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The co-dependence between assets tends to increase when 
the market declines. This paper develops a correlation 
measure focusing on market declines using the expected 
shortfall (ES), referred to as the ES-implied correlation, to 
improve the existing value at risk (VaR)-implied correlation. 
Simulations which define period-by-period true correla-
tions show that the ES-implied correlation is much closer 
to true correlations than is the VaR-implied correlation with 
respect to average bias and root-mean-square error. More 

importantly, this paper develops a series of test statistics to 
measure and test correlation asymmetries, as well as to eval-
uate the impact of weights on the VaR-implied correlation 
and the ES-implied correlation. The test statistics indicate 
that the linear correlation significantly underestimates cor-
relations between the US and the other G7 countries during 
market downturns, and the choice of weights does not have 
significant impact on the VaR-implied correlation or the 
ES-implied correlation.
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1 Introduction

It is a core principle of portfolio theory that diversification reduces risk. Risk diversification de-
pends on assets being less correlated, so that a fall in one investment can be offset by a rise in
another investment. The correlation between assets is traditionally estimated by the linear correla-
tion. However, a number of empirical studies have found that asset correlations increase when the
market falls, and the linear correlation underestimates asset dependence during market declines.1

It is exactly during market downturns that wealth decreases and diversification is most valuable.
Underestimating the dependence leads investors to overestimate the benefits of risk diversification
and cause unexpected losses when the market declines.

An alternative correlation measure is the value at risk (VaR)-implied correlation, which allows
for correlations to vary based on market conditions. VaR is defined as the minimum value such
that the probability of not exceeding this value at least equals a given confidence level. The VaR-
implied correlation is the difference between the VaRs of a portfolio and its individual components,
since the portfolio VaR is determined by VaRs of its individual components and their correlation.
The VaR-implied correlation equals the linear correlation when asset returns follow multivariate
normal distribution, but captures the increased correlation between assets during market downturns
when asset returns are not from normal distribution. However, the VaR-implied correlation has a
number of disadvantages. First, VaR is just a quantile and does not consider losses beyond it.
Although the probability of events occurring in the tails is very small, these events cause large
losses once they happen. Disregarding losses beyond VaR may cause tail risk, the risk that arises
when the possibility of extreme losses is greater than expected. Yamai and Yoshiba (2005) illustrate
several cases where VaR underestimates losses in the tails. Second, VaR is not a coherent risk
measure. Coherence requires the risk of a combination of individual assets not exceeding the sum
of the individual risks, i.e., risk can be reduced with diversification.

In this paper, I develop a novel tail-based correlation measure based on expected shortfall (ES)
to address the shortcomings of the VaR-implied correlation. Expected shortfall is the average of as-
set losses when the asset value falls below the VaR threshold. Whereas VaR provides the threshold
of losses that will not be exceeded, expected shortfall provides the expected value of losses when
that threshold is breached. Thus the implied correlation based on ES explicitly accounts for tail
losses. In addition, ES is a coherent measure (Artzner, Delbaen, Eber, and Heath (1999), Acerbi
and Tasche (2002) and Tasche (2002)). 2

1Linear correlation is only natural in the context of elliptical models since only elliptical models can be fully
characterized by a mean vector and a covariance matrix (McNeil, Frey, & Embrechts, 2005).

2Inui and Kijima (2005) even showed that expected shortfall is a basic coherent measure because it gives the
minimum value among the class of plausible coherent risk measures, and any coherent risk measure is a convex
combination of expected shortfalls.
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To determine the possible costs and benefits of using the ES-implied correlation, I examine
how the ES-implied correlation performs under three scenarios. In scenarios 1 and 2, I design
simulations where the linear correlation is appropriate and is used as a benchmark to test whether
the ES-implied correlation, which allows extra generality, embodies a large sacrifice when correla-
tion is constant. In particular, asset returns are drawn from the multivariate normal distribution in
scenario 1, and multivariate T distribution in scenario 2. The latter is found to be a better fit of re-
turns in reality. Scenario 3 illustrates what gains may be possible to use the ES-implied correlation
when the linear correlation is not appropriate and assets exhibit dynamic correlation based on mar-
ket conditions. Simulation results show that the ES-implied correlation does not cause significant
sacrifice when the linear correlation is appropriate, but produces substantial gains when the linear
correlation is not appropriate; and the ES-implied correlation is much closer to the true correlation
than is the VaR-implied correlation.

To illustrate how the ES-implied correlation can be used in empirical analyses, I investigate the
relation between equity returns of G7 countries. Previous studies have discovered that correlations
between international equity returns increase in bear markets (Campbell, Koedijk, and Kofman
(2002), Longin and Solnik (2001), and Garcia and Tsafack (2011)). The ES-implied correlation
reaches the same conclusion. I further develop a series of test statistics based on the VaR- and ES-
implied correlations to measure the degree and test the significance of correlations deviate from
the linear correlation during market downturns. The test statistics using the ES-implied correla-
tion indicate that most correlations increase significantly during market downturns, while the test
statistics using the VaR-implied correlation do not provide a consistent result.

One concern when estimating the implied correlations is the weights used to construct the port-
folio. Although Cotter and Longin (2011) found little difference in the VaR-implied correlations
from using different weights by eyes, they did not provide a method to test the significance of the
difference. In addition, their paper is limited to estimating correlations in a two-asset environment.
According to whether to include a third asset in the portfolio, estimation could be based on a two-
asset or multi-asset environment. By developing a series of test statistics, this paper shows that the
choice of weights does not have significant impact on the VaR- or ES-implied correlation.

This paper contributes to the literature on dynamic correlation measures. There exist three types
of tail-based dependence measures in the literature: the exceedence correlation, the tail dependence
coefficient, and the VaR-implied correlation. The exceedance correlation was pioneered by Longin
and Solnik (2001) and studied by Ang and Chen (2002) and Campbell, Forbes, Koedijk, and Kof-
man (2008). The exceedance correlation estimates the correlation between assets conditional on
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asset returns falling above or below a pre-specified level.3 Although the exceedance correlation
is easy to understand and simple to calculate, Ang and Chen (2002), Campbell et al. (2002), and
Longin and Solnik (2001) show that the exceedance correlation has a conditioning bias. For exam-
ple, no matter how strongly two assets following a multivariate normal distribution are correlated,
the exceedence correlation in the tails equals 0. Because of the conditioning bias, the exceedance
correlation needs to be adjusted before measuring correlation asymmetries.

The tail dependence coefficient calculates the asymptotic probability of one asset providing
extremely small or large returns given another asset provides extreme returns.4 See Garcia and
Tsafack (2011), Patton (2006), and Fortin and Kuzmics (2002) for example. One advantage of
the tail dependence coefficient is that it does not need to choose a threshold as other conditional
correlations do. However, this also induces a drawback: as a measure of dependence under very
extreme circumstances, the tail dependence coefficient is realized infrequently. In addition, the
tail dependence coefficient does not provide information on the dependence during normal times.
For example, the tail dependence coefficient equals 0 when returns follow multivariate normal
distribution.

Different with the exceedance correlation and tail dependence coefficient, the VaR-implied cor-
relation does not have a conditioning bias. The VaR-implied correlation is conditional not only
on individual assets’ returns falling beyond a given threshold, but also on returns of a portfolio
composed of the assets falling beyond the threshold. The additional condition on the portfolio
counteracts the conditioning bias from truncating individual asset returns and thus makes the VaR-
implied correlation free of conditioning bias.

Campbell et al. (2002) proposed the VaR-implied correlation and showed that it outperformed
the linear correlation using data of the US, the UK, France, and Germany. Cotter and Longin
(2011) investigated the impact of portfolio weights, the type of position, the frequency of data and
the probability level on VaR-implied correlations by using the equity indexes of the US and the
UK. Mittnik (2014) extended the pairwise method used in these papers to joint estimation.

3A general form of the exceedance correlation between two variables X and Y at thresholds δ1 and δ2 is

ρ(δ1, δ2) =

{
Corr(X,Y |X ≤ δ1,Y ≤ δ2), δ1 < 0, δ2 < 0
Corr(X,Y |X ≥ δ1,Y ≥ δ2), δ1 ≥ 0, δ2 ≥ 0

4The coefficient of upper tail dependence is

τU = lim
α→0

Pr[FX(x) ≥ α|FY (y) ≥ α]

and the coefficient of lower tail dependence is

τL = lim
α→0

Pr[FX(x) ≤ α|FY (y) ≤ α].

3



This paper contributes to the literature by proposing a development of the third style of the tail-
based correlation measure. Simulations and empirical studies show that the new measure outper-
forms the VaR-implied correlation and has practical applications in risk management and portfolio
optimization. I present the estimation approach in two-asset and multi-asset environments, respec-
tively. A series of test statistics are developed to test for deviations with the correlation during
normal times and to evaluate the impact of weights on the VaR- and ES-implied correlations.

This paper is organized as follows. Section 2 presents the estimation of the ES-implied corre-
lation in two-asset and multi-asset environments, as well as the construction of the test statistics.
Section 3 reports the results of simulations, which are designed to evaluate the performance of the
ES-implied correlation in comparison with the linear correlation and the VaR-implied correlation.
Section 4 analyzes the dependence between the US and the other G7 countries conditional on dif-
ferent market situations and illustrates how to apply the ES-implied correlation in risk management
and asset allocation. Section 5 concludes.

