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Abstract | The emerging complexity of the transcriptional landscape poses great challenges 

to our conventional preconceptions of how the genome regulates brain function and 

dysfunction. Non-protein-coding RNAs (ncRNAs) confer a high level of intricate and dynamic 

regulation of various molecular processes in the CNS, ranging from neurodevelopment to 

brain ageing, from synapse function to cognitive performance, and from health to disease. 

ncRNA-mediated processes may be involved in various aspects of the pathogenesis of 

neurodegenerative disorders. Understanding these events may help to develop novel 

diagnostic and therapeutic tools. Here, we provide an overview of the complex mechanisms 

that are affected by diverse ncRNA classes that have been implicated in neurodegeneration.  

 

  



Novel high-resolution and high-throughput technologies, such as tiling arrays and deep-

transcriptome sequencing, have revealed that complex genomes give rise to noncoding 

RNAs (ncRNAs)1,2 (FIG. 1). ncRNAs are particularly abundant in the CNS3–5. It has been 

estimated that 40% of long ncRNA (lncRNAs) genes are specifically expressed in brain tissue, 

and other types of ncRNAs, such as circular RNAs (circRNAs) and certain microRNAs 

(miRNAs), have also been reported to be enriched in the CNS (and some specifically at 

synapses)6–10. Remarkably, research in the field of neurodegeneration has until now largely 

focused on a small percentage of the approximately 20,000 protein-coding genes. Protein-

coding genes occupy less than 2% of the whole genome11, which inevitably raises the 

question as to whether we are overlooking an important part of the biology that underlies 

neurodegenerative disorders. 

The functional interrogation of the rapidly increasing number of annotated ncDNA 

sequences is a formidable challenge and therefore critical experimental validation of the 

emerging evidence is required (BOX 1). Nevertheless, recent years have seen a surge of 

studies underscoring the vital roles of ncRNAs in brain evolution, development, homeostasis, 

stress responses and plasticity12–23.  Indeed, loss-of-function studies have provided examples 

of the importance of ncRNA-mediated regulation in brain function24–28. Moreover, ncRNAs in 

adult mouse brain often exhibit region- and stage-specific expression patterns29,30,  are 

dynamically regulated by neuronal activity7,8,31–35, and although most (but not all36) ncRNA 

genes are expressed at relative low levels, they may provide more information about cortical 

cell type identity than their protein-coding counterparts13,37.  

Consistent with the observations mentioned above, ncRNAs have been implicated in 

brain aging and in the pathophysiology of neuropsychiatric and neurodegenerative 

disorders5,12,13,38. In this Review, we survey the emerging roles of ncRNAs in 

neurodegeneration and discuss in which ways they challenge our understanding of 

neurodegenerative diseases and how they might lead to novel diagnostic and therapeutic 

strategies. 

 

[H1] ncRNAs in CNS homeostasis 

During CNS development, ncRNAs affect stem cell maintenance, progenitor proliferation and 

cell fate choice5,13,19,25,27,39–41. miRNAs such as miR-124 and miR-132 have a marked positive 

regulatory impact on neurogenesis42,43, while some lncRNAs, such as rhabdomyosarcoma 2 

associated transcript (RMST) and Tcl1 upstream neuron-associated long intergenic ncRNA 

(TUNA), induce neuronal differentiation17,20. Moreover, ncRNAs are implicated in neuronal 

fate commitment (for example miR-124 (REF.44), embryonic ventral forebrain 2 (Evf2) 

(REF.18), double-stranded neuron-restrictive silencer factor (dsNRSF)45 and distal-less 

homeobox 1, antisense (Dlx1AS21), in glial specification (for example, miR-219 and miR-338 

(REF.46), Sox8 opposite transcript (Sox8OT) and nuclear enriched abundant transcript 1 

(NEAT1)21, and NK2 homeobox 2 (Nkx2.2) (REF.22)) or in both (for example, miR-9 (REFs46,47) 

and Gomafu21,35).  

 A broad array of distinct ncRNA classes — such as small ncRNAs (miRNAs48, 

endogenous small-interfering RNAs (endo-siRNAs), small nucleolar (sno)-derived RNAs33 and 

PIWI-interacting RNAs (piRNAs)16, long natural antisense transcripts (NATs) 49,50), enhancer 

ncRNAs (eRNAs) 32,  circRNAs 7,8 and other lncRNAs 51 (for example, metastasis associated 

lung adenocarcinoma transcript 1 (MALAT1) and NEAT1 (REF.31) and Gomafu35)— have been 



implicated in synaptic plasticity. Synaptically enriched ncRNAs, such as certain miRNA 

precursors, various miRNAs (for example, miR-9, miR-132, miR-134 and miR-138)52,53, BC1, 

BC20013 and most brain circRNAs7,8, act as synaptic regulators in symphony with their 

protein-coding counterparts to regulate local protein expression54. A natural antisense 

transcript of BDNF (BDNF-AS) may negatively regulate synaptic plasticity by repressing the 

transcription of BDNF50, whereas another lncRNA, MALAT1, may be a positive regulator of 

synaptogenesis15. 

Epigenetic and transcriptional changes at the synapse contribute to memory 

consolidation and storage. A growing body of evidence demonstrates that ncRNA-mediated 

regulation is instrumental for memory formation 14,55,56. Small ncRNAs, including miRNAs 
14,56, piRNAs 16,55 and BC1 (REF.56), are associated with cognitive and behavioural processes. 

Research on other ncRNA classes is still in its infancy. Importantly, knocking down an 

endogenous antisense ncRNA against Ub3a, a gene imprinted in Angelman syndrome, 

rescues some of the cognitive deficits that are observed in a genetic mouse model of this 

disorder57. Although the exact regulatory impact of several identified ncRNAs on memory 

and cognition remains elusive, the available evidence suggests that ncRNA networks are 

important for CNS homeostasis and that their dysregulation could have profound 

consequences for brain function. 

 

[H1] ncRNA networks and neurotoxicity 

A number of distinct ncRNA classes are implicated in neurodegenerative disorders 

(Supplementary information S1 (table)). Aberrations in the transcriptional networks in which 

these ncRNAs operate (BOX 2) may impinge on brain homeostasis in complex ways58 (FIG. 2). 

This is well illustrated by studies of the C9ORF72-associated hexanucleotide repeat 

expansion (GGGGCC), the most common genetic cause of amyotrophic lateral sclerosis (ALS) 

and frontotemporal dementia (FTD). These repeat sequences are transcribed in both sense 

and antisense RNA and accumulate in nuclear and cytoplasmic RNA foci, whose number 

correlates with pathology severity in C9ORF72-related cases of ALS and FTD59–61. In addition, 

six dipeptide repeat proteins are translated from the C9ORF72 repeat locus (so-called 

repeat-associated non-ATG (RAN) translation) and co-aggregate in neuronal, ubiquitin-

containing, intranuclear and cytoplasmic inclusions in the brain and spinal cord, possibly 

contributing to protein-mediated neurotoxicity mechanisms62,63 (FIG. 2).  

