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In the present article, the synthesis of TiO2/diazonium/graphene oxide and its photocatalytic activity for methylene blue (MB)
degradation have been demonstrated. The functionalization of graphene oxide (GO) with diazonium salt (diazonium-GO) was
conducted for enhancing the dispersibility of GO in distilled water. TiO2 was highly dispersed in diazonium-GO to form
TiO2/diazonium/graphene. The obtained specimens were characterized by X-ray diffraction, FT-IR spectroscopy, Raman
spectroscopy, UV-Vis spectroscopy, scanning electron microscope, transmission electron microscopy, and X-ray photoelectron
spectroscopy. It was found that the TiO2 phase in TiO2/diazonium/GO composites can be controlled by adjusting the amount of
ethanol or titanium oxide in the reactant mixture. The obtained composites exhibited photocatalytic activities for methylene
blue degradation (MB). The composite with ac. 70% anatase can provide the highest MB degradation efficiency. The studying of
some intermediates for MB photocatalytic degradation using LC-MS showed that structure of MB by the cleavage and oxidation
of one or more of the methyl group substituent on the amine groups lead to form compounds with low molecular masses. Total
organic carbon studies confirmed a complete mineralization of MB. The present catalyst was stable and recyclable after three
times with a negligible loss of catalytic activity. In addition, the TiO2/diazonium/GO can also photocatalyze for the degradation
of some other dyes (phenol, methyl red, and Congo red).

1. Introduction

Titanium oxide-based materials in several types and forms
have exhibited excellent potential as powerful photocatalysts
for various reactions thanks to their chemical stability, non-
toxicity, and high reactivity and interesting materials with
nonline optical properties for applications in ultrafast optical

information processing, optical switching, and optical limit-
ing for protection against strong laser radiation [1]. In partic-
ular, titanium oxide has been used for such significant
applications as the solar photons for the photocatalytic
depollution [2], energy conversion [3], and purification of
polluted water and air [4]. It is well known that three poly-
morphs of titania are brokite, anatase, and rutile. Rutile is a
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stable phase while brokite and anatase are metaphases.
Because of the difficulty in the synthesis, the catalytic activity
of brokite is seldom reported. Anatase exhibits higher
catalytic activities compared with those of rutile [5, 6].
However, detailed mechanisms and factors influencing dif-
ferent activities of these polymorphs are controversial.
During the photocatalytic process, the photo-induced elec-
trons and holes are generated because the electrons are
excited from the valence band (VB) of TiO2 to the con-
duction band (CB). The holes and electrons will react with
water and oxygen to form free radicals which can oxidize
and decompose the organic compounds [7]. However, the
fast recombination of excited state CB electrons and VB
holes without initiating the photocatalytic activity limits
TiO2 in catalytic applications. Many approaches of pre-
venting the photo-induced electron-hole recombination
have been reported, such as using TiO2 composites with
transition metal oxides [8, 9], noble metals [10, 11], and
carbon nanotubes (CNT) [12, 13].

Graphene is an interesting material because of its unique
electronic property [14], high mobility and transparency
[15], flexible structure, and high surface area [16]. Graphene
oxide (GO) could be considered as graphene functionalized
by hydroxyl, carboxylic acid, and epoxide groups [17, 18],
and their properties are sensitive to chemical doping,
adsorbed or bound species [19]. Generally, an electron
energy gap could be varied by oxidation of graphene, and
the value of the energy gap depends on oxidization degree
of graphene and species of oxygen-containing groups. It
means that GO could change from conducting to insulating
by tuning the C/O ratios [20, 21].

The combination of TiO2 with GO is considered as the
versatile composite for photocatalyst due to the excellent
absorbability and conductivity of GO. Much attempt on
investigation into the synthesis and application of
TiO2/GO composites as photocatalyst has been reported.
Chen et al. [22] reported the synthesis of visible-light-
driven graphene oxide/TiO2 composites with p/n hetero-
junction from TiCl3 source, and these semiconductors
could be excited by visible light and acted as a sensitizer
in graphene oxide/TiO2 composites. TiO2 nanorods are
self-assembled on the graphene oxide sheets at the water/-
toluene interface [23]. During the preparation of GO–TiO2
composites by sonicating the dispersed TiO2 nanoparticles
and GO in ethanol, Williams et al. [24] found that GO
can be reduced photocatalytically by TiO2 under UV light
irradiation. However, the formation of homogeneous mix-
ture of TiO2 and GO is often a problem because the easy
formation of agglomeration of both titania and GO pre-
vents the effective dispersion of these metal oxide nano-
particles in a GO matrix. In order to overcome this
experimental hinderance, several GO derivatives have been
prepared by grafting new functional groups such as ethyle-
nediamine [25], EDTA [26], and diazonium of sulfanilic
acid [27] through a GO backbone to form the water solu-
ble GO; as a result, nanooxide particles are effectively dis-
persed in a GO matrix. Continuing this idea, in the
present paper, GO was modified by the diazonium salt
of sulfanilic acid prior to dispersion of TiO2 on GO with