2 Method

2.1 Pairwise approach

This section presents a pairwise approach in a two-asset environment to calculate the ES-implied
correlation. As a background to the discussion, I first introduce the VaR-implied correlation.

VaR is a function of losses. The loss L is usually given as the negative of returns. The VaR at
confidence level α is defined as the minimum value such that the probability of not exceeding this
value at least equals α. Formally,

VaR(L)α = inf{l|P(L ≤ l) ≥ α}, (1)

In other words, VaR is the α-quantile of the loss distribution. To simplify the notation, qα is used
to denote VaRα in the following.

Let r1 and r2 be the returns of two assets and rp be the return of a portfolio which is composed
of the two assets with weights w1 and w2, where w1 + w2 = 1. Assume that the loss distribution of
asset i belongs to a location-scale family and is characterized by a location parameter µi, a scale
parameterσi and a zero-location, unit-scale distribution FZi , referred to as the standard distribution,
then

Li = µi +σiZi, (2)

where Zi follows the standard distribution FZi .
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The VaR of asset i is
VaRi,α = µi +σiVaR(Zi)α (3)

where VaR(Zi)αis the VaR of the noise variable Zi at α confidence level.
Substituting (3) into

σ2
p = w2

1σ
2
1 + w2

2σ
2
2 + 2w1w2ρσ1σ2, (4)

leads to the standardized VaR-implied correlation

ρVaR,α =
(qp,α−µp

q(Zp)α
)2−w2

1(q1,α−µ1
q(Z1)α

)2−w2
2(q2,α−µ2

q(Z2)α
)2

2w1w2
(q1,α−µ1)(q2,α−µ2)

q(Z1)αq(Z2)α

. (5)

Campbell et al. (2002) removed the standard distributions in equation (5) and pioneered the
VaR-implied correlation:

ρVaR,α =
(qp,α−µp)2−w2

1(q1,α−µ1)2−w2
2(q2,α−µ2)2

2w1w2(q1,α−µ1)(q2,α−µ2)
. (6)

Campbell et al. (2002) used the VaR-implied correlation to examine whether returns are from
normal distribution or not.

VaR is well known for not considering losses beyond itself and not being coherent; however,
ES remedies these problems. Therefore, this paper develops a correlation measure using ES. ES at
confidence level α is defined as the average of losses beyond the VaR, i.e.,

ES (L)α = E(L|L ≥ VaR(L)α) (7)

when the distribution of L is continuous.5

Similarly, given the loss Li = µi +σiZi,

ES i,α = µi +σiES (Zi)α, (8)

where ES (Zi)α is the ES of the noise variable Zi at α confidence level.
Substituting (8) into equation (4) leads to the standardized ES-implied correlation,

ρES ,α =
( ES p,α−µp

ES (Zp)α
)2−w2

1( ES 1,α−µ1
ES (Z1)α

)2−w2
2( ES 2,α−µ2

ES (Z2)α
)2

2w1w2
(ES 1,α−µ1)(ES 2,α−µ2)

ES (Z1)αES (Z2)α

, (9)

5When the distribution is discontinuous, ES (L)α =
E(L;L≥VaR(L)α)+VaR(L)α(1−α−Pr(L≥VaR(L)α))

1−α . See Acerbi and Tasche
(2002) and McNeil et al. (2005).
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The standardized ES-implied correlation only reflects the relation between assets in the second
moment and is equivalent to the linear correlation.

Following Campbell et al. (2002), Cotter and Longin (2011), and Mittnik (2014), this paper
defines the ES-implied correlation as the correlation by removing ES (Zi)α, i = 1,2, p in equation
(9). The ES-implied correlation is

ρES ,α =
(ES p,α−µp)2−w2

1(ES 1,α−µ1)2−w2
2(ES 2,α−µ2)2

2w1w2(ES 1,α−µ1)(ES 2,α−µ2)
. (10)

Under the assumption of individual assets and the portfolio having the same standard distribu-
tion, equation (10) is equivalent to equation (9). That is, when returns follow normal distribution,
the standardized ES-implied correlation and the ES-implied correlation equal the linear correla-
tion. When this assumption does not hold, contrary to the standardized ES-implied correlation,
the ES-implied correlation also reflects the information in the standard distribution and thereby is
referred to as non-standardized.

2.2 Modification of the ES-implied correlation

The traditional definition of the ES is the average of losses falling beyond the corresponding VaR.
However, there are two problems with this definition. First, ES 0 = µ, implying that the denom-
inator is close to 0 in equations (9) and (10) when α is very small. Second, this definition only
considers values beyond the given quantile level, making ES not consider the extreme positive
values. Analyzing the dependence between positive values is also useful, as the literature found
that asset correlation tends to decrease when the market rises. Thus, this paper modifies the defi-
nition of ES. When α ≥ 0.5, ES is defined the same as ES , dented by ES −. When α < 0.5, the ES,
denoted by ES +, is defined as

ES +
α = E(L|L < VaR(L)α). (11)

The standardized ES-implied correlation is therefore modified to be

ρES ,α =



(
ES +

p,α−µp
ES (Zp)+α

)2−w2
1(

ES +
1,α−µ1

ES (Z1)+α
)2−w2

2(
ES +

2,α−µ2
ES (Z2)+α

)2

2w1w2
(ES +

1,α−µ1)(ES +
2,α−µ2)

ES (Z1)+αES (Z2)+α

,α < 0.5,

(
ES−p,α−µp
ES (Zp)−α

)2−w2
1(

ES−1,α−µ1
ES (Z1)−α

)2−w2
2(

ES−2,α−µ2
ES (Z2)−α

)2

2w1w2
(ES−1,α−µ1)(ES−2,α−µ2)

ES (Z1)−αES (Z2)−α

,α ≥ 0.5.

(12)
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The non-standardized ES-implied correlation is modified to be

ρES ,α =


(ES +

p,α−µp)2−w2
1(ES +

1,α−µ1)2−w2
2(ES +

2,α−µ2)2

2w1w2(ES +
1,α−µ1)(ES +

2,α−µ2) ,α < 0.5,

(ES −p,α−µp)2−w2
1(ES −1,α−µ1)2−w2

2(ES −2,α−µ2)2

2w1w2(ES −1,α−µ1)(ES −2,α−µ2) ,α ≥ 0.5.

(13)

The following proves that the modified ES-implied correlations calculated from the left and the
right are the same at α = 0.5.

Proposition 1. The standardized and non-standardized ES-implied correlations are continuous at

α = 0.5.

Proof. From Corollary 3.3 in Acerbi and Tasche (2002), we know that ES is continuous. Thus

lim
α→0.5−

ES + = ES +
0.5. Since ES −0.5 + ES +

0.5 =

∫ 1
0 VaRudu

0.5 = 2µ,

ES −0.5−µ = −(ES +
0.5−µ). (14)

Substituting equation (14) into equations (12) and (13), we can see that lim
α→0.5+

ρES ,α = lim
α→0.5+

ρES ,α =

ρES ,0.5 for both the standardized and non-standardized correlations. �

In the empirical analysis, the VaR-implied correlation violates the [-1,1] correlation interval
frequently. However, due to the fact that the ES is coherent, the ES-implied correlation has a
desirable characteristic as follows:

Proposition 2. The ES-implied correlation does not exceed 1 when short selling is not allowed.

Proof. Recall that a risk measure ζ is coherent if it is: 1) subadditive, meaning ζ(L1 + L2) ≤ ζ(L1)+

ζ(L2); 2) positive homogeneous, meaning ζ(wL) = wζ(L) for every w > 0; 3) monotonic, meaning
ζ(L1) ≤ ζ(L2) for L1 ≤ L2; and 4) translation invariant, meaning ζ(L + l) = ζ(L) + l for every l ∈ R.

When short selling is not allowed,

ES p,α = ES (w1L1 + w2L2)α

≤ ES (w1L1)α+ ES (w2L2)α

= w1ES (L1)α+ w2ES (L2)α

= w1ES 1,α+ w2ES 2,α,

where the inequality holds because of subadditivity and the second equality holds due to positive
homogeneity. No short selling guarantees positive homogeneity.

7



Since expected shortfall is a monotonic risk measure, ES α ≥ ES 0, where the latter equals∫ 1
0 VaRudu = µ. Hence,

0 ≤ ES p,α−µ ≤ w1(ES 1,α−µ) + w2(ES 2,α−µ). (15)

Thus under the assumption of no short selling, ρES ,α ≤ 1 for α ≥ 0.5.
When α < 0.5, the definition of the modified ES is different from the traditional definition of

the ES. To prove ρES ,α ≤ 1 when α < 0.5, I express ES +
α as the traditional expected shortfall ES α:

ES +
α −µ =

∫ 1
0 VaRudu−

∫ 1
α

VaRudu

α
−µ = −

1−α
α

(ES α−µ). (16)

The following holds after substituting equation (16) into equation (15):

0 ≥ ES +
p,α−µ ≥ w1(ES +

1,α−µ) + w2(ES +
2,α−µ). (17)

Thus ρES ,α ≤ 1 also holds when α < 0.5. �

2.3 Estimation and consistency

To estimate the risk measure-implied correlations, I need to compute the VaR and ES of the in-
dividual assets and the portfolio. There are three main methods to estimate the VaR and ES: the
Gaussian approach, the extreme value theory (EVT) approach and the empirical approach.

