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Drug-drug interaction (DDI) extraction as a typical relation extraction task in natural language processing (NLP) has always
attracted great attention. Most state-of-the-art DDI extraction systems are based on support vector machines (SVM) with a large
number of manually defined features. Recently, convolutional neural networks (CNN), a robust machine learning method which
almost does not need manually defined features, has exhibited great potential for many NLP tasks. It is worth employing CNN for
DDI extraction, which has never been investigated.We proposed aCNN-basedmethod forDDI extraction. Experiments conducted
on the 2013 DDIExtraction challenge corpus demonstrate that CNN is a good choice for DDI extraction. The CNN-based DDI
extraction method achieves an 𝐹-score of 69.75%, which outperforms the existing best performing method by 2.75%.

1. Introduction

Drug-drug interactions (DDIs) occur when two or more
drugs are taken in combination that alters the way one or
more drugs act in human body and may result in unexpected
side effects. The unexpected side effects caused by DDIs
are always very dangerous (may lead to deaths) and greatly
increase healthcare costs. The more DDIs healthcare profes-
sionals know, the less medical accidents occur. Therefore,
DDIs have always been attracting much attention in drug
safety and healthcare management [1].There are several pub-
licly available databases supporting healthcare professionals
to find DDIs. For example, DrugBank [2], which is an online
drug database, consists of 8311 drugs entries. Each drug
entry contains more than 200 fields, including a DDI field.
However, the databases have a few limitations. Firstly, most
DDI databases are dictionaries with a DDI field described in
text such as DrugBank. The DDIs in these databases cannot
be directly accessed like relational databases by healthcare
professionals. Secondly, new DDIs are often detected by
healthcare professionals and presented in literature, including
scientific articles, books, and technical reports [3]. It is
impossible for healthcare professionals to find DDIs from
the overwhelming amount of literature manually and to

keep up-to-date with the latest DDI findings. Therefore, DDI
extraction, which detects DDIs in unstructured text and
classifies them into predefined categories automatically, has
become an increasing interest in medical text mining.

DDI extraction is a typical relation extraction task in
natural language processing (NLP).Manymethods have been
proposed for DDI extraction and can be divided into two
categories: rule-based [4] andmachine learning-basedmeth-
ods [5, 6]. Rule-based methods use manually defined rules to
extract DDIs, whereasmachine learning-basedmethods treat
DDI extraction as a standard supervised learning problem
over annotated corpora. Comparedwith rule-basedmethods,
machine learning-basedmethods usually show better perfor-
mance and better portability [7]. Due to lack of annotated
corpora, early DDI extraction methods are almost all rule-
based. For example, Segura-Bedmar et al. [4] defined a set of
domain-specific rules to extract DDIs in DrugBank.With the
organization of DDIExtraction challenges in 2011 and 2013 [8,
9], machine learning-based methods have been proposed for
DDI extraction on the public corpora of the challenges. Both
DDIExtraction 2011 and DDIExtraction 2013 are designed to
extract drug-drug interactions from biomedical texts. DDIs
without type information are labeled in the DDIExtraction
2011 corpus, while, in the DDIExtraction 2013 challenge,
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Figure 1: Overall workflow of the CNN-based method for DDI extraction.

DDIs are divided into four types, that is, “mechanism,”
“effect,” “advice,” and “int.” The top performing systems on
these corpora are based on support vector machines (SVM)
with a large number of manually defined features [10–12].
For example, the best system of the 2013 DDIExtraction
challenge [11] is based on SVM with a hybrid kernel using
trigger words, dependency tree and parse tree features, and
so forth. The subsequential best system [12] is based on
linear SVM with rich features, including word, word pair,
dependency graph, parse tree, and noun phrase-constrained
coordination features. These systems have to suffer from
fussy feature engineering. Most of features used in these
systems are usually generated by existing NLP toolkits which
are imperfect. Errors caused by the NLP toolkits inevitably
propagate in the DDI extraction systems.