an idea to enhancing the possibility of inserting active
oxygen-containing polarization groups between graphite
layer in graphene oxide, which adjusts the semiconductiv-
ity of graphene oxide in the obtained composite. The pho-
tocatalytic activity of the TiO2/diazonium/GO composite
material was evaluated by the degradation of methylene
blue (MB) in the visible light region.

2. Experimental

2.1. Materials. Graphite powder (C, 99%), titanium tetra-
chloride (TiCl4, 99%), potassium permanganate (KMnO4,
99.5%), sodium nitrate (NaNO3, 99%), sulfuric acid
(H2SO4, 98%), and ethanol (C2H5OH, 99.5%) were purchased
from Merck. Hydrogen peroxide (H2O2, 30%), sulfanilic acid
((H2N)C6H4SO3H, 99.8%), ammonia solution (NH4OH,
25%), hydrochloric acid (HCl, 37%), 1,4-benzoquinone
(C6H4O2, ≥99%, BQ), dimethyl sulfoxide ((CH3)2SO, 99.9%,
DMSO), diamonium oxalate ((NH4)2C2O4·H2O), ≥99.5%,
AO), tert-Butanol ((CH3)3COH, ≥99%, TB), and methylene
blue (C16H18N3SCl, MB) were obtained from Sigma-Aldrich.
All chemicals used were of analytical grade and were used as
received without any further purification.

2.2. Synthesis of Graphene Oxide. GO was synthesized by a
modified Hummers’ method [28]. In a typical synthesis,
1.0 g of graphite powder was added into 2.5 g of NaNO3
and 100mL of concentrated H2SO4 under magnetic stirring.
Then, 3.0 g of KMnO4 was slowly added to this mixture at
10°C under stirring for 2 h before adding 100mL of distilled
water and heating up to 98°C under stirring for another 2 h.
After that, 10mL of H2O2 was poured into the mixture with
stirring for 2 h. As the result, the color of the mixture changed
to bright yellow. Finally, the mixture was filtered and washed
with a 5% HCl aqueous solution to remove metal ions,
followed by distilled water for removal of the acid. The
brown-black solid obtained was separated by ultrasonic
treatment in water and then dried at 60°C for 12h.

2.3. Synthesis of TiO2/Diazonium/GO Composites. The prep-
aration of modified graphene oxide was carried out as fol-
lows. Firstly, the diazonium salt was prepared by
dissolving 46mg of sulfanilic acid in 10mL of distilled
water containing 30mg of Na2CO3 in ice bath, then heat-
ing gently for sulfanilic acid to dissolve completely [27].
Next, 18mg of NaNO2 was dissolved into 5mL of distilled
water before being added to the prepared sulfanilic acid
solution. A 1N HCl solution (2.4mL) was added dropwise
to the above mixture and stirred to obtain diazotized sul-
fanilic acid. Next, 75mg of GO was added to the diazo-
nium solution and stirred continuously for 2 hours. The
solid was separated by filtering and drying. The samples
were diazotized sulfanilic acid-GO (denoted as Dia-GO).
Sulfanilic acid contains a sulfo group (SO3H) and an
amino group (NH2). The amino group can react with cold
nitrous acid to produce diazotized sulfanilic acid which
can be used to synthesize the sulfonated graphene oxide
composite.
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The reactions are assumed as follows:

2HO3S

+NaO3S−

+

0-5 °C 2 +NaO3S−
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NH2 + NaNO2 + 2HC1 N + 2NH2O + 2NaC1