The Gaussian approach assumes that returns follow normal distributions. In this case, the VaR
and ES are functions of the mean and the standard deviation. See Castellacci and Siclari (2003)
for an application of this approach. The VaR and ES are very easy to compute using this approach.
However, many empirical studies have found that the assumption of normality is unrealistic. The
VaR and ES computed with this approach are thus inaccurate. Moreover, the implied correlations
estimated by the Gaussian approach equal the linear correlation.

The extreme value theory focuses on the study of the tail behaviour and is used widely to
estimate the VaR and ES. See Fernandez (2010) for example. However, the EVT is accurate only
in the tails. Thus Danielsson and De Vries (2000) used the EVT along with the empirical method.
Under the assumption that returns follow extreme value distributions, VaR and ES are functions of
the parameters of the extreme value distributions. Generally, there are two methods to estimate the
extreme value distribution, block maxima method (BMM) and peak over threshold (POT). Fitting
the extreme value distribution requires specifying either the size of the block or the threshold. An
inappropriate choice of block size or threshold will lead the estimation to be inaccurate. Thus this
paper does not employ this approach to estimate VaR or ES either.
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The empirical approach uses the empirical distribution of the data to approximate the actual dis-
tribution. Fernandez (2010) and Danielsson and De Vries (2000) demonstrated that this approach
generates smaller errors than the Gaussian approach. More importantly, the empirical approach is
parameter free and easy to implement. Thus, this paper chooses the empirical approach to estimate
VaR and ES.

The rest of this section presents the estimation and convergence of the implied correlations. I
start from the estimation of the VaR-implied correlation. Let L j:T be the jth largest value in the
historical losses Lt, t = 1,2, ...,T , F be the cumulative distribution function of losses and FT be the
empirical distribution function. The empirical estimation of VaR at confidence level α is L[αT ]:T ,
where [αT ] is the integer part of αT .

The empirical estimate of the VaR-implied correlation is

ρ̂VaR,α =
(q̂p,α− µ̂p)2−w2

1(q̂1,α− µ̂1)2−w2
2(q̂2,α− µ̂2)2

2w1w2(q̂1,α− µ̂1)(q̂2,α− µ̂2)
,

where q̂i,α = Li
[αT ]:T approximates the α-quantiles and the sample mean µ̂i approximates population

mean. Shorack and Wellner (2009) proved that L[αT ]:T converges to F−1(α) almost surely. Thus
ρ̂VaR,α converges to ρVaR,α in probability when weak law of large number holds and almost surely
when strong law holds. When returns are multivariate normally distributed or when they have the
same standard distribution FZ , the VaR-implied correlation equals linear correlation.

For the estimation of the ES-implied correlation, the ES at confidence level less than 0.5 can

be estimated by
∑T

j=[αT ]+1 L j:T

T−[αT ] and the ES at confidence level exceeding 0.5 can be estimated by∑[αT ]
j=1 L j:T

[αT ] . Acerbi and Tasche (2002) proved that the estimate of the traditional ES converges to the
actual expected shortfall almost surely. Similarly, the estimate of the modified ES also converges
to the actual value of the modified expected shortfall. Therefore, the empirical estimate of the
ES-implied correlation converges to the ES-implied correlation in probability when weak law of
large number holds and almost surely when strong law holds.

2.4 Joint estimation of the ES-implied correlation

The above sections have presented the pairwise method of estimating the correlation between two
assets. For the number of assets n ≥ 1, there exist C(n,2) =

n(n−1)
2 correlations, where C(n,k)

denotes the number of k combinations from n elements. The C(n,2) correlations could either be
estimated one by one, using the pairwise method, or be estimated together. Estimating correlations
one by one may result in a loss of information since other assets in the portfolio may have an impact
on the correlation. Mittnik (2014) found that assigning weights to other assets could improve
efficiency and reduce the frequency of the VaR-implied correlation falling outside of the [-1,1]
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interval. Following Mittnik (2014), this section introduces a closed-form solution for estimating
the C(n,2) ES-implied correlations jointly.

Given a portfolio composed of n assets with weights wi, i = 1,2, ...,n,
∑n

i=1 wi = 1,

(ES α,p)2 =

n∑
i=1

n∑
j=1

wiw j(ES α,i)(ES α, j)ρES ,α,i j (18)

holds for demeaned ES.
Denoting the correlation matrix by R, equation (18) can be rewritten as

ES 2
p = (ES �w)′R(ES �w),

where α is dropped in order to simplify notation, ES is a n× 1 vector composed of expected
shortfalls of all assets, w is a n× 1 vector of weights and � is the Schur product, i.e., ES �w =∑n

i=1 wiES i. Bring all the known ρii = 1, i = 1,2, ...,n to the left, then

ẼS 2
p = ES 2

p−

n∑
j=1

w2
j ES 2

j = (ES �w)′(R− I)(ES �w),

where I is the identity matrix and ẼS 2
p represents excess squared quantiles.

Employing the formula vec(ABC) = (C′⊗A)vec(B), where ⊗ is the Kronecker product and vec

is the conventional vectorization operator, the above equation equals

ẼS 2
p = (ES �w)′⊗ (ES �w)′vec(R− I).

There exists a unique n2×
n(n−1)

2 matrix D composed of zeros and ones such that the vectorization
of R− I equals

vec(R− I) = (0 ρ12 ... ρ1n ρ12 0 ... ρ2n ... ρn−1,n 0)′

= D (ρ12 ... ρ1n ρ23 ... ρ2n ... ρn−1,n)′.

The n(n−1)
2 × 1 vector ρ = (ρ12 ... ρ1n ρ23 ... ρ2n ... ρn−1,n)′ includes all the correla-

tions that need to be estimated.
Therefore, given a weight vector w,

ẼS 2
p = (ES �w)′⊗ (ES �w)′Dρ. (19)

To estimate the correlations exactly, n(n−1)/2 equations are needed. When there are m =
n(n−1)

2
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vectors of weights (w1, ...wm),
ẼS 2

p1

...

ẼS 2
pm

 =


(ES �w1)′⊗ (ES �w1)′

...

(ES �wm)′⊗ (ES �wm)′

Dρ.

Denote Q̃ = (ẼS 2
p1
...ẼS 2

pn
)′ and X =


(ES �w1)′⊗ (ES �w1)′

...

(ES �wm)′⊗ (ES �wm)′

D, then the correlation vector is

obtained by

ρ = X−1Q̃. (20)

Equation (20) is referred to as exact identification since every equation in the formula is satisfied
exactly. When assigning weights only to every two assets, correlations calculated from the exact
identification are equal to correlations calculated from the pairwise method in section 2.1.

When adding the number of weight vectors more than the number of unknown correlations, X

would not be a square matrix any more. Estimation of the correlations can be obtained by the least
squares:

ρ = (X′X)−1X′Q̃. (21)

Equation (21) is referred to as overidentification, where an error term exists so that Q̃ = Xρ+ u

instead of Q̃ = Xρ in the case of exact identification.

2.5 Quantitative measures of correlation asymmetries

Since correlations are found to be asymmetric, this section develops a series of statistics for mea-
suring and testing the amount that correlation deviates from the linear correlation during market
downturns and upturns. These statistics are referred to as H and AH following Ang and Chen
(2002). To be specific, I develop the downside H and upside H statistics for measuring the max-
imum degree to which implied correlations deviate from the linear correlation, and the downside
and upside AH statistics for evaluating the average of correlation deviations. Since the VaR-implied
correlation is very unsteady when the probability level is around 0.5 and the linear correlation is
only inappropriate in the tails, the downside and upside statistics are constructed to assess correla-
tion asymmetries in intervals of (0.7, 1) and (0, 0.3), respectively.

The downside H statistic is defined as the supremum of deviations of the linear correlation from
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tail-based correlations. The downside H statistic using the VaR-implied correlation is

H−VaR = sup
α∈(0.7,1)

(ρ̂VaR,α− ρ̂) (22)

and the downside H statistic using the ES-implied correlation is

H−ES = sup
α∈(0.7,1)

(ρ̂ES ,α− ρ̂), (23)

where ρ̂ is the empirical linear correlation, ρ̂VaR,α denotes the empirical VaR-implied correlation,
and ρ̂ES ,α denotes the empirical ES-implied correlation.

The upside H statistic evaluates the highest degree to which correlation is overestimated by the
linear correlation in the right tail of return distribution, i.e.,

H+
VaR = sup

α∈(0,0.3)
(ρ̂− ρ̂VaR,α) (24)

and

H+
ES = sup

α∈(0,0.3)
(ρ̂− ρ̂ES ,α) (25)

The downside AH statistic measures the average of correlation asymmetries in the left tail. The
downside AH statistic using the VaR-implied correlation is

AH−VaR =
1

0.3

∫ 1

0.7
(ρ̂VaR,α− ρ̂)dα (26)

and the downside AH statistic using the ES-implied correlation is

AH−ES =
1

0.3

∫ 1

0.7
(ρ̂ES ,α− ρ̂)dα. (27)

The upside AH statistic measures average upside correlation asymmetries. The upside AH statistic
using the VaR-implied correlation is

AH+
VaR =

1
0.3

∫ 0.3

0
(ρ̂− ρ̂VaR,α)dα (28)

and the upside AH statistic using the ES-implied correlation is

AH+
ES =

1
0.3

∫ 0.3

0
(ρ̂− ρ̂ES ,α)dα. (29)
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The probability level α is assumed to be uniformly distributed between 0 and 1. When α follows
other distributions, the difference between implied correlations and linear correlations is assigned
different weights at different probability levels. Ang and Chen (2002), for example, chose weights
proportional to the number of observations.

