate the effects on

nominal docking accuracy. In Fig. 10, plots C and D,

comparative data are shown for both Glide and GOLD. The

comparative data came from docking on exactly the same

protein structures (including the protonation states, tauto-

mer choices, and proton positions) as well as exactly the

same ligand starting coordinates. With respect to the best

respect to best pose of the top 20 returned for Glide,

GOLD, and Surflex with no ring search, performance is

essentially indistinguishable. Surflex with the addition of

ring search showed a significant improvement at low rmsd

(~10% points over Glide), with a smaller advantage at

higher rmsd. However, rmsd of top scoring pose was

somewhat different, with Glide showing an advantage in

success rates at rmsd from 2.0 to 5.0 Å. In the original

study [23], additional experiments were carried out,

showing that post-docking optimization of the final poses

using the OPLS-AA force field improved GOLD’s per-

formance to equal that of Glide with respect to the quality

of top scoring poses. The same procedure did not affect

Glide’s performance, since Glide employed OPLS-AA in

the final stages of docking.

The protein preparation procedure used by Perola et al.

included a step where protons on both the bound ligand and

protein were optimized using the OPLS-AA force field. It

Fig. 9 The two panels depict the effect of adding a constraint to hold

a ligand’s match to a specified placed molecular fragment. Panel A
shows the result with no constraint, with the fragment in magenta, the

bound conformation of the ligand in green, and the top scoring pose in

atom color (0.73 Å rmsd). Panel B shows the result with a constraint

(-cpen 100), resulting in an improved pose (0.50 Å rmsd) at the

expense of a slightly lower score. Note that the fragment deviation

was reduced in this case, with the docked pose exactly overlapping

the placed fragment. Constraint of metal chelation geometries, as with

this hydroxamic acid interaction with an active site zinc of

collagenase (PDB code 966C from the Vertex set), can be beneficial

both in terms of docking speed as well as (obviously) for geometric

accuracy
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is possible, then, that the reason that OPLS-AA optimiza-

tion after docking improved the rmsd of the top scoring

pose for GOLD was because the optimization procedure

imparted a ‘‘memory’’ within the protein of the correct

bound geometry of the ligand with respect to the specific

choice of OPLS-AA. The degree of distortion of protein

sites was modeled using optimized bound ligand strain as a

surrogate value. Figure 11 shows the cumulative histo-

grams of top scoring pose rmsd for all three dockers,

separated by low strain and high-strain cases. In both the

Surflex and GOLD cases, there was a roughly 30% point

gap in performance at 2.0 Å rmsd, but for Glide this value

was <10% points. In the low-strain cases, Surflex and

GOLD yielded 70 and 64% correct at 2.0 Å, with Glide

yielding 64% as well. The nominal Glide advantage was in

the high-strain cases.

It is possible that the high-strain cases were simply

more difficult and that OPLS-AA is a genuinely better

solution in such cases. However, Fig. 12 shows the effects

of re-optimization of the proteins’ protons using a com-

bined force field that used Surflex’s scoring function for

intermolecular contacts and the DREIDING force field for

the protein’s bonded and internal non-bonded terms. The

new proton positions (denoted ‘‘Surflex protons’’) did not

deviate in magnitude any more than the original OPLS-

AA protons did from the standard coordinates achieved

with no knowledge of the bound ligand. The results of

docking to the original proteins were rescored and re-

ranked using the modified protein proton positions with

local optimization. This procedure was analogous to the

post-docking OPLS-AA optimization in the Perola et al.

study [23]. In both the high- and low-strain cases (plots A

and B), Surflex’s top scoring pose performance increased

by as much as 15% points. The net result (plot C) was

indistinguishable performance between Surflex and Glide

up to 4.0 Å rmsd, with slightly better performance for

Surflex at higher deviations. Note that even larger in-

creases in nominal performance for Surflex were obtained

by allowing larger excursions of the protons (data not

shown).

Surflex’s performance in terms of docking accuracy

appears to be at least as good as other methods for which
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Fig. 10 Plots A and B show

Surflex docking accuracy for the

Jain 81 complex benchmark

(best pose of the top 20 and top

scoring pose, respectively).