Spinocerebellar ataxia type 8 (SCA8) is similarly caused by multiple transcriptional 

products of SCA8. The sense strand gives rise to a trinucleotide repeat expansion transcript 

and to a polyglutamine expansion protein, which accumulates in intranuclear inclusions in 

cerebellar and brainstem neurons of transgenic mice and human autopsy tissue64. Moreover, 

a pathogenic repeat sequence is transcribed in the antisense direction giving rise to a 

noncoding repeat RNA that overlaps with the Kelch-like protein 1 (KLHL1) gene (the ncRNA 

gene is known as SCA8, ataxin 8 (ATXN8) opposite strand (ATXN8OS) or KLHL1 antisense)64,65. 

Transgenic mice overexpressing the human SCA8 expansion sequence display cerebellar 

deficits and progressive motor deficits that are similar to those observed in affected 

individuals65. The accumulation of both sense and antisense expansion transcripts, and of a 

polyglutamine expansion protein in these mice, suggests that SCA8 pathology possibly 

involves both protein and RNA gain-of-function mechanisms65.  



Non-protein coding genes may also have roles alongside protein-coding counterparts 

in fragile X syndrome (FXS), Huntington’s disease (HD) and Alzheimer’s disease (AD). The 

expansion of the microsatellite locus in the fragile X mental retardation 1 (FMR1) gene is 

associated with FXS (>200 CGG repeats; termed full mutation) and the related condition 

fragile X-associated tremor and ataxia syndrome (FXTA) (55–200 CGG repeats;  termed 

premutation). This locus gives rise to four distinct transcripts with possible pathogenic 

relevance: the FMR1 repeat-containing mRNA; the FMR5 RNA, a sense ncRNA that is 

transcribed upstream of the FMR1 promoter; the FMR6 RNA, an antisense ncRNA that 

overlaps the FMR1 3’-untranslated region (UTR); and, finally, FMR4, an antisense transcript 

from FMR1 that spans the repeat region66,67 (FIG. 2). These transcripts show different 

expression patterns in the brains of individuals carrying the premutation or the full 

mutation.  

This complex transcriptional fingerprint may contribute to the variability of the 

clinical phenotypes observed in FXTAS and FXS66,67. Transcriptional silencing of FMR1 in 

patients with FXS leads to a deficit in its protein product FMRP, an RNA-binding protein that 

regulates local protein translation in dendrites. Fmr1 knockout mice display synaptic 

alterations and cognitive impairment, suggesting a causal link between FMRP loss-of-

function and FXS pathology68. However, FMR1 expansion repeat RNA co-localizes with 

ubiquitin in intranuclear inclusions in postmortem FXTAS brain67, and FMR4, which is also 

silenced in individuals with FXS, exerts antiapoptotic functions in human cell lines69,70. These 

findings illustrate the complexity of the gain- and loss-of-function mechanisms in brain 

disorders such as FXTAS and FXS.  

In HD, a CAG repeat expansion in exon 1 of the gene huntingtin (HTT) is the primary 

cause of pathology. A small sense repeat transcript (sCAG) derived from the repeat-

containing mRNA is elevated in the brains of individuals with HD and is neurotoxic in vitro71, 

indicating that it might contribute to HD pathology. However, an antisense ncRNA 

overlapping the HTT repeat locus (HTT-AS) acts as an HTT repressor and is downregulated in 

brain tissue from patients with HD72. Since lowering mutated and wild-type HTT levels 

ameliorates pathology in HD mice73, HTT-AS should have a  protective role in the disorder. 

In AD, the evidence for a role of cross-talking coding and non coding transcriptional 

networks is much less straightforward. Single nucleotide polymorphisms (SNPs) in the 

vicinity of a locus giving rise to both antisense ((antisense non-coding RNA in the INK4 locus 

(ANRIL; also known as CDKN2BAS) and circular (cANRIL) transcripts, which have been 

reported to be involved in epigenetic regulation, have been associated with AD pathology74–

77. These associations have not yet been confirmed in larger, classic genome-wide 

association studies (GWAS), but the observations may be of interest as CDKN2B, which gives 

rise to these transcripts, encodes a protein involved in cell cycle regulation that accumulates 

in neurofibrillary tangles and amyloid plaques, which are pathological features observed in 

the brains of patients with AD78. In addition, an antisense transcript of the glia-derived 

neurotrophic factor (GDNF) gene (GDNFOS),  gives rise — via alternative splicing — to two 

ncRNAs and one protein and has been implicated in aberrant GDNF mRNA splicing in human 

AD brain tissue79. The functional consequences of these events for the physiological 

neurotrophic and neuroprotective functions of GDNF and for AD pathogenesis remain, 

however, unclear. 

 



 

[H1] ncRNA mechanisms in neurodegeneration 

A growing list of studies illustrates the diversity of ncRNA roles in brain function and 

dysfunction (Supplementary information S1 (table)). Gaining a deeper understanding of 

ncRNA-mediated mechanisms of regulation will eventually facilitate their efficient 

therapeutic targeting. Here, we summarize six major mechanisms that likely contribute to 

the neurodegenerative process (TABLE 1 and FIG. 3). 

 

[H3] Epigenetic regulation. Chromatin immunoprecipitation (ChIP) assays demonstrate that 

ncRNAs with links to neurodegeneration associate with chromatin remodeling complexes 

and may therefore play roles in epigenetic regulation.  

An  example is a ncRNA associated with SCA7, where polyglutamine repeat 

expansions in ATXN7 cause neurodegeneration(REF.80). . Convergent transcription of 

spinocerebellar ataxia-7 antisense noncoding transcript 1 (SCAANT1) suppresses Atxn7 

transcription in the sense direction in mice80. SCAANT1 levels inversely correlate with ATXN7 

mRNA levels in fibroblasts from patients with SCA7 and in transgenic mice carrying the 

repeat disease locus80. Hence, a feedforward regulation explanation has been proposed, 

wherein the repeat expansion in ATXN7 reduces SCAANT1 expression, which leads to de-

repression of ATXN7 transcription and increased mutant ATXN7 levels80. 

The lncRNAs BDNF-AS, TUG1, MEG3, NEAT1 and TUNA, which may act as epigenetic 

regulators, are differentially expressed in brain tissue from humans with HD versus that from 

healthy individuals17,81–83 and might be involved in the pathological outcome by modifying 

the effects of mutant HTT. In particular, BDNF-AS, which is activity-dependent, acts as a 

scaffold to recruit polycomb repressive complex 2 (PRC2) to the BDNF promoter, resulting in 

BDNF transcriptional repression in a human cell line31,50. This regulatory effect may be of 

relevance in HD, in which BDNF is downregulated in the human brain84. Interestingly, BDNF 

overexpression rescues dopaminergic, synaptic, motor and cognitive deficits in a HD 

transgenic mouse model82, and BDNF-AS inhibition provides neuroprotection upon ischemic 

insult in retinal ganglion cells85. Importantly, the regulatory effects of all the differentially 

expressed lncRNAs mentioned above still await systematic experimental validation in HD 

models17,81.  