Under the null hypothesis that returns follow multivariate normal distribution, the linear corre-
lation is appropriate and the theoretical implied correlations equal the theoretical linear correlation.
Since the sample mean, the empirical estimates of VaR and ES are consistent estimators of their
corresponding theoretical values, the estimated implied correlations converge to the theoretical
implied correlations, which equal the linear correlation under H0. The alternative hypothesis is
that the linear correlation underestimates (overestimates) correlations during market downturns
(upturns). The null hypothesis is rejected when the test statistic is too large.

I use bootstrap to test the significance of the test statistics. The bootstrap technique provides a
simple way to test statistics whose distribution is unknown, but can be simulated.6

Take the H statistics for example. I use the following procedure to make statistical inference.
Given two assets with sample size n,

Step A: Calculate the test statistic Ĥ, sample means, standard deviations of each individual
asset, and their correlation using the empirical data.

Step B: Draw n pairs of data from the bivariate normal distribution using the sample mean,
standard deviation, and correlation calculated in Step A.

Step C: Compute the test statistic, named H(1) for H statistic from the simulated data.
Step D: Repeat step B and step C M times and get a sequence of test statistics, H(1), ...,H(M).
Step E: Calculate the p-values, p̂H = 1

M+1
∑M

m=1(I(H(m) ≥ Ĥ) + 1), where I(·) is known as the
indicator function. The hypothesis is rejected at level α if the p-value is less than or equal to α.

Notice that the H statistics in this paper differ from the statistic in Ang and Chen (2002) in
several ways. First, the thresholds considered in the paper are continuous, while the thresholds in
the paper of Ang and Chen (2002) are a number of discrete points. Second, while Ang and Chen
(2002) used the quadratic deviation and the sum of deviation between the linear correlation and the
exceedance correlation, this paper measures the maximum and the average of the deviation of the
linear correlation from implied correlations. It is common to construct statistics using maximum.
See Hansen (1996), and Davies (1977, 1987) for example. Third, this paper uses the risk measure-
implied correlations, which are free of conditioning bias, to measure correlation asymmetries,
while Ang and Chen (2002) have to adjust conditioning bias of the exceedance correlation. Fourth,
the significance of the test statistic is examined by bootstrap in this paper, while Ang and Chen
(2002) used the generalized method of moments (GMM) and the delta method to get the standard
deviation of test statistic first and then calculate the p-value.

6The asymptotic distribution of the test statistics is very complex. See Appendix A.
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The H and AH statistics also can evaluate the impact of weights on risk measure-implied corre-
lations. The sign of the difference is not important any more since the interest here is to test whether
using different weights could lead to different implied correlations. Thus I use the absolute value
of the difference to construct statistics. The new H statistics do not distinguish between downside
and upside, and take the supremum across all probability levels except the interval (0.3,0.7) to
avoid the unstable VaR-implied correlations. That is,

HVaR = sup
α∈(0,0.3)∪(0.7,1)

|ρ̂(1)
VaR,α− ρ̂

(2)
VaR,α| (30)

and

HES = sup
α∈(0,0.3)∪(0.7,1)

|ρ̂(1)
ES ,α− ρ̂

(2)
ES ,α|, (31)

where ρ̂(1)
VaR,α and ρ̂(1)

ES ,α are implied correlations for a given choice of weights, while ρ̂(2)
VaR,α and

ρ̂(2)
ES ,α are implied correlations for another choice of weights. The corresponding AH are

AHVaR =
1

0.6

(∫ 0.3

0
|ρ̂(1)

VaR,α− ρ̂
(2)
VaR,α|dα+

∫ 1

0.7
|ρ̂(1)

VaR,α− ρ̂
(2)
VaR,α|dα

)
(32)

and

AHES =
1

0.6

(∫ 0.3

0
|ρ̂(1)

ES ,α− ρ̂
(2)
ES ,α|dα+

∫ 1

0.7
|ρ̂(1)

ES ,α− ρ̂
(2)
ES ,α|dα

)
. (33)

Since the VaR- and ES-implied correlations are invariant with respect to weights for elliptical
distributions,7 the difference in implied correlations from choosing different weights should be
insignificant when data are from the multivariate normal distribution. Thus this paper simulates
data from the multivariate normal distribution and calculates the statistics using simulated data to
test the significance of the statistics from the empirical data. The process is similar to the test of
correlation asymmetries and thus is not repeated.

3 Simulation

In order to study the possible sacrifice and gains of using the ES-implied correlation, I design three
cases in the simulation. In the first two cases, correlation is constant and the linear correlation is
appropriate in order to judge whether allowing extra generality embodies a large sacrifice; in the

7See Mittnik (2014) and Campbell et al. (2002)
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third case, correlation changes in the tails and the linear correlation is inappropriate in order to
judge what gains may be possible by using the expected shortfall-based measure.

I calculate the average bias and root-mean-square error (RMSE) of the estimated correlations
to compare the performance of the ES-implied correlation with the linear correlation and the VaR-
implied correlation.

The average bias is the average of the bias across m simulations, i.e.,

1
m

m∑
j=1

(ρ̂ j−ρ),

and the RMSE is √√√
1
m

m∑
j=1

(ρ̂ j−ρ)2.

The estimator which makes these values close to 0 is regarded as a good indicator.
I use the pairwise method and the weight vector (0.5,0.5) to calculate the correlations in this

section. The effect of the choice of weight vectors on estimated implied correlations will be studied
in the empirical analysis.

In case 1, correlation is constant ρ = 0.5 and the data are from a multivariate normal distribu-

tion with mean 0 and covariance matrix Σ =

 1.0 0.5
0.5 1.0

 . The estimated linear correlation is the

maximum-likelihood estimation (MLE), and therefore has the desirable asymptotic properties of
maximum likelihood, including consistency and efficiency. See Fisher (1915) and Gayen (1951)
for the distribution of the estimated linear correlation.

Figure 1 plots the average bias and root-mean-square error of the estimated correlations from
the multivariate normal distribution with sample size T = 104 across m = 104 replications. The
black, red and green points correspond to the estimated linear correlation, VaR-implied correlation
and ES-implied correlation, respectively.

Consistent with the theory, the estimated linear correlation coefficient is consistent and efficient
in case 1. The estimated ES-implied correlation is as good as the estimated linear correlation.
The estimated VaR-implied correlation deviates from the actual correlation in the center of the
distribution because the denominator in the formula of the VaR-implied correlation is close to 0
around the center. Even in the tails, it is not as close to the actual correlation as the ES-implied
correlation does.

In case 2, correlation is still constant, but the data follow a multivariate T distribution with
degrees of freedom 3 and covariance matrix T−2

T Σ, where T is the sample size. Figure 2 plots the
results of the data simulated from the multivariate T distribution with the actual correlation ρ = 0.5,
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and sample size T = 104. Again, the process is repeated m = 104 times. In this case, the estimated
linear correlation is no longer MLE. The estimated ES-implied correlation has both the smallest
bias and the smallest root-mean-square error among the three correlation estimates.

In case 3, correlation is non-constant and changes at some designed probability levels. Since
the correlation is non-constant, better performance from methods which allow for the change in
the correlation is expected.

Assume there are two breaking points, which divide the whole space into 3 regions. The first
region (−∞,−1]× (−∞,−1] mimics the bear market with the actual correlation of 0.75. The second
region (−1,1]× (−1,1] mimics the moderate market situation, where the correlation is 0.58. The
third region (1,∞)× (1,∞) mimics the bull market with the correlation of 0.52.

I use truncation to generate the data. However, Ang and Bekaert (2002) and Campbell et al.
(2008) documented that truncation changes the correlation between assets. Given the correla-
tion after truncation, one needs to decide the correlation before truncation. Employing the MC
technique in a wide search, I find that the data for regions 1, 2, and 3 can be generated by truncat-
ing a bivariate normal distribution with marginal distributions N(0,1) and correlation coefficients
ρ1

be f ore = 0.93, ρ2
be f ore = 0.86 and ρ3

be f ore = 0.83, respectively.
To be exact, the following steps are used to determine correlations before truncation.
Step A: Choose a possible value for the correlation before truncation, and generate 105 ran-

dom samples from a bivariate normal distribution with the marginal distribution N(0,1) and this
correlation.

Step B: Truncate the simulated data to the region that we concern and calculate the correlation
in that region.

Step C: Repeat this process 104 times and record the correlation every time.
Step D: Calculate the average of the 104 truncated correlations. If the average correlation equals

the targeted correlation, the correlation chosen in step A is the right correlation before truncation.
If the average is greater than the targeted correlation, reduce the correlation and repeat steps A, B
and C till the average of the correlations across 104 replications is equal to the targeted correlation.
If the average is smaller than the targeted correlation, increase the correlation and repeat steps A,
B and C till the average of the correlations and the targeted correlation are the same.