Plots C and D show

comparative docking accuracy

on the Vertex set. In both cases,

Surflex’s ring searching

improved docking performance

with respect to the top scoring

pose, and in the Vertex set also

appeared to improve

performance with respect to the

best pose by rmsd. All three

programs performed similarly in

terms of identifying a good pose

within the top 20 returned.

Glide and Surflex (with ring

flexibility) appeared to show an

advantage in terms of the

proportion of highly accurate

poses (rmsd < 1.5 Å). Glide

appeared to exhibit a slight

advantage in the moderate

accuracy range (2–4 Å rmsd),

with Surflex showing a modest

advantage in terms of the

proportion of poor dockings

(>7 Å rmsd) chosen as the top

scoring. The differences among

programs were small within a

sample size of 100 and may be

explained best by aspects of

sampling bias and protein

preparation bias
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comparative data exists, both with respect to identifying

accurate poses within the top set returned as well as in

recognizing which among them should score best. The

addition of ring flexibility appears to give Surflex a slight

advantage over other methods, but the proportional gains

are small in the context of test sets of order 100 structures.

The effects of inadvertent bias in protein preparation can be

difficult to detect, but they can have significant effects that

can modify conclusions about relative performance. This

issue will be discussed further below.

Summary: docking accuracy

Generally, Surflex-Dock, Glide, and GOLD performed

similarly when controlling for aspects of protein prepara-

tion. This is in agreement with the Kellenberger et al. study

[19], in which those three methods were tested along with

DOCK, FlexX, Fred, Slide, and QXP. In that study, Sur-

flex-Dock, Glide, and GOLD all yielded success rates at

roughly 55% in returning the top scoring pose within 2.0 Å

rmsd, with FlexX somewhat lower, and a number of pro-
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Fig. 11 The relationship between docking accuracy with respect to

top scoring poses was strongly dependent on the strain energy of the

bound ligand. In the Vertex set, the ligand and protein protons were

optimized using the OPLS-AA force-field. Plots A–C show the

cumulative histograms of top pose rmsd for Surflex, Gold, and Glide,

respectively. In each plot, the blue curve depicts the cumulative

histogram for all complexes, the green for complexes with relatively

low-ligand strain (50 complexes with <70 kcal/mol strain), and the

red for high-strain complexes (50 complexes with strain greater of

70–400 kcal/mol). Glide’s results showed markedly less pronounced

differences between high and low-strain cases. Both Surflex and Gold

showed stronger effects. The results for Glide employed OPLS-AA

for final scoring of docked poses, possibly biasing results since the

proteins’ hydrogens had a ‘‘memory’’ of the ideal proton positions

that were compatible with the bound ligand with its protons optimized
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Fig. 12 Optimization of the protein protons using a force-field that

combined DREIDING-type covalent forces with Surflex’s scoring

function (‘‘Surflex Protons’’) for intermolecular contacts significantly

improved Surflex’s performance for docking accuracy in terms of

choosing a correct pose from among the top 20 returned. The final

poses from the Surflex docking protocol employing the original

version of the proteins were rescored with local optimization using

the modified protein coordinates. Performance on both the high- and

low-strain complex sets improved significantly, with slightly more

improvement in the former set. Overall Surflex performance with the

modified proteins was statistically indistinguishable from Glide’s

performance with the OPLS-AA protons at low rmsd, with slightly

better performance at the high end
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grams still lower. The docking protocols employed in that

study were selected to yield roughly equivalent timings for

the different dockers; the effects of that choice on the

different docking systems was variable, and for programs

that exhibited poor performance this may have been a

dominating factor.

Not surprisingly, ring conformational search within

Surflex yielded benefits for accurate docking, producing

gains particularly with respect to the proportion of very

low-rmsd solutions among the set of top scoring poses

returned. The surprising finding here has been that very

subtle changes in protein structure can have substantial

effects on the detailed ranking of returned poses. Surflex-

Dock can identify excellent poses ~85–95% of the time

based on the Jain and Vertex benchmarks, but variability in

correctly identifying the correct pose as top scoring ranged

from 50 to 75%. Small changes in protein proton positions

were capable of producing 10 percentage point shifts in

performance.