 

[H3] RNA interference. Posttranscriptional repression of gene expression by miRNAs and 

small-interfering RNAs (siRNAs) is collectively termed RNA interference (RNAi). Key 

molecular components shared between miRNA- and siRNA-mediated mechanisms are the 

RNase III endonuclease Dicer, which has a role in the generation of miRNAs and siRNAs, and 

the argonaute (AGO) protein family, which is a core component of the RNA-induced silencing 

ribonucleoprotein complex (RISC) that brings together the ncRNA and the mRNA target86. 

miRNAs bind to their targets leading to either mRNA decay or translational inhibition. Global 

or individual manipulation of miRNA levels in the rodent brain can lead to 

neurodegenerative phenotypes26,87–89. Indeed, genetic ablation of Dicer in adult mouse brain 

promotes  hyperphosphorylation of TAU and neuronal loss in the hippocampus26, which are 

both features of AD, whereas increasing the levels of the miRNA let-7 induces neuronal 

death in the mouse cortex 88.  miRNA expression profiles are perturbed across a wide 

spectrum of neurodegenerative disorders, including AD, Parkinson’s disease (PD), HD, ALS, 



FXS, FTD and SCA (Supplementary information S1 (table)). miRNA-mediated regulatory 

networks involve multiple targets and therefore altered levels of one miRNA in the CNS 

might impact several layers of cellular homeostasis90. This is illustrated in knockdown 

experiments of miR-132, which is consistently and robustly downregulated in AD brain 

tissue90,91. In AD transgenic mice, miR-132 downregulation in the hippocampus promotes 

both the accumulation of amyloid-β (a hallmark of AD) and TAU hyperphosphorylation by 

upregulating inositol-trisphosphate 3-kinase B92. In addition, miR-132 inhibition in primary 

cortical and hippocampal neurons in vitro,, leads to the activation of the forkhead box 

protein O3 (FOXO3)–PTEN–P300 signalling pathway, which induces neuronal death93.  

Other ncRNAs may also act via the RNAi pathway. The small neurotoxic repeat-

containing transcript sCAG, which stems from HTT and is upregulated in the frontal cortex 

and caudate of brains from individuals with HD and in brain tissue from HD transgenic mice, 

is loaded into the RISC to act as a gene silencer71. Interestingly, sCAG RNAs isolated from 

cells expressing human mutant HTT and from HD-affected human brain tissue markedly 

decreased the viability of human neuronal cells via an AGO2-dependent mechanism71. 

Antisense oligonucleotides against sCAGs reversed this effect, supporting a role for sCAGs in 

mutant HTT-mediated neurotoxicity71. Conversely, the antisense ncRNA derived from the 

same HTT locus (HTT-AS) seems to repress HTT expression also via a Dicer-dependent 

regulatory mechanism. HTT-AS is downregulated in human HD brain tissue72. An interesting 

model emerges from these observations in which the presence of the repeat expansion in 

the HTT-AS transcript represses its transcription, which may result in elevated mutant HTT 

levels in HD.  

 

[H3] Alternative splicing. Shifting the splicing profiles of transcripts is another mechanism by 

which ncRNAs may affect pathology in neurodegenerative disorders. Sortilin-related 

receptor 1 (SORL1) is a risk gene for late-onset AD that regulates the trafficking of amyloid-β 

precursor protein (APP) — from which amyloid-β is derived — and can be proteolytically 

processed by β-site APP cleaving enzyme 1 (BACE1; also known as β-secretase 1), which is 

involved in amyloid-β generation94. SORL1 levels are decreased in the brains of individuals 

with AD94, and Sorl1 ablation in mice induces amyloid-β formation by shifting APP from the 

retromer recycling pathway to the BACE1 proteolytic pathway 95. An antisense transcript 

termed SORL1-AS (also known as 51A) shifts splicing so that transcripts for the alternative B 

and F isoforms of SORL1 are produced over the transcript for the canonical, long SORL1 

isoform A, leading to downregulation of canonical SORL1. This shift in splicing is associated 

with increasing amyloid-β levels in cultured human neuronal cells94. Notably, SORL1-AS is 

upregulated in human AD cortex, suggesting that it might contribute to the SORL1 deficit 

and elevated amyloid-β production that are observed in the disease.  

Another ncRNA that may be involved in AD, at least in part, through alternative 

splicing is the lncRNA 17A. This ncRNA is also upregulated in AD brain tissue96 and may have 

a dual impact, as it increases amyloid-β generation and induces alternative splicing of 

GABAB2, which encodes GABAB receptor subunit 2, abolishing signalling mediated by 

receptors containing this subunit in neuroblastoma cells in vitro 96. 

In SCA8, ATXN8OS accumulates in RNA foci in the brain97. ATXN8OS promotes 

alternative splicing of the sodium- and chloride-dependent GABA transporter 4 gene (Gabt4) 

and increased expression of the encoded protein in SCA8 transgenic mice97, and such 



changes are also observed in autopsy-obtained brain tissue from patients  with SCA897.  

Increased GABT4 levels have been linked to a reduction of GABA at synapses in cerebellar 

granular neurons97. In SCA8 transgenic mice, ATXN8OS was implicated in loss of GABAergic 

inhibition in the cerebellar granular cell layer and induction of a progressive motor 

phenotype, linking a RNA gain-of-function mechanism directly to SCA8 pathology97. 

ATXN8OS might also regulate the splicing of its sense transcript, the mRNA for KLHL165, 

although the relevance of this effect to disease pathology is unknown. 

Finally, the widespread alterations in FMR1 splicing profiles in the brain in FXS 

suggest that FMR6, a natural antisense FMR1 transcript that is downregulated in FXS brains, 

regulates the canonical splicing of FMR1 (in addition to other effects)66. The functional 

validation of these observations may provide further insights into disease pathology. 

 

[H3] mRNA stability. Cytoplasmic RNA–RNA duplex formation between naturally occurring 

antisense and cognate sense transcripts can prevent endo- or exonucleolytic degradation of 

the sense mRNA, or block access to proteins involved in RNA turnover, increasing its stability 

and translation98. For example, the BACE1 antisense ncRNA (BACE1-AS) binds BACE1 mRNA, 

leading to increased BACE1 levels in human cell lines and mouse brain. As indicated above, 

BACE1 is one of the proteases that generate amyloid-β, and it has become a major drug 

target that is being currently explored in phase 3 clinical trials for AD. BACE1-AS is elevated 

in the brains of individuals with AD and of some transgenic mouse models of the disease99. 

Moreover, it is increased upon exposure to amyloid-β in vitro99, suggesting that a possibly 

deleterious positive feedback loop involving BACE1-AS and amyloid-β may be maintained 

during AD progression. 

In contrast to BACE1-AS, ciRS-7 (also known as CDR1-AS) is a strongly brain-enriched 

circular antisense ncRNA100 that is downregulated in the cortex and hippocampus of patients 

with sporadic AD101. This ncRNA has mainly been studied for its role as a molecular decoy, 

which is discussed below. However, ciRS-7 also stabilizes — via an as yet unknown 

mechanism — its sense transcript, the mRNA for cerebellar degeneration-related antigen 1 

(CDR1), which was first identified in patients with paraneoplastic cerebellar degeneration100. 