Convolutional neural networks (CNN), a robust machine
learning method proposed recently which almost does not
need manually defined features, has exhibited great potential
for many NLP tasks such as sentiment analysis [19], semantic
parsing [20], and search query retrieval [21]. However, it
has never been used for DDI extraction. In this paper, we
deploy CNN for this task. Inputs of the CNN-based method
are sentences in which drugs are annotated. The CNN-
based method consists of four layers: a look-up table layer, a
convolutional layer, a max pooling layer, and a softmax layer.
Given a sentence with two drugs of interest, in the look-up
table layer, each word is represented by word embeddings
[22] and position embeddings [23], and then the sentence is
represented by a matrix that concatenates word embeddings
and position embeddings of its words in the order of their
occurrence. In the convolutional layer, the matrix of the
sentence is convolved with filters of different sizes, generating
a group of feature vectors. The number of feature vectors
is equal to that of filters and the size of each vector is
determined by the context window considered. In the max
pooling layer, the group of vectors is converted into a new
vector by reducing each vector in the group into a feature.
Finally, the vector obtained in the max pooling layer is fed to
the fully connected softmax layer for classification. The word
embeddings used in the look-up table layer are initialized
by the “Order” algorithm [22] on the MEDLINE abstracts
in 2013 [24], whereas the position embeddings are randomly
initialized.

Evaluation on the 2013 DDIExtraction challenge corpus
demonstrates that the CNN-based DDI extraction system

achieves a precision, a recall, and an 𝐹-score of 75.72%,
64.66%, and 69.75%, respectively. It outperforms the best
performing system by 2.75% in 𝐹-score, indicating that CNN
is a good choice for DDI extraction.

2. Methods

DDI extraction is recognized as a multiclass classification
problem for all possible interacting pairs of drugs in the
same sentence. Each pair of drugs is classified into one of the
predefined types ofDDIs or classified as a noninteracting pair.
Given a sentence with 𝑛 drugs, a total of𝐶

𝑛,2
= 𝑛(𝑛−1)/2DDI

candidates need to be classified. Figure 1 illustrates the overall
workflow of our CNN-based method for DDI extraction.

The preprocessing module first blinds drugs, tokenizes
sentences, normalizes tokens, and filters out noninteracting
pairs from DDI candidates. Then the CNN module is used
for DDI extraction. In the training phase, DDI candidates
that annotated in the training set are positive samples with
different types, and the other candidates are negative samples.
The task of training is to obtain a CNN model on these
samples. In the test phase, all DDI candidates are classified
into different types of DDIs or non-DDI.

2.1. Preprocessing. To ensure generalization of machine
learning-based methods, we follow previous studies [12, 25]
to blind drugs in a sentence in the following way: the two
drugs of interest are replaced by “drug1” and “drug2” in the
order of their occurrence, respectively, and all the other drugs
are replaced by “drug0.” For example, given a sentence with
four drugs, “WhenALFENTA is administered in combination
with other CNS depressants such as barbiturates, or tranquil-
izers,” where drugs are highlighted in italic, 𝐶

4,2
= 6 DDI

candidates with context (called instances) are generated, as
shown in Table 1.

After drug blinding, we use the Natural Language Toolkit
(NLTK) [26] to tokenize sentences and convert all words to
lowercase.

Among all DDI instances, there are a large number of
negative instances (noninteracting drug pairs with context),
which usually affect the performances of machine learning-
based DDI extraction systems because of data imbalance
problem [27, 28]. Therefore, filtering out negative instances
as many as possible is very important for subsequent DDI
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Table 1: DDI candidates in a sentence after drug blinding.

Drug pair DDI candidate with context after drug blinding (i.e., instance)
(ALFENTA, CNS depressants) When drug1 is administered in combination with other drug2 such as drug0 or drug0
(ALFENTA, barbiturates) When drug1 is administered in combination with other drug0 such as drug2 or drug0
(ALFENTA, tranquilizers) When drug1 is administered in combination with other drug0 such as drug0 or drug2
(CNS depressants, barbiturates) When drug0 is administered in combination with other drug1 such as drug2 or drug0
(CNS depressants, tranquilizers) When drug0 is administered in combination with other drug1 such as drug0 or drug2
(barbiturates, tranquilizers) When drug0 is administered in combination with other drug0 such as drug1 or drug2

extraction module. In this study, we define the following four
criteria for negative instance filtering. An instance, denoted
by “drug1, drug2,” is a negative instance if

(1) the two drugs have the same name,
(2) one drug is an abbreviation or acronym of the other,
(3) the two drugs appear in the same coordinate structure

that has more than two drugs as elements,
(4) one drug is a special case of the other.