Discussion

The most important finding of this study is that more

effective exploration of the reasonable space of energeti-

cally accessible conformations of ligands leads to better

performance of a docking system both with respect to

screening experiments and with respect to geometric

docking accuracy. This should not be surprising, but the

practical significance of accessing that space with compu-

tational approaches that are not burdensome is very

important. With the computational speedups afforded by

highly efficient local optimization, Surflex-Dock Version

2.1, employing procedures for pre-docking minimization

and post-docking all-atom in-pocket optimization, is just as

fast as the previous version without those steps. A general

procedure for ring conformation exploration provides the

user with a fast and robust method that does not rely on

pre-computed ring libraries. Expansion of the ligand search

space using these tools led directly to improvements in

both screening utility and docking accuracy. These

enhancements, coupled with added functionality for

exploiting knowledge of protein ligand interactions, should

collectively yield improvements in application of Surflex-

Dock in real-world situations.

Docking for screening

The data on screening performance here agrees in an

interesting qualitative way with the observations of other

researchers [22, 24] in that it does not appear that highly

accurate docking in the sense of correctly identified bind-

ing modes is required for effective screening performance.

For example, in the HVR case (see Fig. 6) while ring

flexibility is important to achieving correct dockings, it is

yields only a marginal improvement in screening efficiency

(Table 2). It is possible that this effect does not have a

physically meaningful interpretation, but it might. If so, a

reasonable interpretation is that a significant proportion of

true ligands of a binding site have multiple binding modes

that can have an impact on the propensity of binding. In a

kinetic sense, this would provide an energetic basin from

which a partially organized binding event could transition

into its final form. In the HVR case depicted in Fig. 6, it is

easy to imagine that once the ‘‘arms’’ of the ligand have

reached partially into the protease active site (Panel B), the

central ring could shift into its proper conformation,

accompanied by a rotation of the ligand, as in the crys-

tallographically determined structure.

If this is a real effect, it should be the case that true

ligands of a binding site will have a greater number of

different high-scoring binding modes than non-ligands. In

the J&J set, considering the mean score of the ten re-

turned poses (instead of the maximum) for each docked

molecule improved screening enrichment in three of four

cases. In the Pham set, enrichment was marginally better

in 50% more cases than it was marginally worse. Neither

of these effects was large enough to make a statistical

argument, but the area deserves some additional investi-

gation. The docking protocol for screening has been

optimized to identify the maximal scoring pose of an

input ligand, not a diverse set of high-scoring poses,

which would be required to properly consider whether

this could be an advantageous strategy.

The construction of decoy sets and screening bench-

marks has become controversial as the use of benchmark-

ing has become widespread. Rognan’s ACD decoy set [18],

which was among the first widely used, has been charac-

terized by others as being more hydrophobic than one

would expect of drug-like screening molecules [46].

Groups from pharmaceutical companies have made use of

proprietary internal libraries for the construction of decoy

sets [22, 23], and academic groups such as Miteva et al.

[20] have made use of large and carefully selected decoy

sets of ACD compounds. The recent paper by Huang et al.

[46] introduced a new screening benchmark. Specific

comparisons were made of the ZINC decoys used exten-

sively here, the Rognan decoys, a new set of MDDR de-

coys, and a new set of decoys (called DUD) specifically

constructed to match the chemical properties (but not the

topological ones) of the specific true ligands of 40 different

target proteins. Their results with DOCK Version 3.5.54

showed a marked difference in performance depending on

which decoy set was used, with the least challenging being

the Rognan set and the MDDR set. The ZINC decoy set

used here and the DUD decoy set had properties most
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similar to the true ligands in terms of molecular weight,

log P, number of donors and acceptors, and number of

rotatable bonds. The DUD set was more challenging in the

reported experiments with DOCK, with the ZINC decoy set

being the next most challenging [46]. The study of Miteva

et al. [20] employed a hybrid protocol using FRED with

Surflex-Dock with tuned parameters on a large screen. The

results presented here may reduce the need for parameter

tuning, since the new Surflex-Dock procedures normalize

some aspects of variation in screening.