Of note, one preliminary report suggested that CDR1 might be increased in lymphocytes 

from patients with AD, but the importance of this observation for AD pathology in the 

human brain remains unclear102. 

Another example of a potentially disease-linked, mRNA stability-related mechanism 

concerns an antisense transcript from the PTEN-induced putative kinase 1 (PINK1) locus 

(PINK1-AS). Mutations in PINK1 are causally related to PD103, and PINK1-AS positively 

regulates the abundance of a specific splice variant of PINK1 (svPINK1) in neuroblastoma 

cells, possibly via RNA–RNA hybridization and transcript stabilization104.  

Last, FMR6, which has already been discussed above, might stabilize FMR1 mRNA66. 

The findings relating to FMR6 and indeed PINK-AS, suggest that this ncRNA-mediated 

regulation of disease-associated protein-coding transcripts might theoretically impact the 

activity of the related proteins and thereby modify disease progression, although this 

hypothesisrequires further experimental validation in disease models.  

 

[H3] Translational regulation. Certain ncRNAs have a direct impact on the translation of 

mRNA transcripts. BC200, a small neuron-specific ncRNA, is transported in ribonucleoprotein 



particles to the dendrites where it forms part of a complex with multiple protein interactors 

(including FMRP) that regulates the translation of several mRNAs in mouse brain105. Given 

that local translation in dendrites is involved in long-term synaptic plasticity and that BC200 

levels markedly increase in human AD brain, it is intriguing to hypothesize that BC200 might 

be implicated in the synaptic defects that are observed in AD 106.  

Ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL1) is a brain-enriched protein 

that is highly expressed in the substantia nigra and that is involved in dopaminergic neuron 

differentiation and in the ubiquitin-proteasome system. GWAS indicate that UCHL1 is a PD 

risk gene107. An antisense transcript for this gene (UCHL1-AS) targets Uchl1 mRNA to heavy 

polysomes for translation, resulting in increased UCHL1 levels108. In in vitro PD models, both 

UCHL1-AS and Uchl1 mRNA are downregulated, suggesting a possible link to the 

proteasomal deficits that are observed in PD109.   

 

[H3] Molecular decoys. Owing to their highly versatile, modular nature, ncRNAs can act as 

molecular traps that titrate away an RNA (in this context the ncRNAs are called competing 

endogenous RNAs (ceRNAs)110) or a protein target111, or transport them to specific cellular 

compartments. The relative abundance of the ncRNA decoy and of its targets along with the 

number of target molecules that can be sequestered by one single ncRNA in a given cellular 

context are critical factors that determine the outcome of such interactions112,113. More 

specifically, the concentration of the ceRNA must approach that of the target miRNA to 

induce meaningful de-repression of the miRNA targets113,114.  

The hexanucleotide repeat-containing C9ORF72 sense transcript, which is involved in 

FTD and ALS, co-accumulates with the antisense C9ORF72 ncRNA in nuclear and cytoplasmic 

RNA foci in human cultured cells and in patient brain tissue60,63. Several RNA-binding 

proteins can be sequestered in these foci in brain tissue from humans with FTD or ALS and 

from mice with this expansion mutation, leading to altered RNA splicing or perturbed 

nucleocytoplasmic transport and possibly contributing to certain aspects of the 

pathology63,115.  

The ncRNAs MALAT1 and NEAT1 are elevated in the brain of patients with FTLD-TDP, 

where they are the two most  highly detected RNAs in TAR DNA-binding protein 43 (TDP43)-

positive disease-associated inclusions116. In mammalian cells, MALAT1 and NEAT1 are 

implicated in recruiting splicing factors to subnuclear bodies called speckles and 

paraspeckles, respectively116,117. These observations clearly suggest that splicing aberrations 

contribute to disease, although the extent to which they influence the progression of 

pathology needs further assessment. This is also the case for the antiapoptotic transcript 

FMR4 (the antisense transcript of FMR1), which is highly expressed in individuals with FXTAS 

and silenced in FXS, and sequesters RNA-binding proteins into intranuclear inclusions in 

cultured human cells67,69.   

The antisense ncRNA LRP1-AS can act as a molecular decoy for the ubiquitous 

chromatin-associated protein HMGB2, serving as a cell type- and locus-specific natural RNA 

ligand to fine tune HMGB2 activity in vitro118. This interaction obscures the binding of 

HMGB2 to its target LRP1, resulting in reduced Lrp1 transcription. Interestingly, LRP1-AS is 

upregulated in the superior frontal gyrus in brain tissue from patients with AD and its levels 

are inversely correlated with LRP1 levels118. Although cell biology studies suggest a role for 



LRP1 in amyloid-β metabolism in brain, the relevance of LRP1 regulation by LRP1-AS in AD 

pathology remains to be clarified. 

The aforementioned circular RNA ciRS-7 represents a unique example of 

multifunctionality. Notably, ciRS-7 is expressed at 200-fold higher levels than housekeeping 

proteins in human and mouse brains100,114, suggesting that ciRS-7-mediated molecular 

trapping mechanisms in CNS are stoichiometrically relevant. Apart from stabilizing CDR1 

mRNA, as discussed above, human ciRS-7 harbors 74 seed sequence matches for miR-7 

(which reflects a 10-fold higher miRNA-binding capacity than any other known transcript) 

and acts therefore as a miR-7 ‘sponge’ in neuronal tissues114,119. In brains from AD patients, 

decreased ciRS-7 levels in the hippocampus and the cortex are associated with miR-7 

upregulation and consequent repression of miR-7 targets involved in ubiquitin-mediated 

clearance of amyloid-β101. In vitro, ciRS-7 promotes APP and BACE1 degradation by both the 

proteasomal and the lysosomal pathways, leading to decreased amyloid-β levels120. Hence, a 

complex link is emerging between ciRS-7 deficits and pathological amyloid-β aggregation in 

the AD brain. Moreover, since one of the targets of miR-7 is α-synuclein mRNA, which is 

encoded by SNCA, this regulatory network might have a role in PD as well121 (α-synuclein is 

implicated in the pathophysiology of PD). Interestingly, endogenous α-synuclein mRNA levels 

decrease upon transfection of a human cell line with miR-7, a change that is counteracted by 

overexpression of ciRS-7 (REF.114). ciRS-7 is degraded in a miR-671-dependent manner 

(possibly following direct ciRS-7–miR-671 base pairing) via AGO2-mediated cleavage in a 

human cell line100, suggesting that ciRS-7 acts to transport a cargo of miR-7 that becomes 

released by miR-671. Such spatiotemporal control of miR-7 activity in the cell might go 

astray in neurodegeneration. 