Exact string matching is used to determine whether the
first criterion is satisfied, and some simple rules are defined
to determine whether any one of the other three criteria is
satisfied such as “drug1 (drug2),” “drug1, drug2, and drug0,”
and “drug1 such as drug2.” For example, the fourth and fifth
instances in Table 1 are negative instances because of criterion
4.

2.2. Convolutional Neural Networks for Drug-Drug Interaction
Extraction. The CNNmodel proposed for DDI extraction in
this study is a four-layer model (shown in Figure 2), which
is a variant of the model for sentence classification in [19].
Besides word embeddings, position embeddings [23] are also
integrated into the CNN model in [19] to encode relative
distances between words and the two drugs of interest.

2.2.1. Look-Up Table. The CNN model takes DDI instances
as input and generates their representation in look-up table
layer. As required by CNN, we set all instances to be of
the same length by appending padding, denoted by “#,” to
short instances. The maximal length of all instances is a
proper choice of the same length, denoted by 𝑛. Given a
DDI instance 𝑆 = 𝑤

1
𝑤
2
𝑤
3
⋅ ⋅ ⋅ 𝑤
𝑛
with two drugs of interest

(“drug1” and “drug2”) at positions 𝑝
1
and 𝑝

2
, a word 𝑤

𝑖
is

represented by 𝑑
𝑤
-dimensional word embeddings e

𝑤𝑖
and

2𝑑
𝑝
-dimensional position embeddings [e

𝑑𝑖1

T
, e
𝑑𝑖2

T
]
T looked

up from corresponding dictionaries. C ∈ R𝑑𝑤×|𝑉|, D
1
∈

R𝑑𝑝×(2𝑛−1), and D
2
∈ R𝑑𝑝×(2𝑛−1), where 𝑉 is the vocabulary

and 𝑑
𝑖1
= 𝑖 − 𝑝

1
and 𝑑

𝑖2
= 𝑖 − 𝑝

2
(ranging from −𝑛 +

1 to 𝑛 − 1) are, respectively, the relative distance between
the word and the first drug and that between the word
and the second drug. That is, 𝑤

𝑖
is represented by x

𝑖
=

[e
𝑤𝑖

T
, e
𝑑𝑖1

T
, e
𝑑𝑖2

T
]
T. Then the instance is represented by a

matrix that concatenates the word embeddings and position
embeddings of its words in the order of their occurrence,
denoted by x = [x

1
, x
2
, x
3
, . . . , x

𝑛
] of size (𝑑

𝑤
+ 2𝑑
𝑝
) × 𝑛.

For the two types of embeddings, word embeddings can
be initialized by employing unsupervised word embeddings
algorithm on large-scale unannotated texts, whereas position
embeddings only can be randomly initialized.

2.2.2. Convolution. The matrix of a DDI instance (i.e., x)
is fed to the convolutional layer to generate features by
convolving xwith filters of different sizes. Given a filter of size
𝑘, t ∈ R(𝑑𝑤+2𝑑𝑝)×𝑘, for example, the following feature 𝑓

𝑖
can

be generated by applying convolution operator to a context
window of 𝑘 words:

𝑓
𝑖
= tanh (t ⋅ x

𝑖:𝑖+𝑘−1
+ 𝑏) , (1)

where x
𝑖:𝑖+𝑘−1

denotes the matrix [x
𝑖
, x
𝑖+1
, x
𝑖+2
, . . . , x

𝑖+𝑘−1
]

(representation of words in the context window), 𝑏 ∈ R is
a bias, and tanh is the hyperbolic tangent function. When
filter t is applied to all possible context windows of 𝑘 words
(i.e., 𝑖 ranging from 1 to 𝑛 − 𝑘 + 1), a feature vector f =
[𝑓
1
, 𝑓
2
, 𝑓
3
, . . . , 𝑓

𝑛−𝑘+1
] (f ∈ R𝑛−𝑘+1) is generated. As there are

various types of filters of different sizes, we can obtain a group
of feature vectors. The number of feature vectors is equal to
the number of filters.