Suppose that p1 = 20% of the data locating in region 1, p2 = 60% in region 2 and p3 = 20% in
region 3. The actual correlation then is

ρα =


0.75, α ≤ 20%,
0.58, 20% < α ≤ 80%,
0.52, α > 80%.

The data is simulated by combing a proportion of p1 of random variables truncating from a bi-
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variate normal distribution with correlation ρ1
be f ore for region 1, p2 of random variables truncating

from a bivariate normal distribution with correlation ρ2
be f ore for region 2, and p3 of random vari-

ables truncating from a bivariate normal distribution with correlation ρ3
be f ore for region 3.

Figure 3 plots the average estimated correlations across m = 103 simulations with sample size
T = 104. In comparison with the large deviation of the estimated linear correlation from the actual
linear correlation, the estimated implied correlations are more trustworthy. The estimated VaR-
implied correlation is still unstable around the center of each region.

We are naturally interested in how far a deviation needs to be from constancy in order that the
estimated ES-implied correlation provides an improvement. Table 1 reports the summary statistics
of the RMSEs in four situations: p1 = 0, p2 = 1, p3 = 0; p1 = 2%, p2 = 96%, p3 = 2%; p1 = 12%, p2 =

82%, p3 = 6%; and p1 = 12%, p2 = 76%, p3 = 12%. Situation 1 assumes no break point, in which
case the estimated linear correlation is the best unbiased estimator. Situation 2 assumes that 2% of
the data are from another multivariate normal distributions in the left tail and right tails. Situation
3 increases this proportion and makes the proportion different in the left and right tails in order to
evaluate the impact of asymmetry. Situation 4 then increases the proportion in the right tail to the
same level as the proportion in the left tail.

The estimated linear correlation generates the least RMSE in situation 1. However, even when
only 2% of the data from other distributions are included in the tails, the RMSE of the estimated
linear correlation increases sharply. The RMSE keeps growing when the proportion increases in
the tails, but not that much from situation 3 to situation 4.

Compared to the estimated linear correlation, the estimated risk measure-implied correlation
is less affected by the change of the proportion in the tails. The RMSE of estimated ES-implied
correlations is less than the RMSE of estimated linear correlations almost at every probability level
in the last three situations, where data in the tails are assumed to follow a different distribution.
The estimated VaR-implied correlation is still untrustworthy around the center, leading to the mean
and standard deviation of its RMSE very large at some probability levels.

4 Empirical analysis

In the empirical analysis, I investigate correlations between equity returns of G7 countries for risk
diversification in the global financial market. The G7 countries are the United States (US), Canada
(CA), the United Kingdom (UK), Italy (IT), Germany (DE), France (FR) and Japan (JP).
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4.1 Data

This paper uses equity return indexes of the G7 countries from January 1, 1973 to December
31, 2015. To avoid time difference, I use weekly returns. The weekly frequency avoids market
microstructure of using daily returns, yet provides sufficient observations in the tails. The data is
acquired from Datastream and includes 2313 observations.

Panel A of Table 2 presents the summary statistics of returns for the whole period. The mean
and standard deviation of returns are annualized by multiplying returns by 52. The average returns
of all the countries, except Japan, are around 10%. Japan has an average return of only about 7%.
Standard deviations of returns vary from 1.14 to 1.69. The row labeled "Skewness" reports the
results of the D’Agostino test of skewness (D’Agostino, 1970). It shows that the equity returns in
all countries, except the UK and Italy, are skewed to left at 5% significance level and higher. While
the equity returns of the UK are significantly skewed to right, the returns of Italy do not exhibit
significant skewness. The row labeled "Kurtosis" reports the results of the Anscombe-Glynn test
(Anscombe & Glynn, 1983) and implies that all equity returns have acute peaks and tend to be
heavy-tailed. The results of the Anderson-Darling test (Stephens (1986) and Thode (2002)) and
the Shapiro-Wilk test (Shapiro and Wilk (1965) and Royston (1982)), reported in rows labeled
"AD test" and "Shapiro test", indicate that the equity returns do not follow the normal distribution.

To see how the 2008 financial crisis affects the financial market, I divide the whole sample
period into two subperiods. The first period includes the first 30 years from January 1, 1973 to
December 31, 2002. The second period includes the 2008 financial crisis and extends from January
1, 2003 to December 31, 2015. Panel B and Panel C in Table 2 report the summary statistics for
the two subperiods. Except Germany and Japan, the average return of all the countries decreases
in the second period. In the first subperiod, returns of most countries, except the UK, Italy, and
Japan, are skewed to the left, while in the second period, returns of all countries are skewed to the
left, suggesting the possibility of having large negative returns in the second subperiod. Results
from the kurtosis, Anderson-Darling test and Shapiro-Wilk test imply that equity returns of all the
countries in the two subperiods are not normally distributed.

4.2 Empirical results

In total, there are C(7,2) = 7×6
2 = 21 correlation coefficients between the seven countries. To save

space, only correlations between the US and the other G7 countries are reported. The weight vector
used to compose the portfolio is (0.5,0.5) in this section.

Figure 4 plots the performance of the estimated linear correlation, VaR-implied correlation and
ES-implied correlation in the whole sample period, where low quantiles correspond to bad market
situations and high quantiles correspond to good market situations.
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The figure implies that the estimated VaR-implied correlation is very unstable around the center
and goes beyond 1 frequently. The estimated ES-implied correlation is higher than the estimated
linear correlation in the left tail and lower than the estimated linear correlation in the right tail for
all the countries, consistent with the empirical findings that dependence increases during market
downturns and decreases during market upturns. Among all countries, the tail dependence between
the US and Canada and Japan increases least. It is also noteworthy that although the US exhibits
a higher linear correlation with Canada during normal times, the downside dependence does not
increase much. For example, the tail dependence between the US and the UK is even higher than
the tail dependence between the US and Canada, emphasizing the importance of estimating tail
dependence.

Table 3 reports the H statistics and AH statistics for measuring correlation asymmetries. Panel
A reports the results of the H statistics. The H statistics between the US and other countries are
positive for VaR-implied and ES-implied correlations, implying that the linear correlation under-
estimates the dependence in the left tail and overestimates the dependence in the right tail. Rows
1 and 2, labeled "H−VaR" and "H−ES ", respectively, report the value of downside H statistics using
the VaR-implied correlation and the ES-implied correlation, respectively. The results show that the
VaR-implied correlation tends to produce higher but less significant correlation asymmetries than
ES-implied correlation. In particular, the VaR-implied correlation indicates that relations between
the US and Italy, France, and Japan in the left tail increase significantly at 5% level, and the ES-
implied correlation implies significant relations between the US and the UK, Italy, Germany, and
France. Compared to rows 1 and 2, rows 3 and 4, labeled "H+

VaR" and "H+
ES ", reveal that the degree

that correlation decreases during market upturns is generally less than the degree that correlation
increases during market downturns.

Panel B reports the results of the AH statistics. Signs of the AH statistics using the VaR-implied
correlation are incongruous, but only the positive statistics are significant. The AH statistics using
the ES-implied correlation are all positive and significant at 10% level and higher, implying that
correlations are generally higher during market downturns and lower during market upturns than
the linear correlation. The downside AH statistics using the VaR-implied correlation are signifi-
cant at 5% level only for the relation between the US and Canada and the relation between the US
and Japan. The downside AH statistics using the ES-implied correlation imply that correlations
between the US and Canada, the UK, Italy, and France during market downturns are significantly
underestimated by the linear correlation at 1% level, and correlations between the US and Germany
and Japan during market downturns are underestimated by the linear correlation at 10% level. The
upside AH statistics using the VaR-implied correlation demonstrates a positive and significant re-
lation between the US and Germany, and the upside AH statistics using the ES-implied correlation
show that all correlations decrease significantly at 10% and higher.
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I then estimate the linear correlation and implied correlations for the subperiods. Figure 5 plots
the results. The black points, red points, and green points represent the results of the estimated lin-
ear correlation, VaR-implied correlation, and ES-implied correlation for the first subperiod from
January 1973 to December 2002, respectively. The grey points, pink points, and blue points cor-
respond to the estimated linear correlation, VaR-implied correlation, and ES-implied correlation
for the second subperiod from January 2003 to December 2015. Correlations increase in the sec-
ond period, as predicted by the fact that market situations get worse in the second period and
dependence increases when the market situation worsens. Correlation between the US and Canada
increases least among all correlations, consistent with the results in Figure 4 and Table 3.

4.3 Effect of weights

This section tests the impact of portfolio weights on risk measure-implied correlations by two
approaches. In the first approach, I use two sets of weights and estimate the difference in the
implied correlations. In the second approach, I compare the difference in the estimated correlations
from exact identification and overidentification in order to check whether giving weight vectors
more than the number of correlations could improve efficiency, since Mittnik (2014) documented
that assigning weights to other assets in the portfolio provides more information and reduces the
problem of the VaR-implied correlation locating outside the [−1,1] interval.