Finally, lnc-SCA7 acts as a miRNA decoy to regulate ATXN7 mRNA in a brain region-

dependent manner122. More specifically, lnc-SCA7 competes with the ATXN7 transcript for 

binding to miR-124, thereby increasing ATXN7 levels in mouse and human neuroblastoma 

cells. Further experimental confirmation of these findings is required, as disruption of this 

tripartite regulation might play a role in SCA7 pathology, in which the levels of expansion 

repeat-containing ATXN7 are elevated122. 

 

[H1] Genetic associations  

Only 7% of the nearly 6,500 disease- or trait-predisposing SNPs that have been identified in 

more than 1,200 GWAS over the past decade are located in protein-coding regions, 

suggesting that most of these GWAS-associated SNPs regulate gene expression rather than 

altering the protein sequence or structure123. Interestingly, 75% of the SNPs that affect 

lincRNA expression do so in a tissue-dependent manner and without influencing the 

expression of neighbouring protein-coding genes123.  Nevertheless, hard genetic proof for a 

causal role of SNPs in ncRNA transcripts or ncRNA-interacting genomic loci in 

neurodegeneration is lacking (Supplementary information S2 (table)). For instance, a 

polymorphism in the 3’-UTR of oxidized low density lipoprotein receptor 1 (OLR1) mRNA 

may impair amyloid-β clearance from the brain across the blood–brain barrier (BBB) and was 

associated with cerebral amyloid angiopathy in a small cohort of patients with AD124. 

Moreover, a variation in the miR-433-binding site of FGF20 induces the expression of both 

FGF20 and α-synuclein and is associated with increased risk for PD125.  



FTLD-TDP can be caused by loss-of-function mutations in progranulin (GRN). A 

genetic variant in a binding site for miR-659 in the 3’-UTR of GRN mRNA increases the 

binding of the miRNA to its target, resulting in stronger GRN repression; this variant has 

been reported by some studies to be a susceptibility factor for FTLD-TDP, AD and 

hippocampal sclerosis, although these findings require further confirmation by independent 

reports126–130. In another small-sized study, a similar polymorphism in one of miR-146a-5p 

precursors was associated with a genetic predisposition for AD131. This polymorphism 

represses miR-146a-5p expression and consequently de-represses its target TLR2, which has 

been functionally implicated in amyloid-β-dependent inflammatory signalling cascades131.  

Recent findings suggest that SNPs in noncoding enhancer regions that are in close 

proximity to disease-associated loci (for example, SNPs in the SNCA locus, which is linked to 

PD risk) may potentially affect gene expression in an organ-specific fashion, resulting in 

distinct disease phenotypes132,133. Limited knowledge about the key functional elements in 

genes coding for ncRNAs and the rules of interaction among them, and the overall lack of 

conservation of ncRNAs across different species obstruct the functional validation of genetic 

variations in these loci134. Indeed, developing an understanding of the molecular 

mechanisms governing ncRNA involvement in disease is dauntingly hard, as SNPs in ncRNA 

genes could alter ncRNA expression or structure, and/or their functional interactions with 

DNA, RNA or protein partners.  

 

[H1] ncRNA diagnostics and therapeutics  

 

[H3] ncRNAs as biomarkers in neurodegenerative disorders. Alterations in miRNA levels in 

cerebrospinal fluid (CSF) and peripheral tissues in neurodegenerative disorders have been 

extensively documented135–143. Although it is clear that miRNAs are markedly dysregulated in 

various neurodegenerative processes, most studies in this area have been monocentric and 

relatively limited with regard to sample size. Differences between studies in standardization 

of sample stratification, collection, processing, data normalization and analysis136 explain 

why these reports have not yet yielded a consensus on which of the altered miRNAs are 

relevant to disease. For instance, postmortem delays in sample collection can be crucial, as 

miRNA levels in postmortem CSF may not correlate well with those in brain owing to 

compromised BBB integrity, which can result in the rapid entry of brain miRNAs in CSF137. 

The need for systematic and standardized approaches to profile circulating miRNAs in CSF 

and blood is evident.  

Recent findings suggest that miR-206 levels (upregulated in the brain in AD) can be 

measured in olfactory mucosa in patients with mild cognitive impairment and that the 

expression of this miRNA correlates with the degree of cognitive deficit. These observations 

could prove exciting in the context of the early diagnosis of AD, as this approach may allow 

access to the molecular changes occurring in living cells144.  It should be noted, however, 

that only 41 patients were investigated in this monocentric study, so further confirmation of 

these results is needed144. In patients with ALS or FTD, sense and antisense C9ORF72 RNA 

foci have been found in fibroblasts and lymphoblasts61,62, and polyglutamine proteins have 

been detected in CSF145, suggesting the potential of these RNA and protein species as 

possible biomarkers. Again the relative low number of cases investigated (fewer than 10 



cases per study) makes it imperative to repeat these studies in much larger patient cohorts 

to gain confidence in their diagnostic potential. 

Although ncRNAs seem to be quite stable in body fluids (owing to their secondary 

structures)1,7, further study is warranted to evaluate their potential as neurodegeneration 

biomarkers146. Efforts to set up large, multicentric and well-controlled studies to document 

ncRNA alterations in CSF and blood in a systematic way are necessary147.  

 

[H3] Novel ncRNA-based therapies in neurodegeneration. Targeting ncRNAs might offer 

effective approaches for the treatment of neurodegenerative disorders12. Successful 

targeting of lncRNAs will presumably be difficult because of their extensive secondary 

structures146; however, improved oligonucleotide design has delivered multiple chemically 

modified analogues that may overcome such limitations148, and several of these tools have 

been successfully employed in experimental models of neurodegeneration149. Antisense 

oligonucleotides (ASOs) against the repeat-containing C9ORF72 transcripts and small 

molecules that inhibit RNA translation suppressed RNA foci formation in patient fibroblasts 

and in neurons derived from induced pluripotent stem cells from individuals with ALS. In 

C9ORF72 repeat-overexpressing mice, ASOs improved cognitive deficits61,145,150–153. 

Furthermore, cleavage (siRNA) or inhibition (antagoNAT) antisense strategies against NATs 

potentially involved in AD and HD modulated the levels of both the NAT and its cognate 

sense mRNA in mouse and human cell lines and in mouse brain50,99,148. Interestingly, 

inhibition of BACE1-AS lowered amyloid-β levels and improved adult neurogenesis in a 

mouse model of AD154, and an antagoNAT against BDNF-AS increased endogenous BDNF 

levels and promoted neuronal growth and survival in wild-type murine brain50. Finally, 

emerging evidence suggests that blocking the generation of certain circRNAs may counteract 

TDP43-mediated cytotoxicity, and this was suggested as a potential therapeutic strategy for 

ALS155.  

A major advantage of single-stranded oligonucleotides, such as antagoNATs and 

ASOs, is that they can be administered systemically as ‘naked’ molecules (that is, without the 

requirement for any delivery vehicles)148. Direct administration of oligonucleotides to the 

CNS has been achieved via intracerebroventricular or intrathecal infusion of CSF into rodents 

and non  human primates in tauopathy, HD, ALS and spinal muscular atrophy (SMA) animal 

models73,148,156–160. These approaches demonstrated that ASOs delivered in CSF efficiently 

enter the brain, where they engage their RNA targets leading to up- or downregulation of 

the targeted transcripts or to shifts in splicing profiles and, eventually, to the amelioration of 

tissue toxicity and cognitive deficits.  