N GO
+
N

+
N

N + GO

NH2 + CO2 + N2ONH2 + Na2 CO3

The composite of TiO2/Dia-GO was prepared as
described elsewhere [29]. Firstly, the effect of TiCl4 con-
centration on the phase formation of TiO2 phases was
studied. 15mg of Dia-GO was dissolved in 120mL solvent
(40mL ethanol/80mL distilled water) under ultrasonica-
tion for 2 hours. The mixture was cooled down at 0-5°C.
Then, 2mL TiCl4 was added slowly at different concentra-
tion to Dia-GO suspension under vigorous stirring to
obtain the brown suspension. The resulting suspension
was added to an autoclave at 180°C for 12 hours. The
obtained solid was separated by filter and washed by dis-
tilled water for several times and then dried at 60°C for
6 hours. The obtained samples are denoted as Tx-y/Dia-
GO: T0.05-40/Dia-GO, T0.15-40/Dia-GO, T0.45-40/Dia-
GO, and T1.35-40/Dia-GO with the symbol of x = 0:05,
0.15, 0.45, and 1.35 representing the concentration in mole
of titanium chloride and y of 40 representing the mL eth-
anol in 120mL mixture. Subsequently, the effect of etha-
nol/water ratio (v/v) used for the hydrolysis on the
titania phases was investigated. The procedure was
similar to the one mentioned above but only 120mL mix-
ture with the amount of ethanol differed from 20 to
120mL. The sample as denoted as T0.05-20/Dia-GO,
T0.05-40/Dia-GO, T0.05-60/Dia-GO, T0.05-80/Dia-GO,
T0.05-100/Dia-GO, and T0.05-120/Dia-GO corresponding
to the ethanol/distilled water (v/v) being 20/100, 40/80,
60/60, 80/40, 100/20, and 120/0.

2.4. Characterization of Materials. The X-ray diffraction
(XRD) data of all samples were collected in a D8
Advanced Bruker anode X-ray Diffractometer with Cu
Kα. The quantitative analysis of mixture of anatase-rutile
was performed using the XRD method as previously pro-
posed [30]. Particle diameters smaller 5 microns are desir-
able to ensure adequate reproducibility of diffraction
intensity measurement.

XR =
1

1 + 0:8 IA/IRð Þ ⋅ 100%,

XA =
1

1 + 1:26 IR/IAð Þ ⋅ 100%,
ð1Þ

where IA and IB, respectively, are the intensity of diffrac-
tion at (110) for rutile phase and (101) for anatase phase;
XR and XA are the percentage of rutile and anatase,
respectively; the experimental parameters of 0.80 and
1.26 are obtained from the regression of the relative given
amount of anatase and rutile versus IR/IA.

Transmission electron microscope (TEM) images were
obtained by JEOL JEM-2100F. FT-Infrared (IR) spectra for

the samples were recorded on an IR Prestige-21 spectropho-
tometer (Shimadzu). X-ray photoelectron spectrometry
(XPS) was used for surface analysis with an ESCALAB 250
(Thermo VG, UK) spectrometer with X-ray source mono-
chromated Al Kα radiation (1486.6 eV). DRS-UV-Vis
spectra were recorded with Jasco-V670 instrument. The
measurement of photoluminescence (PL) was conducted by
means of a spectrometer Horiba Jobin-Yvon HR800 LabRam
using UV excitation. The identification of MB degradation
was performed using a liquid chromatography-mass spec-
trometry (LC-MS) method (Ultimate 3000 plus, Hypersil
GOLD C18 (150 × 2:1 mm, 2.0μm), Thermo, MA, USA).

2.5. Photocatalytic Activity. In this study, the photocatalytic
activities of obtained materials were investigated via the
degradation of methylene blue (MB) in an aqueous solu-
tion under the irradiation of 75W-220V filament lamps
(Dien Quang) with a UV cut off filter (λ < 390 nm, d =
77 mm).

The experiments were carried out with a 500mL dye
solution at various concentrations containing 100mg of cat-
alyst. The mixture was stirred continuously for 2 hours in the
dark to establish an adsorption-desorption equilibrium
before turning on the lamp. Three millites of solution were
withdrawn after a certain time and centrifuged to remove
the solid. The concentration of MB in solution was deter-
mined by its absorption at λ max = 664 nm. Each experi-
ment was in triplicate.