The results of Huang et al. [46] stand in contrast with

what has been reported here. Whereas their experiments

showed a strong dependence on decoy set choice, our re-

sults here comparing performance of Surflex-Dock using

either the Rognan or ZINC sets were very similar on the

Pham benchmark, and results on the J&J benchmark with

MDDR decoys were quantitatively similar as well. There

are very significant differences in the DOCK approach

compared with the Surflex-Dock approach, especially with

respect to scoring. In particular, treatment of ligand des-

olvation energies and polar interactions are very different,

and these might explain differential sensitivity to decoy set

composition with respect to hydrophobicity and number of

polar features per ligand. Further tests are planned for

Surflex-Dock, making use of different decoys and different

targets, but the results presented here offer some reason for

optimism regarding robustness across a diverse set of

conditions.

Docking to inform rational design

As mentioned above, one of the key practical aspects in

applying docking systems in drug design is in the situation

where one is exploring a chemical structural space of

analogs. In these cases, where it is reasonable to posit that a

particular substructure will remain largely stationary in an

active site, making direct use of that knowledge to con-

strain the search space offers advantages in terms of

workflow, speed, and direct comparison of different ana-

logs. For example, in a case like methotrexate docking to

DHFR, placement of the diaminopyrimidine improves the

workflow in terms of both speed and direct comparability

of the scores of analogs. In considering diaminopyrimidine

analogs, while docking each de novo may seem like a more

‘‘correct’’ and unbiased approach, making use of reliable

knowledge is more sensible. It is a safe bet that the dia-

minopyrimidine will bind in the conventional manner, and

factoring that moiety out of any influence on scoring by

restraining it may lead to improved rankings of synthetic

analogs.

Frequently, however, the task at hand may involve a

very different ligand structure from anything for which a

co-crystal structure has been solved. It is this case for

which the standard docking accuracy benchmark is used to

document the expected behavior of a particular approach.

The problem is that the standard construction of such

benchmarks makes use of co-crystal structures themselves.

Both the Jain and Vertex benchmarks employed in this

study shared this feature. For proteins with the potential for

significant active site atomic motions, performance on such

a test is likely to be predictive only of a docker’s perfor-

mance on analogs chemically very similar to the ligand that

influenced the shape of the protein binding site in the

experimental determination of structure. Such benchmarks

represent an artificially easy case for dockers; it is therefore

a mistake to further bias the protein structure using

knowledge of the bound ligand. Choosing a protonation

state or a tautomer is probably reasonable, with rotamer

choices for hydroxyls and thiols probably less so. However,

influencing a bond length, bond angle, or bending con-

straint in the protein is unwise and can bias a test in specific

ways toward a particular method.

Recall the discussion of Fig. 12. Very small movements

of protons alone that were guided by the scoring function to

be tested were able to increase performance of that par-

ticular method. Surflex-Dock using protein active site

protons that were optimized for Surflex’s scoring function

performed equivalently to Glide using protein active site

protons that were optimized using Glide’s scoring approach

(OPLS-AA). However, neither result informs a user of how

either program will function on the problem that is

important, since the optimized protein structure will not

have the same effect on a new ligand. Figure 13 illustrates

this problem further, by not only optimizing the protons but

also the active site heavy atoms of the protein. The plot

shows a systematic increase in the proportion of correct top

scoring poses for Surflex across the full range of rmsd, now

at 65% success for 2 Å (compared with 54% with the

original Vertex structures). The atomic motions within the

protein were small and reasonable (the example shown was

typical), but they required knowledge of the experimentally

correct answer. This is not available in a standard modeling

experiment. Consequently, this procedure is not recom-

mended in either practical applications of docking or in

investigations of algorithm performance.

While the procedure itself is flawed from the perspective

of evaluation, this line of investigation does suggest a way

forward. Within the top 20 poses returned by Surflex-Dock,

the expectation from the Jain and Vertex sets (with no bias

in protein preparation) is that roughly 85% of the time a

good pose will exist (rmsd < 2 Å). It should be computa-

tionally feasible to optimize the local protein structure

for each returned ligand pose for roughly the same cost as

for optimizing the ligand itself. The key is that only a

limited number of bonded and non-bonded protein terms

need to be computed. The problem then becomes one of
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understanding the quantitative relationship between the

changes in energy observed within the ligand, within the

protein, and between the two in a manner that improves

the detailed scoring of the best ligand poses. This is an area

of current research and is challenging. Small changes in

atomic positions within a protein lead to moderate changes

in the magnitude of internal protein energies (large

numbers), and small differences between these large

numbers determine the ‘‘winning’’ pose.