2.2.3. Max Pooling. The max pooling layer extracts the most
important feature from each feature vector to reduce the
computational complexity of subsequent layers. Concretely,
the feature of maximum value 𝑓 = max{𝑓

1
, 𝑓
2
, 𝑓
3
, . . . ,

𝑓
𝑛−𝑘+1
} is extracted to represent a feature vector f =

[𝑓
1
, 𝑓
2
, 𝑓
3
, . . . , 𝑓

𝑛−𝑘+1
]. Correspondingly, if there are 𝑙 feature

filters, the matrix of a DDI instance (i.e., x) is converted into
a new vector of length 𝑙, denoted by z = [𝑓

1
, 𝑓
2
, 𝑓
3
, . . . , 𝑓

𝑙
],

where 𝑓
𝑖
is the feature extracted from the 𝑖th feature vector.

2.2.4. Softmax Regression. To prevent neural networks from
overfitting, we follow [19] to randomly drop out units (along
with their connections) from the networks during training.
The feature vector z obtained by max pooling is not directly
fed to the fully connected softmax layer for classification.
Firstly, we randomly set each element of z to zero with
a probability 𝑝 (following the Bernoulli distribution) and
obtain a new feature vector z

𝑑
.Then the vector z

𝑑
is fed to the

fully connected softmax layer. At test time, the feature vector
z is directly fed to the softmax layer for classification without
dropout.



4 Computational and Mathematical Methods in Medicine

W
he

n 
dr

ug
1 

is 
ad

m
in

ist
er

ed
 in

 co
m

bi
na

tio
n 

w
ith

ot
he

r d
ru

g2
 su

ch
 as

 d
ru

g0
 o

r d
ru

g2

Look-up table layer Convolutional layer Max pooling layer Softmax layer

Word
embeddings

Position
embeddings

Position
embeddings

Figure 2: Architecture of the CNNmodel for DDI extraction.

2.2.5. Model Training. The following parameters of the CNN
model need to be updated during training: the word embed-
dings matrix, the position embeddings matrixes, the filters,
and the weight matrix of the softmax layer. We use stochastic
gradient descent with shuffledminibatches and the AdaDelta
update rule as [19] to learn the parameters. At each gradient
descent step,we rescale theweight vectors of the softmax layer
when their 𝑙

2
-norms exceed a certain threshold.

3. Experiments

3.1. Dataset. The CNN-based DDI extraction system is
developed and evaluated on the DDI corpus of the 2013
DDIExtraction challenge [29], which is composed of 730
DrugBank documents and 175 MEDLINE abstracts about
DDIs. The corpus is split into two parts: a training set
(572 DrugBank documents and 142 MEDLINE abstracts) for
system development and a test set (158 DrugBank documents
and 33 MEDLINE abstracts) for system evaluation (see
Table 2). All drugs and pairs of drugs in each sentence are
annotated. Among the pairs of drugs (totally 33508), 5000
interacting pairs (i.e., DDIs) are classified into the following
four types: mechanism, effect, advice, and int.The definitions
of the four types of DDIs are as follows.

(i) Mechanism. Mechanism is assigned when pharmacoki-
netic mechanism of a DDI is described.

(ii) Effect. Effect is assigned when effect of a DDI is described.

(iii) Advice. Advice is assigned when a recommendation or
advice regarding a DDI is given.

(iv) Int. Int is assigned when the sentence simply states that a
DDI occurs and does not provide any information about the
DDI.

Table 2: Statistics of the DDI corpus of the 2013 DDIExtraction
challenge.

Training set Test set
DrugBank MEDLINE DrugBank MEDLINE

Documents 572 142 158 33
Pairs 26005 1787 5265 451
Positive DDIs 3789 232 884 95
Negative DDIs 22216 1555 4381 356
Mechanism 1257 62 278 24
Effect 1535 152 298 62
Advice 818 8 214 7
Int 179 10 94 2

3.2. Experimental Settings. As four types of DDIs are defined
in the corpus of the 2013 DDIExtraction challenge, DDI
instances need to be classified into five categories: mecha-
nism, effect, advice, int, and noninteracting, corresponding
to the output of the last layer of the CNN model.