The performance of MB mineralization was calculated
based on TOC (total organic carbon) measurements from

M = 100 × TOC0 – TOCt

TOC0
, ð2Þ

where TOC0 and TOCt are the MB concentrations at the ini-
tial and time t of the reaction, respectively. The concentration
of TOC was determined using a TOC analyzer (model: Multi
N/C®2100 S, Analytik Jena, Germany).
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Figure 1: X-ray diffraction patterns for GO (a), Dia-GO (b), and the
inset present the XRD pattern of graphite.
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3. Results and Discussion

3.1. Characterization of Materials

3.1.1. Preparation of Diazonium/GO (Dia-GO). Figure 1 pre-
sents XRD patterns of graphite, GO, and Dia-GO. The sharp
peak around 26.5° is characteristic of graphite [31] (the inset
of Figure 1). The peak at around 11.4° of GO can be attrib-
uted to the introduction of oxygen-containing functional
groups into the graphite sheets to form of graphene oxide
[32]. These functional groups, especially the -SO3H group
between the layers of GO, interact strongly with polarizing
groups on GO, leading to a shift of a 2θ angle to the smaller
value in GO [33, 34], resulting in an increase in dspacing from
7.82 Å for GO to 8.11Å for Dia-GO (Figures 1(a) and 1(b)).
The similar results have been also obtained in the reported
papers [34–36] in which GO is chemically functionalized
with diazonium of sulfanilic acid.

From Figure 2, it can be seen that the GO shows charac-
teristic bands of oxygen-containing functional group vibra-
tions: hydroxyl group (-OH) over the range of 3400-
3500 cm-1, C=O vibration (-COOH) at 1636-1700 cm-1, and
C-O vibration at 1229 cm-1 and 1060 cm-1 [37–39]. In addi-
tion, there are also characteristic peaks for the oscillation of

the O=S=O (group -SO3H) bond at 1620-1650 cm-1,
1400 cm-1, and 1100 cm-1 [40–43] in Dia-GO. These results
confirmed the formation of diazonium/graphene oxide.

3.1.2. The Preparation of TiO2/Diazonium/GO. The effect of
TiCl4 concentration on the phase formation of TiO2 was
investigated by XRD studies (Figure 3).

It can be seen that the obtained samples all exhibit char-
acteristic diffraction peaks of titanium oxide. As seen in
Figure 3, the formation of titanium oxide phases (rutile or
anatase) depended on titanium chloride concentration. The
rutile phase was formed primarily as the titanium chloride
concentration was high. T1.35-40/Dia-GO composed of
mainly rutile phase with characteristic peaks at 2θ angles of
27.4°, 36.1°, and 41.3° indexed as (110), (101), and (111),
respectively (JCPDS: No 21-1276), whereas anatase phase
increased with a decrease in titanium chloride concentration.
The characteristic peaks with increasing intensity of anatase
phase were observed at angles 2θ of 25.5°, 37°, 53.9°, 56.5°,
and 62.5° indexed as (101), (004), (200), (105), and (211),
respectively (JCPDS: No 21-1272). Primary estimation of
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Figure 2: FTIR spectra of GO (a), Dia-GO (b).
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Figure 3: XRD patterns of TiO2/Dia-GO samples.
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Figure 4: X-ray diffraction patterns for T0.05-y/Dia-GO samples
(y = 20, 40, 60, 80, 100, and 120mL ethanol).

Table 1: Phase composition and methylene blue conversion (%) of
TiO2/Dia-GO composites (C0,MB = 100mg/L, V = 100mL, mCat =
100mg, and time = 120 min).

Notation
Phase

composition (%) MB conversion (%)
Anatase Rutile

T1.35-40/Dia-GO 0 100 23.41

T0.45-40/Dia-GO 0 100 24.84

T0.15-40/Dia-GO 15.25 84.75 45.28

T0.05-40/Dia-GO 40.25 59.75 48.73

T0.05-60/Dia-GO 58.89 41.11 54.23

T0.05-80/Dia-GO 62.19 37.81 57.05

T0.05-100/Dia-GO 73.45 26.55 69.82

T0.05-120/Dia-GO 100 0 63.55
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catalytic activity for the obtained composite revealed that the
use of T0.05-40/Dia-GO led to the highest yield of MB degra-
dation. Therefore, T0.05-40/Dia-GO was selected to further

study the effect of ethanol/distilled water ratio on the forma-
tion of titanium oxide.

The composition of titanium oxide depends not only on
titanium chloride concentration but also on the amount of
ethanol used in the hydrolysis step. Figure 4 shows XRD pat-
terns of T0.05-y/Dia-GO composite materials synthesized at
various amounts of ethanol y (y: 20-120mL of ethanol used).