Other emerging strategies for targeting the CNS include nanotechnology-based drug 

delivery systems. For instance, exosomes, which are nano-vesicles of endocytic origin, 

efficiently mediate the intercellular transfer of siRNAs, miRNAs and miRNA antisense 

oligonucleotides in vitro161–163. In vivo, intravenous delivery of autologous dendritic cell-

derived exosomes engineered for neuronal targeting and loaded with an siRNA against 

BACE1 resulted in marked brain-specific BACE1 mRNA and protein knockdown and a 

reduction in amyloid-β in the cortex of treated mice164. The efficient and tissue-specific 

delivery along with the absence of overall immune responses underline the potential for 

using such RNA-based systemic therapeutic approaches in chronic neurodegenerative 

conditions.  



These findings have not gone unnoticed by the pharmaceutical industry and several 

companies are now focusing on ncRNAs (miRNAs, NATs and lncRNAs) as potential 

treatments for various neurological disorders 146,165. Most of the practical attempts are still 

in the lead optimization phase, with only a few (against hepatitis C, lymphoma and fibrosis) 

having reached Phase 1 and 2 clinical trials. Apart from the great hurdle of efficiently 

crossing the BBB (which is common to all CNS-targeting drugs), ncRNA-based therapeutics 

are additionally facing the issue of the differential targeting of the multiple transcriptional 

products generated by the same target locus and the associated complex biology. 

Nevertheless, clinical trials in patients with ALS or SMA that involve intrathecal delivery of 

ASOs against protein-coding transcripts have demonstrated the promise of therapeutically 

targeting RNA166,167. Most notably, infants with type 1 SMA (the most severe form of the 

disease) that were enrolled in a recent Phase 3 clinical trial showed markedly improved 

motor function following treatment with an ASO that interferes with the splicing of the 

transcript encoding SMN2, thereby boosting the levels of the SMN2 protein167.  

 

[H1] Perspectives 

Despite substantial progress in understanding ncRNA biology and its contribution to disease, 

we can safely state that we are in the early days of this field. The vast majority of the 

annotated ncRNAs have not been functionally investigated and many questions remain 

unanswered regarding the impact of ncRNAs in the context of neurodegeneration. The only 

way forward is to perform more basic research to address the role of different ncRNAs in the 

brain, in specific brain areas, and in distinct cells. Larger, higher-powered and better-

controlled ncRNA-profiling screens in human patients in CSF, blood and, indeed, brain are 

needed to map the changes in ncRNAs in disease with greater confidence 147. In the 

meantime, novel insights, regarding mitochondrially encoded ncRNAs, ncRNA editing 

(epitranscriptomics) and epigenetic regulation of ncDNA,  continue emerging 40,168,169. 

Systems biology and bioinformatic approaches are necessary to unravel the highly intricate 

networks in which ncRNAs operate170,171. This will also require the implementation of novel 

experimental approaches, such as the currently rapidly evolving technologies to screen the 

transcriptome at the single-cell level 37 or in different spatial contexts172. Looking ahead to 

the next decade, we anticipate that valuable insights will be gained into how these 

fascinating molecules contribute to hitherto unknown aspects of pathogenic mechanisms 

and how they may be critical to understanding the human-specific aspects of neurological 

diseases (BOX 3). Finally, we will hopefully witness impovements in the diagnosis and 

treatment of neurodegenerative disorders resulting from our developing understanding of 

ncRNAs.  
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Box 1 | Technologies to probe ncRNA functions 

Experimental validation of functional associations between noncoding RNAs (ncRNAs) and 

tissue homeostasis or disease is an absolute requirement for further progress in the field. 

Addressing functionality is more difficult for the noncoding part of the genome than it is for 

protein-coding genes. The functional redundancy, low sequence conservation, nuclear 

localization and genomic overlap of ncRNAs with other coding or noncoding sequences 

hamper their functional annotation173,174. Nevertheless, a plethora of novel techniques is 

now available to study ncRNAs. Direct visualization of long ncRNAs in single cells and at 

single-molecule resolution using RNA-fluorescence in situ hybridization (RNA-FISH) has 

yielded precise cellular and subcellular expression patterns for these molecules that may 

point towards distinct functional roles for ncRNAs175,176. For instance, the particular 

localization of a ncRNA close to its own site of transcription inside the nucleus may suggest a 

role in the transcriptional regulation of a proximal locus175,177.  In addition high-resolution 

subcellular visualization of lncRNAs has unveiled a role for NEAT1, MALAT1 and MIAT in the 

formation of nuclear bodies (speckles and paraspeckles)175,176,178. Novel RNA-interactome 

approaches coupled to high-throughput sequencing allow in vivo identification of functional  

partners of ncRNAs. ChIRP-seq (chromatin isolation by RNA purification-sequencing), CHART 

(capture hybridization analysis of RNA targets) and RAP (RNA antisense purification) are 

employed for lncRNA–chromatin complex purification and identification of ncRNAs involved 

in topologically associating domains and nuclear organization 176,179–181; ChIRP-MS (ChIRP-

mass spectrometry) and RAP-MS (RAP-mass spectrometry) are used for assessing RNA-

protein interactions 182–185; and CLASH (cross-linking, ligation and sequencing of hybrids) for 

RNA-RNA pairing 179. In addition, several modified versions of each of these technologies 

such as dChIRP (domain-specific ChIRP) 186 and iDRiP (identification of direct RNA interacting 

proteins (iDRiP) 187 ), are emerging. Probing the secondary structure of ncRNAs using SHAPE-

seq (RNA-selective 2’-hydroxylacylation and primer extention-sequencing), PARS (parallel 

analysis of RNA structure) or FragSeq (fragmentation sequencing)188 and mapping the 

tertiary structure of ncRNA-protein complexes by high-throughput technologies such as 

CLIP-seq (cross-linking and immunoprecipitation-sequencing)182, RNA-MaP (RNA-massively 

parallel array) and RNA-MITOMI (RNA-mechanically induced trapping of molecular 

interactions) can provide key insights into ncRNA function179,189. Assigning functional roles to 

ncRNAs requires loss-of-function approaches. Many were adapted from the mRNA world. 