4.3.1 Result of changing the value of weights

Instead of using the weight vector (0.5,0.5), this section uses the weight vector (0.2,0.8), i.e., in-
vesting 20% in the US and 80% in the other market. Figure 6 plots the difference in the correlations
from using the weight vectors (0.5,0.5) and (0.2,0.8). The difference in the estimated VaR-implied
correlations varies a little in the tails, but differs a lot around the center. The estimated ES-implied
correlation does not show discernible difference across probability levels.

Panel A of Table 4 reports the test statistics measuring the difference in correlations from using
different weights. Rows 1 and 2 show that for correlations between the US and the other G7
countries, the H statistics based on the ES-implied correlation are smaller than the H statistics
based on the VaR-implied correlation, suggesting that the ES-implied correlation is less affected
by the choice of weights than the VaR-implied correlation. Rows 3 and 4 reporting the AH statistics
reach the same conclusion. In addition, all the test statistics are insignificant, except the AH statistic
based on the VaR-implied correlation between the US and Japan.
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4.3.2 Difference in estimated correlations from exact identification and overidentification

Figure 7 reports the difference in estimated correlations from exact identification and overidenti-
fication. The weights for exact identification are obtained by assigning every two assets an equal
weight (0.5,0.5). The weights for overidentification are acquired by drawing every k assets and
assigning them an equal weights 1/k, where k is an integer from 2 to n, and n is the number of
total assets. This finally generates C(n,2) + ...+ C(n,n) = 2n − n− 1 vectors of weights. Figure 7
indicates that overall, the difference in estimated correlations from exact identification and overi-
dentification is very small and negligible compared to the values of estimated implied correlations.
The figure shows that the VaR-implied correlation is affected more by estimation methods than is
the ES-implied correlation.

Panel B of Table 4 reports the H and AH statistics measuring the difference in implied corre-
lations from using exact identification and overidentification. All of the statistics are insignificant,
implying no significant impact of estimation methods on implied correlations. The statistics from
ES-implied correlations are still smaller than the statistics from VaR-implied correlations, im-
plying that ES-implied correlations are less affected by using different estimation methods than
VaR-implied correlations.

4.4 Simple illustrations for potential applications

Since asset correlations increase during market downturns, investors who diversify risk according
to the linear correlation may underestimate the risk in the tails. Considering that investors care
more about losses than gains in reality, the ES-implied correlation has important applications in
risk management and asset allocation. A direct application is using the ES-implied correlation to
assess the risk of a portfolio. For example, the volatility of a portfolio composed of 50% of the
US equity index and 50% of the Canadian equity index is 1.22 using the linear correlation, but
increases to 1.26 using the ES-implied correlation at 5%-quantile.

The ES-implied correlation also compensates the linear correlation in asset allocation. Since
correlation increases when the market falls, the protection from risk diversification also erodes. For
investors who care about risk diversification during market downturns, they can use the ES-implied
correlation to construct portfolios. The solid line and dashed line in Figure 8 plot the classic ef-
ficient frontier, which uses the linear correlation, and the efficient frontier using the ES-implied
correlation at 5%-quantile, respectively. It appears that investors using the ES-implied correla-
tion are more risk sensitive: they demand higher expected returns for one percentage increase in
volatility than their mean-variance counterparts.

One concern of applying the ES-implied correlation in asset allocation is that the ES-implied
correlation requires pre-knowledge of weights. The following empirical analysis shows that weights
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for computing the ES-implied correlation do not have a significant impact on the results. Consider
the efficient frontier between US and Canada. The ES-implied correlation equals 0.7920 using
equal weights 50% and 50% at 5%-quantile. Assuming the annual risk-less rate is 3%, the tan-
gency weights, which provide the highest Sharpe ratio, are 55.81% in the US equity index and
44.19% in the Canadian equity index. We can update this result. Using this newly updated tan-
gency weights, the ES-implied correlation is 0.7924. The difference in the ES-implied correlation,
0.0004, is trivial. This new ES-implied correlation then leads to a new efficient frontier and a new
set of tangency weights. I repeat this process until the difference in the ES-implied correlation is
less than 10−7. It appears that the ES-implied correlation converges after three iterations. The final
tangency weight set is (55.28%,44.72%) and the corresponding ES-implied correlation is 0.7923.
In this case, the starting weight vector (50%, 50%) is very close to the final optimal tangency
weights. Even if the starting weight vector is (20%, 80%), the tangency weights still converge to
the optimal weights after three iterations. Thus, not using the optimal weights to calculate the ES-
implied correlation affects little of finding the optimal weights. Similar to section 4.3, I employ the
H and AH statistics to test the impact on the ES-implied correlation between using and not using
the optimal weights. Table 5 reports the difference in the implied correlation from using the opti-
mal tangency weights and using equal weights. There is a significant difference in the VaR-implied
correlation between the US and Germany, and between the US and Japan at 10% significance level
but no discernible difference in the ES-implied correlation.

5 Conclusion

Tail-based dependence measures play a central role in risk management and asset allocation. It is
well known that the linear correlation provides a poor indicator of the co-movement between fi-
nancial assets under extreme circumstances, particularly during market crashes. Other dependence
measures, the exceedance correlation and tail dependence coefficient, have conditioning biases
and can not be used to measure correlation asymmetry directly. An alternative measure, the VaR-
implied correlation, does not have a conditioning bias; however, it has a number of disadvantages,
including the fact that the VaR is not coherent, disregards the data beyond it, and the VaR-implied
correlation does not work around the center of distributions.

A development of the VaR-implied correlation, the ES-implied correlation, can address the
shortcomings of the VaR-implied correlation. Simulations indicate that the estimated ES-implied
correlation is as accurate as the estimated linear correlation when the estimated linear correlation
is appropriate, but is much more accurate than the estimated linear correlation when the estimated
linear correlation is inappropriate with respect to average bias, standard deviation and root-mean-
square errors. The VaR-implied correlation is much less stable than the ES-implied correlation in
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all simulations.
In the empirical analysis of international equity indexes, the VaR-implied correlation violates

the [−1,1] interval frequently. However, the ES-implied correlation is much more steady. More
importantly, the ES-implied correlation clearly demonstrates that the linear correlation underesti-
mates the correlation during market downturns and overestimates the dependence during market
upturns. Thus using the linear correlation may underestimate risk and cause large losses when the
market declines.

A series of test statistics are developed for measuring and testing correlation asymmetries. The
test statistics involving the ES-implied correlation clearly demonstrate that correlations between
the US and the other G7 countries are significantly underestimated by the linear correlation during
market downturns.

The test statistics can also be used to measure and examine the impact of the choice of weights
on the VaR-implied correlation and the ES-implied correlation. The test statistics imply that the
implied correlations are overall independent of the choice of weights, suggesting the possibility of
applying the risk measure-implied correlations in asset allocation.

In addition to risk management and asset allocation, the ES-implied correlation has another
two potential applications. First, the standardized ES-implied correlation can be used to test or
find the distribution of returns. If the assumption of the distribution is correct, the standardized
ES-implied correlation should be close to the linear correlation. Thus a statistic measuring the
difference between the linear correlation and the standardized ES-implied correlation can evaluate
the accuracy of the hypothesis on the distribution of assets. By varying the hypothesis, one can
find the true distribution of returns.

Second, the ES-implied correlation can be applied to measure the dependence of distributions of
which the second moment does not exist, for example, the stable distribution. The linear correlation
is no longer accessible in this situation, but the expected shortfall is accessible as long as the first
moment exists. Thus we can estimate the correlation between the assets if we obtain the relation
between the portfolio ES and the individual ES.
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Appendix A Asymptotic properties of the implied correlations

This section shows the asymptotic property of the implied correlations. I start from the VaR-
implied correlation.

Denote returns of asset i by ri1, ...,riT . Assume that
1) ri1, ...,riT are i.i.d. random variables with the cumulative distribution function Fi and prob-

ability density function fi. To have a simplified formula for the asymptotic distribution of the test
statistics, I further assume that Fi is the normal distribution with mean 0 and the standard deviation
σi, and the joint distribution between different assets follows the multivariate normal distribution.
Notice that this assumption is not mandatory.

2) for α ∈ (0,1), Fi(x) is differentiable at F−1
i (α) and F′i (F

−1
i (α)) = fi(F−1

i (α)) > 0.
I first derive the distribution of quantiles from the empirical distribution function. Notice that

F̂i(x) = 1
T
∑T

t=1 I(rit ≤ x) has the expectation of Fi(x) and the variance of

σ2
i (x) =

Fi(x)(1−Fi(x))
T

The covariance between F̂i(x) and F̂ j(x) is

σ2
i j(x) =

Fi j(x, x)−F1(x)F2(x)
T

where Fi j(x, x) is the multivariate cumulative distribution function between ri and r j. It is obvious
that Fi(x)(1−Fi(x)) and Fi j(x, x)−Fi(x)F j(x) are finite. By the multivariate central limit theorem,
the empirical distributions of assets 1, 2 and the portfolio composed of them have the following
multivariate distribution:

√
T


F̂1(x)−F1(x)
F̂2(x)−F2(x)
F̂p(x)−Fp(x)

 a
∼ N

(
0′,Σ

)
.

where 0’ is a vector of three 0s, the (i, i)th element of Σ is Fi(x)(1−Fi(x)), and the (i, j)th element
for i , j is Fi j(x, x)−Fi(x)F j(x).