For T0.05-120/Dia-GO, TiO2 phase existed mainly in
anatase form with the characteristic diffraction peaks at 2θ
angle of 25.5° with high intensity. The intensity of this char-
acteristic peak decreased with the decrease of ethanol/dis-
tilled water ratio. Meanwhile, the intensity of characteristic
diffractions at 27.4° and 36.1° for rutile increased significantly
with the decrease of the ethanol/distilled ratio. The quan-
titative analysis of titanium oxide phase showed that when
the amount of ethanol increased from 20mL to 120mL,
the anatase TiO2 phase composition increased from
15.25% to 100%, corresponding to the reduction of rutile
phase composition from 84.75% to 0%. Thus, in the sam-
ples of synthetic materials, titanium oxide existed in both
forms, anatase and rutile.

The results of photocatalytic activity of TiO2/Dia-GO
nanocomposite are listed in Table 1. It can be seen that

(a)

Map sum spectrum

(b)

Figure 5: (a) TEM observation and (b) EDX spectrum of T0.05-100/Dia-GO.
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Figure 6: The nitrogen adsorption/desorption isotherms of T0.05-
100/Dia-GO.
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photocatalytic activity depended significantly on titania
phase composition. Composite with 100% TiO2 in rutile
phase exhibited the lowest photocatalytic activity onMB deg-
radation (around 23.4%). The photocatalytic activity
increased with an increase in the amount of anatase phase.
The MB degradation efficiency peaked at 69.8% as the ana-
tase phase growed to around 73.4% (corresponding to
T0.05-100/Dia-GO) before slightly reducing when the
amount of anatase phase kept increasing. It is well-known
that anatase has lower absorbance ability towards visible light
than rutile due to the larger band gap (3.2 eV) than that
(3.0 eV) of rutile. However, its indirect band gap provides a
longer lifetime of photoinduced electron/hole pairs than
direct band gap in rutile because the direct recombination
of photoexcited electrons from the conduction band to
valence band of anatase TiO2 is impossible [6]. The mixture
with an appropriate ratio of anatase and rutile should provide
the more superior photocatalytic activity than that of individ-
ual rutile or anatase. Then, T0.05-100/Dia-GO was selected
for further experiments.

The morphologies of T0.05-100/Dia-GO observed by
TEM are shown in Figure 5. The TiO2 nanoparticles were
dispersed highly over the Dia-GO sheet with an average par-
ticle size of 5-15 nm (Figure 5(a)). The crystallite size of
11.7 nm obtained by Debye-Scherrer analysis at (101) diffrac-
tion is close to the average size of TiO2 particles observed by
TEM indicated that the morphology of T0.05-100/Dia-GO
consists of single crystals of TiO2 highly dispersed on Dia-
GO. Elemental analysis for composite surface showed that
T0.05-100/Dia-GO consisted of N, S, and Ti (Figure 5(b))
as an additional evidence of the successful synthesis of the
composite of TiO2/diazonium/GO.

Based on the band theory of semiconductors, the con-
duction band (CB) of TiO2 is mainly determined by the Ti
3d orbital energy levels, while the valence band (VB) is
mainly formed from the O2p orbitals. As compared to
the O2p orbital, other nonmetal elements such as N and
S, P possess 2p orbitals locating at more negative energy
levels; hence, the partial substitution of the impurity dop-
ants N and S will result in the formation of new energy
bands above the TiO2 valence band, thus providing the
photocatalytic activity over the visible light region of
TiO2 [44].

The textural property of the obtained composite was
estimated by means of the nitrogen adsorption/desorption
isotherms (Figure 6). The isotherm curve is the type IV
and H3 according to IUPAC classification. The hysteresis
loop at the high relative pressure in the range of 0.5 to
0.9 indicated the existence of micromesoposity. The spe-
cific surface area of materials based on BET calculation
was 152 m2·g-1.

DRS-UV-Vis spectra of TiO2/GO (1), Dia-GO (2), and
T0.05-100/Dia-GO (3) are presented in Figure 7(a). Bulk
TiO2 is considered as an indirect semiconductor [45]. In
nanoparticles, the lattice periodicity is lost over a length-
scale comparable to the nanoparticle size so the effective-
ness of this selection rule breaks down and direct transi-
tions can actually be expected to take place [46, 47]. We
used the classical relation near the band-edge optical
absorption in a semiconductor to calculate the energy of
band-band transition

α =
A hν − Eg
� �n

hν
, ð3Þ

where α is the absorption coefficient, Eg is the energy gap,
hν is the photon energy, and n is equal to 1/2 for direct
transitions and 2 for indirect ones. The Eg value can be

calculated from the linear plot of ðαhνÞ1/n or ðαhνÞ2vs. h
ν by extrapolating at zero the linear portion near the
band-edge. (Figures 7(b) and 7(c)). Both types of plots
exhibit the highly linearity with R2 = 0:97 – 0:99 indicating
direct or indirect transition that likely occur. The value for
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Figure 7: (a) DRS-UV-Vis spectra of TiO2/GO (1), Dia-GO (2), and T0.05-100/Dia-GO (3); (b) Tauc’s plots of (αhν)1/2 vs. hν and (c) of
(αhν)2 vs. hν for TiO2/GO (1), Dia-GO (2), and T0.05-100/Dia-GO (3).