Chemically modified antisense oligonucleotides, such as antagomiRs or other synthetic 

molecules, such as miRNA sponges190 and miRNA zippers191 against miRNAs, and siRNAs, 

antagoNATs and ASOs against lncRNAs174, have been successfully used to knockdown 

ncRNAs and unveil their functional roles in the cell. However, there are several limitations 

when performing ncRNA loss-of-function studies. siRNA approaches, for instance, turn out to 

be less effective when targeting nuclear transcripts, which is often the case for 

lncRNAs173,174. Novel site-specific genome engineering based on TALEN (transcription 

activator-like effector nucleases) and the all-dominating CRISPR/Cas9 (clustered regularly 

interspaced short palindromic repeats/CRISPR-associated protein-9 nuclease) technologies 

are used to ablate whole ncRNA loci or their regulatory domains173,174,192,193. Selective 

excision of the full or partial ncRNA sequence is not feasible when the ncRNA intersects 

other genes or when it is transcribed from bidirectional promoters, which would alter the 

transcription of neighbouring genes174. Moreover, the regulatory domains of lncRNA genes 



remain largely uncharacterized and therefore domain-specific targeting is not always an 

option. Finally, in several cases, lncRNAs exert their function via the process of transcription 

per se, and therefore targeting the transcriptional product may not lead to a loss-of-function 

phenotype173,174. Interestingly, a recent study demonstrated that only one-third of the 

lncRNA loci are amenable to CRISPR applications without affecting additional genes174. 

Therefore, phenotypes are best confirmed using orthogonal approaches, such as siRNA, 

ASOs and CRISPR. 

 

 

  



BOX 2 | Noncoding transcriptome: from linear to three-dimensional network-based 

thinking  

The genome does not follow simplistic human-created rules, hence, the dichotomy between 

‘coding’ and ‘noncoding’ genes is an oversimplification, as we discuss in the main text194. In 

fact, protein-coding and noncoding transcribed domains from intergenic, intronic and 

intragenic regions and from both positive (sense) and negative (antisense) strands5 illustrate 

the highly interlaced structure of the genome and its transcriptome194. Accordingly, RNA 

transcribed from a single DNA locus has multiple embedded functions and can give rise to 

several functional products194 (FIG. 2). For instance, many protein-coding genes can be 

transcribed in the antisense orientation (bidirectional transcription) and/or into circular 

transcripts98,195,196. Similarly, lncRNAs often encompass small open-reading frames (ORFs) 

and are sometimes associated with ribosomes, suggesting that they might be involved in de 

novo protein synthesis197,198, although this possibility remains controversial13,199,200. 

Nevertheless, the ability to encode small peptides has been experimentally validated for 

certain primary miRNA transcripts in plants201, microsatellite repeat expansions202, large 

intergenic ncRNAs (lincRNAs)203, natural antisense transcripts(NATs)98 and for the more 

recently identified circular RNAs (circRNAs)196,204,205. 

Continuous research has yielded an inventory of tens of thousands of ncRNAs206. The 

arbitrary designation of ‘small’ or ‘long’ (cut-off set at 200-400 nucleotides) has no functional 

foundation but rather reflects the technical aspects of biochemical RNA fractionation 

approaches. ncRNAs are expressed in a highly cell type-, subcellular compartment-, 

developmental stage- and environmental context-dependent manner41,207, and their flexible 

modular nature allows them to develop RNA–RNA, RNA–DNA and RNA–protein 

interactions12.  

However, the question of what percentage of ncRNAs in the genome is really 

functional remains a matter of both semantic (when is a transcript defined as ‘functional’?) 

and pragmatic (how much of the genome is implicated in evolutionary relevant trait 

specification, biological function or  human-specific pathologies?) debate208–211.  

 

  



BOX 3 | ncRNAs as putative evolutionary signals of human brain development, ageing and 

neurodegeneration 

The degree of organismal complexity correlates better with the proportion of ncRNAs in the 

genome than with the number of protein-coding genes (even when alternative splicing and 

posttranslational modifications are considered as effectors of protein diversification)25,212–

214. This suggests that the evolution of biological complexity in eukaryotes largely stems from 

the increasing complexity of ncRNA biology214–216. ncRNA genes exhibit positive selection, 

accelerated evolution, species lineage-related expansion and specificity, preferential 

expression in brain and selective association with neural genes36,217–220. An appealing 

hypothesis is that ncRNAs may be mediators of certain behavioural and cognitive traits of 

higher organisms207, as opposed to CNS proteins, which are (apart from some limited 

examples of innovations in proteins) almost perfectly conserved across mammalian 

phyla13,54,221–223. Illustrating these principles, the rapidly evolving, brain- and human-specific 

ncRNA  HAR1F (human accelerated region 1F) is transcribed from a genomic region that has 

been subject to intense positive selection since human divergence from the great apes 224 

and along with several Piwi-interacting RNAs (piRNAs), lincRNAs, miRNAs and circRNAs is 

associated with human-specific brain development and function 195,207,219,225,226.  

A genome-wide transcriptomic analysis in rat brain revealed that changes in ncRNA 

expression patterns are more prominent than changes in mRNA expression patterns during 

ageing227. ncRNAs with important functions in synaptic and other homeostatic processes, 

such as miRNAs228, lncRNAs229, BC200 106 and circRNAs, are differentially regulated in the 

ageing human brain. Moreover, the notion that the histopathological outcomes of brain 

ageing display profound differences across species raises the intriguing possibility that 

ncRNA-mediated regulation may be implicated in ageing-associated human neurological 

conditions230. The features of progressive mild atrophic brain alterations that mammalian 

laboratory models display are distinct from clinical neurodegenerative disorders associated 

with advanced ageing, such as cerebrovascular disease, AD and PD230. Notably, no species 

except humans have shown evidence of major neuronal loss or massive cognitive decline 

that could compare to clinical grade AD230, observations that cannot be attributed to primary 

structure differences of key protein players. The sequences of amyloid-β peptide (the main 

constituent of the amyloid plaques in AD)231, MAPT (the gene for tau, which precipitates into 

neurofibrillary tangles in tauopathies and AD)232, and the genes encoding α-synuclein (which 

is implicated in PD)233 and huntingtin (which is implicated in HD)234 are almost identical in 

humans and other primates and overall highly conserved among vertebrates. The existence 

of a human-specific natural antisense transcript (PINK1-AS) that is implicated in PD104, 

human-specific antisense ncRNA regulation of the ataxin-7 (ATXN7) locus in SCA7 80, and the 

human-specific repression of HAR1 by REST along with its downregulation in the striatum of 

HD patients 235 suggest that the evolutionary non-conserved ncRNAs might have an 

important contribution to human-specific neurodegenerative disorders. Clearly, more 

experimental evidence is required to support these observationss; however, this will not be 

straightforward and classic rodent systems may have to be replaced with more relevant 

‘humanized’ models of neurodegeneration236.  