Now consider the α-quantile of asset i’s cdf qi,α = F−1
i (α). Notice that Fi(qi,α) = α. Taking the

derivative, we have fi(qi,α)dqi,α = dα. Therefore, dqi,α
dα = 1

fi(qi,α) = 1
fi(F−1

i (α))
. The empirical quantiles

of assets 1, 2 and the portfolio p thus converge to the following distribution:

√
T

[
q̂1,α−q1,α q̂2,α−q2,α q̂p,α−qp,α

]′ a
∼ N

(
0′,g′Σqg

)
,

where g is a 3× 3 diagonal matrix with the (i, i)th element being 1
fi(qi,α) , and Σq is a matrix with

the (i, i)th element being α(1−α), and the (i, j)th element, where i , j, being Fi j(qi,α,qi,α)−α2.
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Babu and Rao (1988) reached the same result using a representation of the sample quantiles from
Bahadur (1966).

Since qi,α = σiqΦ,α, where qΦ,α is the α-quantile of the standard normal distribution, the (i, i)th
element of g thus can be simplified to σi

φ(qΦ,α) , where φ is the pdf of the standard normal distribution.

The estimate of the VaR-implied correlation is ρ̂VaR,α =
q̂2

p,α−w2
1q̂2

1,α−w2
2q̂2

2,α
2w1w2q̂1,αq̂2,α

for α not around the center
of the distribution such that q̂1,α , 0 and q̂2,α , 0. Using the Delta method, the estimate of the VaR-
implied correlation follows

√
T (ρ̂VaR,α−ρVaR,α) a

∼ N
(
0,h′g′Σqgh

)
,

where h =

[
dρVaR,α

dq1,α

dρVaR,α
dq2,α

dρVaR,α
dqp,α

]′
. The first element of h is dρVaR,α

dq1,α
= −

w1σ1+ρw2σ2
w2σ1σ2qΦ,α

, the second
dρVaR,α

dq2,α
= −

w2σ2+ρw1σ1
w1σ2σ1qΦ,α

, and the third dρVaR,α
dqp,α

=
σp

w1w2σ1σ2qΦ,α
.

Therefore, gh = −1
w1w2σ1σ2qΦ,αφ(qΦ,α)

[
w1σ1(w1σ1 +ρw2σ2) w2σ2(w2σ2 +ρw1σ1) −σ2

p

]′
, de-

noted by w. The estimate of the VaR-implied correlation then converges to the linear correlation ρ
and has the following distribution

√
T (ρ̂VaR,α−ρ) a

∼ N
(
0,w′Σqw

)
.

To deduce the asymptotic property of the H statistics related to the expected shortfall, I use
Theorem 1 stated in Chen (2008). In addition to assumption 1), I assume:

3) There exists a τ ∈ (0,1) such that the α-mixing coefficient8 α(k) ≤ Cτk for all k ≥ 1 and a
positive constant C.9

4) The cdf of asset i, Fi, is absolutely continuous and the probability density fi has continuous
second derivatives in the neighborhood of the α-quantile; E(|rit|

2+δ) ≤ C for some δ > 0 and a
positive constant C.

Chen (2008) proved that the difference between the empirical estimate and the actual expected
shortfall follows

ÊS i,α−ES i,α =

 1
Tα

T∑
t=1

(rit −qi,α)I(rit ≥ qi,α)− (ES i,α−qi,α)

+ o(T−3/4+k),

where k is an arbitrary positive number. Therefore, the asymptotic variance of the empirical esti-
mate equals the variance of the first term. The multivariate distribution of the empirical estimate

8Let F k,l be the σ-algebra of events generated by rt,k ≤ t ≤ l for k ≤ l. The α-mixing coefficient is α(k) =

sup{|P(AB)−P(A)P(B)| : −∞ < j <∞,A ∈ F 1, j,B ∈ F j+k,∞}.
9This assumption holds for many commonly used financial time series such as the ARMA, ARCH, the stochastic

volatility and diffusion models.
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of expected shortfalls of assets 1, 2, and the portfolio follows

√
T

[
ÊS 1(α)−ES 1(α) ÊS 2(α)−ES 2(α) ÊS p(α)−ES p(α)

]′ a
∼ N(0′,ΣES )

where the (i, j)th element of ΣES is 1
αcov

(
(ri1−qi,α)I(ri1 ≥ qi,α), (r j1−q j,α)I(r j1 ≥ q j,α)

)
.

Using the Delta method, I obtain the asymptotic distribution of the ES-implied correlation as
follows:

√
T (ρ̂ES ,α−ρ) a

∼ N
(
0,m′ΣES m

)
,

where m = 1
w1w2σ1σ2ES Φ,α

[
−w1σ1(w1 +ρw2σ2) −w2(w2σ2 +ρw1σ1) σp

]′
.
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Figure 1: Average bias and RMSE in the multivariate normal distribution
This figure plots average bias (left panel) and RMSE (right panel) of the empirical linear correlation
(black solid dots), VaR-implied correlation (red hollow rhombuses) and ES-implied correlation
(green solid triangles) over 104 repetitions in the simulations of multivariate normal distribution
with actual correlation ρ = 0.5 and sample size 104.
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Figure 2: Average bias and RMSE in the multivariate T distribution
This figure plots average bias (left panel) and RMSE (right panel) of the empirical linear correlation
(black solid dots), VaR-implied correlation (red hollow rhombuses) and ES-implied correlation
(green solid triangles) over 104 repetitions in the simulations of the multivariate T distribution
with the actual correlation ρ = 0.5, degrees of freedom 3 and sample size T = 104.
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Figure 3: Estimated correlations in simulations of the non-constant model
This figure plots the average of the empirical linear correlation (black solid dots), VaR-implied
correlation (red hollow rhombuses) and ES-implied correlation (green solid triangles) over 103

repetitions in the simulations of a non-constant model with sample size of 104. The solid squares
plot the actual correlation, which varies at 20%-quantile and 80%-quantile, i.e.,

ρα =


0.75, α ≤ 20%,
0.58, 20% < α ≤ 80%,
0.52, α > 80%.
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Figure 4: Estimated correlations between the US and the other G7 countries in the whole period
This figure plots the linear correlation (black solid dots), VaR-implied correlation (red hollow
rhombuses) and ES-implied correlation (green solid triangles) between the US and Canada, the
UK, Italy, Germany, France, and Japan in Panels (a) to (f), respectively. Correlations are computed
using the weekly equity return indexes of G7 countries from January 1973 to December 2015.
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Figure 5: Estimated correlations between the US and the other G7 countries in subperiods
This figure plots the estimated linear correlation, VaR-implied correlation and ES-implied correlation be-
tween the US and the other G7 countries in two subperiods. The black solid dots, red hollow rhombuses
and green solid triangles represent the results of the estimated linear correlation, VaR-implied correlation,
and ES-implied correlation in the first subperiod from January 1973 to December 2002, respectively. The
grey hollow dots, pink hollow rhombuses, and blue hollow triangles correspond to the estimated linear cor-
relation, VaR-implied correlation, and ES-implied correlation in the second subperiod from January 2003 to
December 2015. 32
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Figure 6: Difference in estimated correlations between the US and the other G7 countries from
using different values of weights
This figure plots the difference in the VaR-implied correlation (red hollow rhombuses) and ES-
implied correlation (green solid triangles) between the US and the other G7 countries from assign-
ing equal weights and assigning 20% to the US and 80% to the other country. Correlations are
computed using the weekly equity return indexes of G7 countries from January 1973 to December
2015.
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Figure 7: Difference in estimated correlations between the US and the other G7 countries from
exact identification and overidentification
This figure plots the difference in the VaR-implied correlation (red hollow rhombuses) and the ES-
implied correlation (green solid triangles) between the US and the other G7 countries from exact
identification and overidentification. Correlations are computed using the weekly equity return
indexes of G7 countries from January 1973 to December 2015.
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Figure 8: The classic mean-variance efficient frontier and the efficient frontier adjusted by the
ES-implied correlation at 5%-quantile.
This figure plots the classic mean-variance efficient frontier (black solid line) and the efficient
frontier using the ES-implied correlation at 5%-quantile (green dashed line) as the portfolio moves
from the US equity index to the Canadian equity index. The data used are weekly equity return
indexes of the two countries from January 1973 to December 2015.
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Table 1: Summary statistics of the RMSE in the simulation of case 3

This table presents the summary statistics of the RMSE of the estimated correlations in the sim-
ulation of case 3. 100p1% of data falls into (−∞,−1]× (−∞,−1] with the correlation of 0.77,
100p2% of data falls into (−1,1] × (−1,1] with the correlation of 0.74, and 100p3% of data
falls into (1,∞)× (1,∞) with the correlation of 0.66. Four sets of p1, p2,andp3 are considered:
p1 = 0, p2 = 1, p3 = 0; p1 = 2%, p2 = 96%, p3 = 2%; p1 = 12%, p2 = 82%, p3 = 6%; and p1 =

12%, p2 = 76%, p3 = 12%. The quantiles of RMSE at probability level α= 1%,5%,10%,90%,95%
and 99% are also reported.