Fairness of comparisons

In the comparison among different versions of Surflex-

Dock and different parameter switches, the relative per-

formance changes are due solely to uniform application of

standardized fully automatic deterministic computations.

The conclusions discussed above with respect to the utility

of ligand minimization, ring search, and post-docking all-

atom minimization should translate to practical improve-

ments. In the comparisons with other methods, great care

has been taken to make fair comparisons and to be explicit

about parameter choices and computational protocols. In

the J&J and Vertex sets, the precise ligand structures used

in the original papers were used unmodified in all Surflex

experiments. For the J&J proteins, hydrogens were added

but were not subjected to force-field optimization. For the

Vertex proteins, except where discussion was explicit

about protein optimization, the protein structures were used

completely unmodified.

Screening utility tests involve a single docking invo-

cation to test many ligands against one protein structure,

and these are therefore relatively difficult to bias toward

or against particular methods. Improvements in perfor-

mance will tend to derive from algorithmic differences

among different methods tested. For the J&J screening

utility assessments, both Surflex-Dock and Glide had an

advantage with respect to ligand optimization beyond

internal coordinates compared with the other methods,

and their performance reflected that advantage. Surflex’s

superior performance in the direct comparisons with Glide

parallels the observations of other reports [18, 19], and by

the methods developers themselves on common bench-

marks [13, 16, 21, 29]. However, the number of distinct

protein cases for which there are directly comparable

performance data is small. Unfortunately, protein and li-

gand structural data for screening utility evaluation from

reports of Glide’s development are not available from the

authors [13, 47].

In contrast to screening utility, it is easy to introduce

bias into docking accuracy tests, since they consist of many

pairs of protein/ligand complexes, so each application of a

docker may be influenced by some bias in its input (one

docking invocation per input complex). Figure 14 shows

the direct comparison of Surflex’s performance in two

cases. The first made use of the Vertex protein structures

for docking and used the crystallographic ligand coordi-

nates to measure rmsd. The second made use of ‘‘cooked’’

proteins and ligands. The ligand and protein active site
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Fig. 13 Optimization of all protein active site atoms (‘‘Surflex All

Atoms’’) significantly improved Surflex’s performance over optimiz-

ing just the hydrogen atoms (‘‘Surflex Protons). As with Fig. 12, the

final poses from the previous docking protocol were rescored with

local optimization using modified protein coordinates. While this

procedure is clearly biased and incorrect from the perspective of

evaluating docking accuracy (see discussion), it motivates the idea of

making use of protein atom movement in cases where detailed scoring

differences are important. At right is a representative example of the

amount of movement (PDB complex 1F4E, thymidylate synthase

complexed with tosyl-d-proline). Most of the protein atoms did not

move from the original coordinates (purple), but the indole ring

shifted ~0.7 Å (yellow) to fully accommodate the proline and other

constraints of the binding pocket
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atoms were optimized using Surflex’s scoring function

combined with the DREIDING force field (as in Fig. 13).

Following a full re-docking (not just rescoring as in the

experiments above), the optimized bound ligand coordi-

nates were used from which to measure rmsd. While the

protein atom motions were reasonable, and while the

changes in reference ligand coordinates were small, the

performance of Surflex increased markedly. The numerical

increases are remarkable in magnitude, and this is a fair

comparison for the purpose of quantifying the effects of

optimizing the complexes and of measuring rmsd from

optimized ligand coordinates. However, it would not be

fair or informative to compare Surflex’s ‘‘cooked’’ results

with another docker’s using ‘‘uncooked’’ proteins and

reference ligands.

The optimization procedure imparts a memory within

the protein active site of the joint arrangement of protein

and ligand specifically at an optimum according to the

preferred scoring function. Within the optimized complex,

any movement of an atom on the ligand or protein results

in a less optimal score. So, presuming that a docking

procedure is able to generate some solution that is close to

correct, the protein’s configuration guarantees a basin of

attraction to the right answer. The optimized bound ref-

erence ligand coordinates share the memory of the joint

optimum. By redefining the location of the right answer to

the coordinates of the optimized bound ligand, the pro-

cedure artificially reduces the measured rmsd of the

specific configuration that is preferred by the scoring

function under study. Essentially arbitrary levels of

nominal improvement are possible by making use of such

a protein optimization procedure coupled with a redefi-

nition of the position from which one measures ‘‘cor-

rectness.’’