The word embeddings matrix used in our experiments
is initialized by an unsupervised word embeddings learning
algorithm “Order” [22] on 17.3-gigabyte unannotated article
abstracts extracted fromMEDLINE released in 2013 [24]. We
also adopt the NLTK to preprocess the abstracts, including
splitting them into sentences, tokenizing the sentences, and
converting all words to lowercase. Finally, we obtain 110
million sentences with 2.8 billion words from a vocabulary
of size 1.99 million. Following previous works [19], we set the
dimension of word embeddings to 300 and randomly initial-
izedword embeddings ofwords not present in the vocabulary.
For the position embeddings matrixes, we follow [23] to
randomly initialize the position embeddings and determine
the dimension of position embeddings heuristically (finally
set to 10).
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The maximal length of the DDI instances is set to 150,
that is, themaximal length of sentences in the DDIExtraction
2013 corpus. Following [19], we used three kinds of filters
for convolution; that is, 𝑘 is set to 3, 4, and 5 for filter
t ∈ R(𝑑𝑤+2𝑑𝑝)×𝑘, and we used 200 filters of each kind at the
convolutional layer. The dropout rate (𝑝), 𝑙

2
-norm threshold,

and minibatch size are, respectively, set to 0.5, 3, and 50, the
same as [19]. Our CNN-based DDI extraction system will be
released after the publication of this study.

To investigate the effect of different factors, we start
with a baseline system without using position embeddings
and negative instance filtering module and then add them
gradually. We also compare our system with other state-
of-the-art systems. The performances of all DDI extraction
systems aremeasured by precision (𝑃), recall (𝑅), and𝐹-score
(𝐹), which are calculated by the evaluation tool provided by
the 2013 DDIExtraction challenge organizers [30].

3.3. Experimental Results. The overall precision, recall, and
𝐹-score of our system are 75.72%, 64.66%, and 69.75%, as
shown in Table 3, where the best performances are empha-
sized in bold. On the DrugBank subset, our system achieves
an 𝐹-score of 71.52%, which is higher than that on the
MEDLINE subset by 19.40%. Among four types of DDIs, our
system performs best on advice instances and worst on int
instances. The difference between the 𝐹-scores on these two
types of DDIs achieves 31.37% (77.75% versus 46.38%).

Both position embeddings and negative instance filtering
improve the overall performance of the CNN-based DDI
extraction system. The improvements from them are 2.01%
(67.01% versus 65.00%) and 0.62% (65.62% versus 65.00%) in
𝐹-score, respectively. When both of them are added to the
baseline system, the CNN-based system is further improved
by a total increase of 𝐹-score of 4.75% (69.75% versus
65.00%). The system using both position embeddings and
negative instance filtering shows much better performance
than other systems on the DrugBank subset but worse
performance than the system only using negative instance
filtering by 3.05% on the MEDLINE subset. On all the four
types of DDIs except int, the system using both position
embeddings and negative instance filtering achieves better 𝐹-
score than other systems. On int, the baseline system achieves
best performance.

Compared with other state-of-the-art systems, including
the best existing system and all participating systems of the
2013 DDIExtraction challenge (8 systems), our CNN-based
system shows much better performance. It outperforms the
current best system (Kim et al. [12]) by 2.75% and the best
system of the 2013 DDIExtraction challenge (FBK-irst [11])
by 4.65% in 𝐹-score (see Table 4), mainly due to much higher
precision. Top performing systems in Table 4 (e.g., Kim et al.
[12], FBK-irst [11], andWBI [13]) are all based on SVMwith a
large number ofmanually defined features such asword,word
pair, and dependency graph, as mentioned in Section 1.

4. Discussion

In this study, we propose a CNN-based system to extract
DDIs in biomedical texts. To the best of our knowledge, it

is the first time to use CNN for DDI extraction. As shown
in Table 4, our CNN-based system outperforms all existing
systems, most of which are based on SVM with various
features such as syntactic feature [11, 12] and features derived
from external lexical resources [13, 14]. Compared with the
state-of-the-art SVM-based systems, the advantage of our
CNN-based system lies in that it does not use any manually
defined features generated by existing NLP toolkits. The
features used in the CNN-based system (i.e., word embed-
dings and position embeddings automatically learnt during
training) may contain other useful information beyond the
manually defined features. Moreover, they effectively avoid
errors caused by existing NLP toolkits.

Position embedding improves the performance of our
system on the DrugBank subset, but not on the MEDLINE
subset. The main reason is that the position distribution of
words in the DrugBank subset is more similar to that in
the training set than the MEDLINE subset. To prove this
point, we compare the average distance between two drugs of
interest in the training set with that in the two test subsets and
find that the difference between the average distance in the
training set (18.06) and the average distance in the DrugBank
subset (15.07) is much smaller than that between the training
set and the MEDLINE subset (8.55).