Statistics Linear VaR ES Statistics Linear VaR ES
Situation 1: p1=0, p2=1, p3=0 Situation 2: p1=2%, p2=96%,p3=2%

Mean 0.005 2.045 0.021 Mean 0.092 2.416 0.022
Std 0 19.100 0.013 Std 0.014 21.800 0.016
Min 0.005 0.022 0.008 Min 0.005 0.023 0.008
Max 0.005 190.200 0.094 Max 0.158 217 0.098
α = 1% 0.005 0.023 0.008 α = 1% 0.093 0.023 0.008
α = 5% 0.005 0.024 0.008 α = 5% 0.093 0.025 0.008
α = 10% 0.005 0.0273 0.009 α = 10% 0.093 0.030 0.009
α = 90% 0.005 0.225 0.032 α = 90% 0.093 0.283 0.033
α = 95% 0.005 0.353 0.033 α = 95% 0.093 0.551 0.042
α = 99% 0.005 4.926 0.093 α = 99% 0.093 12.300 0.093
Situation 3: p1=12%, p2=82%, p3=6% Situation 4: p1=12%, p2=76%, p3=12%

Mean 0.201 61.770 0.031 Mean 0.226 29.920 0.033
Std 0.034 59.49 0.029 Std 0.038 212.900 0.030
Min 0.119 0.021 0.009 Min 0.140 0.022 0.009
Max 0.274 5919 0.139 Max 0.295 2019 0.138
α = 1% 0.119 0.022 0.009 α = 1% 0.140 0.022 0.009
α = 5% 0.119 0.025 0.009 α = 5% 0.140 0.027 0.010
α = 10% 0.119 0.033 0.010 α = 10% 0.140 0.036 0.011
α = 90% 0.209 0.391 0.080 α = 90% 0.295 0.439 0.080
α = 95% 0.216 0.722 0.096 α = 95% 0.295 0.753 0.133
α = 99% 0.274 295.700 0.134 α = 99% 0.295 601.100 0.133
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Table 2: Summary statistics of G7 countries

This table presents the summary statistics of annualized returns of G7 equity indexes. Panel A
reports statistics of returns in the whole period from January 1973 to December 2015. Panel B
reports statistics of returns in the first subperiod from January 1973 to December 2002 and Panel
C reports statistics of the second period from January 2003 to December 2015. The superscripts *,
** and *** represent significance at 10%, 5%, and 1%, respectively.

Statistics US CA UK IT DE FR JP
Panel A: Summary Statistics in whole period

Mean 0.113 0.106 0.128 0.126 0.096 0.132 0.068
SD 1.230 1.139 1.325 1.689 1.264 1.433 1.363
Min -7.808 -8.425 -8.461 -8.693 -7.482 -9.368 -10.080
Max 7.628 7.111 12.546 10.388 6.511 7.727 8.666
Skewness -0.295∗∗∗ -0.602∗∗∗ 0.227∗∗∗ -0.020 -0.440∗∗∗ -0.371∗∗∗ -0.226∗∗∗

Kurtosis 7.315∗∗∗ 8.482∗∗∗ 11.141∗∗∗ 5.579∗∗∗ 6.102∗∗∗ 6.033∗∗∗ 7.441∗∗∗

AD test 14.640∗∗∗ 18.476∗∗∗ 19.608∗∗∗ 12.121∗∗∗ 15.201∗∗∗ 12.225∗∗∗ 17.574∗∗∗

Shapiro test 0.957∗∗∗ 0.945∗∗∗ 0.934∗∗∗ 0.974∗∗∗ 0.964∗∗∗ 0.969∗∗∗ 0.958∗∗∗

Panel B: Summary Statistics in period I
Mean 0.117 0.111 0.143 0.150 0.086 0.144 0.059
SD 1.223 1.102 1.365 1.762 1.217 1.449 1.258
Min -7.808 -6.725 -8.461 -8.693 -7.482 -9.368 -6.005
Max 6.627 5.293 12.546 10.388 6.317 6.718 8.305
Skewness -0.360∗∗∗ -0.495∗∗∗ 0.366∗∗∗ 0.054 -0.497∗∗∗ -0.423∗∗∗ 0.044
Kurtosis 6.776∗∗∗ 6.309∗∗∗ 11.997∗∗∗ 5.540∗∗∗ 6.395∗∗∗ 6.062∗∗∗ 5.926∗∗∗

AD test 7.732∗∗∗ 7.544∗∗∗ 12.916∗∗∗ 7.685∗∗∗ 9.135∗∗∗ 7.264∗∗∗ 12.928∗∗∗

Shapiro test 0.964∗∗∗ 0.968∗∗∗ 0.930∗∗∗ 0.975∗∗∗ 0.963∗∗∗ 0.970∗∗∗ 0.967∗∗∗

Panel C: Summary Statistics in period II
Mean 0.103 0.096 0.094 0.072 0.118 0.102 0.090
SD 1.245 1.222 1.226 1.509 1.367 1.397 1.580
Min -7.519 -8.425 -5.409 -6.590 -5.993 -5.999 -10.080
Max 7.628 7.111 8.090 6.957 6.511 7.727 8.666
Skewness -0.151 -0.773∗∗∗ -0.239∗∗ -0.333∗∗∗ -0.353∗∗∗ -0.241∗∗ -0.546∗∗∗

Kurtosis 8.475∗∗∗ 11.584∗∗∗ 7.587∗∗∗ 5.181∗∗∗ 5.496∗∗∗ 5.953∗∗∗ 8.185∗∗∗

AD test 8.009∗∗∗ 13.009∗∗∗ 7.231∗∗∗ 5.486∗∗∗ 6.140∗∗∗ 5.600∗∗∗ 4.596∗∗∗

Shapiro test 0.937∗∗∗ 0.892∗∗∗ 0.946∗∗∗ 0.969∗∗∗ 0.964∗∗∗ 0.962∗∗∗ 0.949∗∗∗
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Table 3: H statistics measuring correlation asymmetries

This table reports the H and AH statistics. Panel A reports downside and upside H statistics based
on the VaR-implied and the ES-implied correlations, where downside and upside H statistics are
the supremums of the deviations of the linear correlation from implied correlations in the left tail
and right tail, respectively. Panel B reports downside and upside AH statistics, which correspond
to the average of deviations in the left tail and right tail, respectively. Correlations are computed
using the weekly equity return indexes of G7 countries from January 1973 to December 2015. The
superscripts *, ** and *** represent significance at 10%, 5%, and 1%, respectively.

CA UK IT DE FR JP
Panel A: H statistics

H−VaR 0.167 0.134 0.335∗∗∗ 0.186∗ 0.295∗∗∗ 0.219∗∗

H−ES 0.054 0.212∗∗∗ 0.221∗∗∗ 0.143∗∗∗ 0.105∗∗ 0.048
H+

VaR 0.111 0.157 0.181∗∗ 0.119 0.111 0.185∗∗

H+
ES 0.106∗∗ 0.092∗ 0.215∗∗∗ 0.036 0.056 0.247∗∗∗

Panel B: AH statistics
AH−VaR 0.033∗∗ -0.084 -0.036 -0.092 -0.029 0.045∗∗

AH−ES 0.030∗∗∗ 0.050∗∗∗ 0.080∗∗∗ 0.022∗ 0.040∗∗∗ 0.027∗

AH+
VaR -0.025 0.027 -0.012 0.048∗∗∗ 0.021 -0.043

AH+
ES 0.057∗∗∗ 0.046∗∗∗ 0.080∗∗∗ 0.022∗ 0.030∗∗ 0.045∗∗∗
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Table 4: H statistics measuring impact of weights

This table reports H and AH statistics measuring the impact of weights. The H statistics are the
supremums of the absolute difference between using different choices of weights in the tails. AH
is the average of the absolute difference across the tails. Panel A reports the difference in implied
correlations from choosing different values for portfolio weights. Panel B reports the difference in
implied correlations from using exact identification and overidientification. The superscripts *, **
and *** represent significance at 10%, 5%, and 1%, respectively. Correlations are computed using
the weekly equity return indexes of G7 countries from January 1973 to December 2015.

CA UK IT DE FR JP
Panel A: Difference from different values of weights

HVaR 0.130 0.213 0.192 0.140 0.199 0.187
HES 0.026 0.080 0.056 0.061 0.037 0.077
AHVaR 0.046 0.063 0.058 0.057 0.049 0.080∗∗

AHES 0.012 0.009 0.010 0.009 0.007 0.020

Panel B: Difference from exact and overidentification
HVaR 0.098 0.063 0.100 0.064 0.090 0.083
HES 0.045 0.025 0.033 0.013 0.018 0.036
AHVaR 0.018 0.023 0.026 0.019 0.021 0.031
AHES 0.007 0.004 0.004 0.004 0.002 0.005

Table 5: H statistics measuring the impact of using optimal weights

This table reports H and AH statistics measuring the difference in implied correlations from using
equal weights and using the optimal tangency weights in the mean-variance framework with vari-
ance constructed by implied correlations. The superscripts *, ** and *** represent significance at
10%, 5%, and 1%, respectively. Correlations are computed using the weekly equity return indexes
of G7 countries from January 1973 to December 2015.

CA UK IT DE FR JP
HVaR 0.045 0.108 0.253 0.346∗ 0.101 0.482∗

HES 0.002 0.027 0.040 0.042 0.033 0.060
AHVaR 0.009 0.031 0.083 0.104∗ 0.032 0.176∗

AHES 0.001 0.008 0.013 0.014 0.006 0.018
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