 

  



Figure 1 | Abundance of annotated loci in human genome. Protein-coding genes account 

for approximately one third of all annotated genes, whereas long and small ncRNA genes 

together provide 40% of the gene set. Pseudogenes (genes derived from protein encoding 

loci, which have lost their coding potential, but may still exert regulatory functions) are not 

discussed here, but are also present at high abundance. Numbers are derived from 

GENCODE, release 26 (http://www.gencodegenes.org/releases/current.html). 
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Figure 2 | A three-dimensional transcriptional ‘code’ implicated in neurodegeneration. The 

figure depicts examples of pervasive transcription in loci implicated in neurodegeneration 

that may induce neurotoxicity via distinct and/or overlapping mechanisms. C9ORF72 gives 

rise to a sense, non-repeat-containing, protein-coding transcript and two repeat-containing 

ncRNAs (one in the sense and one in the antisense direction). Six dipeptide repeat proteins 

(repeat-associated non ATG (RAN) polydipeptides) are translated from the repeat-containing 

transcripts and accumulate in toxic intracellular foci. Three neurotoxicity-inducing 

mechanisms have been put forward in C9ORF72-related ALS and FTD 63: C9ORF72 loss-of-

function, C9ORF72 repeat expansion-related RNA gain-of-function, and generation of toxic 

dipeptide repeat proteins. Apart from a loss-of-function of FMRP, the protein encoded by 

the FMR1 locus, RNA toxic gain-of-function has been also implicated in FXS 237. The FMR1 

locus generates three sense transcripts (one protein-coding and two noncoding transcripts) 

and two antisense noncoding transcripts. A third example is the sense linear protein-coding 

and antisense circular ncRNA (ciRS-7, acts as a miR-7 sponge) that are both transcribed from 

the CDR1 locus. ciRS-7 downregulation (RNA loss-of-function) in human AD brain has been 

associated with deficits in ubiquitin-mediated amyloid-β clearance in AD 101,120. Angled 

arrows indicate the direction of transcription of sense and antisense transcripts. ncRNA 

transcripts can have a feedback regulatory effect on the protein coding mRNAs (dotted 

lines). The combinatory transcriptional outcome of each locus affects the homeostatic 

balance in CNS and its disruption can impact neurodegenerative processes. 

 

  



Figure 3 | ncRNA mechanisms in neurodegeneration. ncRNAs associated with 

neurodegenerative disorders may act at multiple functional levels to regulate a spectrum of 

molecular processes. ncRNAs can act as scaffolds to recruit transcriptional activators or 

repressors to chromatin-modifying complexes close to gene promoters and epigenetically 

regulate gene expression in the nucleus.  ncRNA regulation can induce preferential inclusion 

or exclusion of exons thereby shifting mRNA splicing patterns towards certain alternatively 

spliced isoforms.  ncRNAs in both the nucleus and the cytoplasm can bind proteins and other 

RNA molecules (for example, mRNAs, lncRNAs and miRNAs) to titrate them away from their 

physiological places of function or guide them to different intracellular compartments. 

Binding of ncRNAs onto protein-coding transcripts may affect the stability of the latter and 

either protect them from degradation (mRNA stability) or induce their decay by, for 

instance, employing the cellular components of RNA interference (RISC). Translational 

induction or inhibition is another regulatory outcome of ncRNA–mRNA interactions in the 

cytoplasm. ncRNA, noncoding RNA; DRPs, dipeptide repeat proteins; Pol II, RNA polymerase 

II; RISC, RNA-induced silencing complex 

 

 

  



Table 1 | ncRNAs involved in neurodegenerative disorders  

 Epigenetics RNAi Splicing mRNA 

stability 

Translation Sequestration 

AD ANRIL 75 miRNA 238 SORL1-AS 94 

17A 96 

BACE1-AS 99 

ciRS-7 100 

BC200 105 LRP1-AS 118 

SCA SCAANT1 80 miRNA 228,239 ATXNOS 97   lnc-SCA7 122 

PD ND miRNA 240  PINK1-AS 104 UCHL1-AS 108 ciRS-7 114 

FXS/ 

FXTAS 

 miRNA 241,242 FMR6 66 FMR6 66  FMR4 67,69 

HD BDNF-AS 81  

TUG1 81 

MEG3 81 

NEAT1 81 

TUNA 81 

miRNA 243–246 

HTT-AS 71,72 

    

FTD/ALS  miRNA 247    C9ORF72 63,115 

MALAT1 116 

NEAT1 116 

 

AD, Alzheimer’s disease; SCA, spinocerebellar ataxia; PD, Parkinson’s disease; FXS, fragile X 

syndrome; FXTAS, fragile X-associated tremor/ataxia syndrome; HD, Huntington’s disease; 

FTD, frontotemporal dementia; ALS, amyotrophic lateral sclerosis 

 

 

 

 

  



Glossary 

 

[Au: Please add glossary definitions here in the order in which the terms first appear in the 

text (main text then display items). I’ve highlighted some terms in blue or in comments 

boxes in the text that I feel would benefit from such definitions. Other terms of course 

could also be defined. Note that the term in the glossary should match the term used in 

the text exactly and the definition should ideally be no more than a sentence. No 

references can be cited in glossary definitions.] 

Long ncRNAs 

Non protein-coding transcripts longer than 200-400 nucleotides including multiple diverse 

RNA species 

Circular RNAs 

Covalently closed, single-stranded transcripts produced by back-splicing of exons in 

precursor mRNAs 

microRNAs 

Small (20-25 nucleotides) non protein-coding regulatory RNA molecules involved in 

posttranscriptional regulation 

Endogenous small-interfering RNAs  

Small (21-26 nucleotides) non protein-coding regulatory RNAs produced from endogenous 

double-stranded RNA precursors and involved in posttranscriptional silencing 

Small nucleolar (sno)-derived RNAs  

Small (17-30 nucleotides) non protein-coding regulatory RNAs that are derived from the 

processing of small nucleolar RNAs and are implicated in gene silencing 

PIWI-interacting RNAs 

Small (26-33 nuletides) non protein-coding regulatory RNAs involved in epigenetic and 

posttranscriptional gene silencing via interaction with PPIWI proteins 

Long natural antisense transcripts  

Long (>200-400 nucleotides) RNA molecules that are transcribed from the opposite DNA 

strand, they partially overlap with the sense transcript and often regulate its transcription, 

splicing or stability 

Enhancer ncRNAs  

Non protein-coding RNAs that are transcribed from enhancer DNA loci and are implicated in 

the regulation of gene transcription 

Convergent transcription 

The simultaneous transcription from two closely positioned promoters in the sense and 

antisense orientation with the RNA polymerases heading towards each other 

FTLD-TDP 

Frontotemporal lobar degeneration with tau-negative, ubiquitin-positive inclusions which 

contain TAR DNA-binding protein 43 (TDP-43)  



 

Seed sequence 

Nucleotides 2-7 in the 5’-end of the miRNA sequence that are crucial for recognizing and 

binding to complementary sites on target mRNA 3’UTRs 

 

  



Key points 

 Even though most of the noncoding RNA (ncRNA) species were initially dismissed as 

products of spurious transcription, a wide spectrum of ncRNA regulatory mechanisms is 

now emerging. 

 ncRNA expression in brain is dynamically regulated in an activity-dependent and 

spatiotemporally controlled manner suggesting very precise regulatory roles in brain 

development and function. 

 The intricate transcriptional output of genomic loci may impact human brain evolution 

and explain specific vulnerability to neurodegeneration. 

 ncRNA expression and function is perturbed in neurodegenerative disorders and genetic 

variations in ncRNA networks can be associated to disease risk. 

 Understanding the mechanistic aspects of ncRNA function in the central nervous system 

and how ncRNA dysfunction may lead to neurodegenerative disorders is likely to offer 

new diagnostic and therapeutic approaches for these diseases. 
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