This somewhat subtle intrinsic bias is not universally

understood. Glide’s developers, in their paper introducing

the method, used precisely this type of comparison to

make a case for improvements in docking accuracy over

multiple competing methods [32]. Protein atom positions

(both protons and heavy atoms) were optimized and re-

sults were computed relative to the coordinates of the

optimized reference ligand. The paper reported an

improvements in mean rmsd over competing methods of

0.5–1.6 Å and also reported advantages in success rates

at the 1.0 Å rmsd threshold of more than 10% points. In

the controlled experiment with Surflex-Dock that yielded

the results in Fig. 14, the improvement due solely to the

effects of biased benchmark construction were 0.4 Å in

mean rmsd, with a 22 percentage point increase in pro-

portion of successes at the 1.0 Å rmsd threshold. It is not

clear whether the degree of protein and ligand pertur-

bation that gave rise to the results shown here was

comparable to that in the Glide report, but the data sets

were not available from the authors to establish the

comparison directly with the proteins used in their study

[32].

These results suggest that protein optimization prior to

docking a cognate ligand serve primarily to make an al-

ready artificial experiment less challenging. The recent

paper by Hartshorn et al. makes this point as well as part of

a broader discussion of the proper selection of complexes

on which to carry out docking algorithm testing [48]. They

have constructed a set in which all structures are very high-

quality. They made use of crystallographic structure factors

to assess the experimental binding mode of the ligands and

to verify the degree to which the electron density accounted

for all parts of the ligands. They excluded complexes in

which ligands made hard clashes with the protein or con-

tacted physiologically irrelevant crystallographically re-

lated subunits. In such cases, structures will have little

uncertainty in the positions of the heavy atoms of either the

protein or the ligand, and the question of whether a docker

can recover the correct pose is relevant, made more so by

limiting the use of knowledge of the bound ligand state in
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Fig. 14 By optimizing the protein and ligand atoms of each complex,

including both the protons and heavy atoms close to the active site, it

is possible to greatly improve nominal docking accuracy, using

precisley the same input ligand structures and docking procedures.

Here, the modified proteins were used as targets of docking, and the

modified crystallographic ligand positions were used as the gold

standard from which to measure rms deviation for top scoring pose

and best pose of the top 20 returned. Performance increases were

particularly large in terms of reported success at very low rmsd.

‘‘Cooked’’ docking success rates at the standard threshold of 2.0 Å

rmsd increased from 84 to 90% for best returned pose and from 54 to

69% for top scoring pose (black arrows). Average rmsd values were

also biased
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preparing the protein structure. Further optimization of

protein atom positions with knowledge of the bound ligands

leads only to bias in the experimental assessment of

accuracy. They list three cases within the Vertex bench-

mark (1cet, 1nhu, and 1nhv) where they were not able to

find good support for the positioning of the ligands. In each

of these cases, Surflex-Dock was unable to identify a

solution that matched the nominal experimental ligand

coordinates to within 2.0 Å rmsd, but this probably reflects

limitations in the structures more than limitations in the

methodology.

If the goal is to improve docking performance for the

real-world application of identifying the configuration of a

new ligand bound to a pre-existing protein structure, the

most sensible strategy is to work first on a set of high-

quality complexes without any a priori bias from knowl-

edge of the bound ligand. Given that one shows solid

performance without protein atom movement, convinc-

ingly demonstrating that protein atom optimization at the

end of the docking process can improve the ranking of the

top scoring poses would be an important step forward that

would likely yield real-world improvements in the practical

application of docking methods.

Conclusions

The studies reported here have shown that a generaliza-

tion of search purely within ligand pose space (defined

narrowly as translational, rotational, and torsional

parameters) to allow access to the broader Cartesian space

of accessible ligand configurations makes a substantial

impact on the practical effectiveness of docking. Explo-

ration of the effects of such generalization to the atoms of

the protein active site gives hope that significant

improvements, particularly in docking accuracy, should

be possible and should not necessarily require combina-

torial exploration of protein configurational space simul-

taneously with ligand configurational space. It may be

possible to employ local optimization of protein active

site atoms, after docking, to obtain these benefits without

incurring a burdensome computational cost. This is an

area of current investigation.
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