The same as previous studies [11, 27], negative instance
filtering is beneficial to our system. The negative instance
filtering module used in our system removes a large number
of negative instances, but almost no positive instances. In the
training set, 11206 out of 23771 negative instances are correctly
filtered out. In the test set, 2698 out of 4737 negative instances
are correctly filtered out, whereas only 7 out of 979 positive
instances are wrongly filtered out. On the whole, more than
50% negative instances are correctly filtered out, but less than
0.2% positive instances are wrongly filtered out.

Our system shows much better performance on the
DrugBank subset compared to the MEDLINE subset. There
may be two reasons: (1) MEDLINE abstracts are usually
written in scientific language. Long and complex sentences
are commonly used in MEDLINE abstracts. In contrast,
sentences in DrugBank are usually short and concise; (2)
samples in the training set from MEDLINE are much less
than DrugBank.

It is easy to understand that our system performs worst
on int instances because of their proportionally small number
among four types of DDI instances. The int instances only
account for 4.7% (189/4021) in the training set. A possible
direction for improvement is to take the imbalanced distri-
butions of different types of instances into account like [31].

Although our system outperforms all other existing
systems, there also are a large number of errors in our system
(listed in Table 5, where the numbers on the two sides of
plus signs are negative instances predicted by the CNNmodel
and negative instance filtering module, resp.). Most of errors
occur between positive instances and negative instances.
277 out of 979 positive instances are wrongly classified into
negative instances (false negative instances). 134 negative
instances are wrongly classified into positive instances (false
positive instances). A small number of errors between four
different types of DDIs (69 out of 979) occur in our system.
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Table 4: Comparison between our CNN-based system and other state-of-the-art systems (%).

Systems DrugBank MEDLINE Overall
𝑃 𝑅 𝐹 𝑃 𝑅 𝐹 𝑃 𝑅 𝐹

Our system 77.02 66.74 71.52 61.43 45.26 52.12 75.72 64.66 69.75
Kim et al. [12] — — 69.80 — — 38.20 — — 67.00
FBK-irst [11] 66.70 68.60 67.60 41.90 37.90 39.80 64.60 65.60 65.10
WBI [13] 65.70 60.90 63.20 45.30 30.50 36.50 64.20 57.90 60.90
UTurku [14] 73.80 53.50 62.00 59.30 16.80 26.20 73.20 49.90 59.40
NIL UCM [15] 56.60 57.90 57.30 35.70 15.80 21.90 55.70 53.80 54.80
UC3M 51.80 59.80 55.50 26.50 28.40 27.40 49.50 56.80 52.90
UWM-TRIADS [16] 45.20 52.40 48.50 31.20 32.60 31.90 43.90 50.50 47.00
SCAI [17] 54.60 40.40 46.40 62.50 31.60 42.00 55.10 39.50 46.00
UColorado SOM [18] 28.80 44.10 34.90 17.30 41.10 24.40 27.20 43.80 33.60

Table 5: Prediction Results of our CNN-based DDI extraction system.

Gold standard annotation Prediction results
Type Total number Mechanism Effect Advice Int Negative
Mechanism 302 190 8 7 0 96 + 1

Effect 360 6 252 3 1 94 + 4

Advice 221 2 1 159 2 55 + 2

Int 96 0 39 0 32 25

Negative 4737 41 67 19 7 1905 + 2698

Among these errors, 39 int instances are wrongly classified
into effect instances, accounting for 56.52%. Reducing errors
between positive instances and negative instances will greatly
improve the CNN-based DDI extraction system, which is
part of our future work.

5. Conclusions

In this paper, we propose a CNN-based method for DDI
extraction. Word embeddings and position embeddings,
which capture the semantic information of words and relative
distances between words and two drugs of interest, respec-
tively, are used to represent DDI instances. Experiments on
the 2013 DDIExtraction challenge corpus demonstrate that
the proposed CNN-based method outperforms other state-
of-the-art methods on DDI extraction. It is the first time to
apply CNN to DDI extraction. In our CNN-based method,
not only word embeddings but also position embeddings are
considered. Both of them do not rely on any existing NLP
toolkits.
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