Table 2: Eg values for direct and indirect transitions of the
investigated samples.

Sample Eg (indirect) (eV) Eg (direct) (eV)

TiO2/GO 2.71 3.15

Dia-GO 2.62 3.12

T0.05-100/Dia-GO 2.35 3.09
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types of band gap energy is listed in Table 2. It is obvious
that the value of indirect band energy tends to be lower
than direct band energy that is similar to some previous
reports [45, 46]. It is found that the indirect band gap
energy decreased in the order TiO2/GO (2.71 eV)>Dia-
GO (2.62 eV)>T0.05-100/Dia-GO (2.35 eV) and these
TiO2-based materials exhibit the indirect band gap energy
smaller than that of pure TiO2 (3-3.2 eV) [45–47]. The
absorption edge shifts towards a visible region due to the
possible interaction of between TiO2 and modifiers (N
and S). This shift is assigned to the generation of interme-
diate gap energy levels near the valence band of titania.
Consequently, narrowing the band gap energy and mini-
mizing the recombination of photoexited electron/hole
pairs are considered for the obtained composite T0.05-
100/Dia-GO.

Raman spectroscopy is a useful approach for the
characterization of the physicochemical properties of
graphene-based composites. It is known that in Raman
spectroscopy, the G band is assigned to the first-order
scattering of the sp2 C atoms (∼1600 cm−1), and the D
band is attributed to a breathing mode of k-point pho-
tons (∼1300 cm−1). At the same time, an increase in ID/
IG ratio arises from a lower degree of crystallinity in
the graphitic structure. Two bands in the Raman spectra
of GO and T0.05-100/Dia-GO located at approximately
1300 and 1600 cm−1 attributed to the D band and G
band, respectively (Figure 8(a)). The ID/IG ratio increased
from 1.42 for GO to 1.45 for T0.05-100/Dia-GO suggest-
ing a decrease in the size of the in-plane sp2 domains
and the partially ordered crystal structure of graphene
oxide. These results provided more evidence for the insert
of titania and diazonium salt into graphene oxide.

PL spectra of obtained samples are shown in
Figure 8(b). It can be seen that the luminescent intensity
of rutile was the highest, followed by anatase, Dia-GO,
and TiO2/GO, and the lowest one belonged to T0.05-
100/Dia-GO. It is well known that low PL intensity means

low recombination of electron and holes; then, the oppo-
site would be high PL intensity would increase recombina-
tion rate and reduce photocatalytic activity. These results
demonstrate that the dispersion of TiO2 on graphene
reduces the recombination of photonic electrons and pho-
togenic holes, which may increase the photocatalytic activ-
ity of the material.

Figure 9(a) shows the XPS spectrum of T0.05-100/Dia-
GO composite, indicating the presence of the four main ele-
ments at 162, 284.6, 529.8, and 458.6 eV corresponding to
sulfur (S2p), carbon (C1s), oxygen (O1s), and titanium
(Ti2p), respectively. Figure 9(b) shows the XPS Ti2p core
level. It can be seen that characteristic peaks are at around
457.6 eV for Ti2p3/2 and 463.4 eV for Ti2p1/2, indicating a
successful loading of Ti on the surface of GO [5, 48].
Figure 9(c) represents the S2p doublet core peak locating at
160.8-169 eV, associated with a sulfonate type [49]. N1s spec-
trum is shown in Figure 9(d). The binding energy of around
399.6 eV can be assigned to tertiary amine [50]. The C1s
spectrum of GO in Figure 9(e) can be deconvoluted into
three peaks at 284.6, 286.7, and 288.5 eV, respectively. Two
main peaks at 284.6 and 286.7 eV are usually attributed
to adventitious carbon and graphitic carbon from GO,
and hydroxyl carbon (C-OH), respectively [51]. The
other peak at 288.5 eV can be assigned to carboxyl car-
bon (O-C=O) [51].

3.2. Photocatalytic Performance of TiO2/Diazonium/GO
Composites for MB Degradation in a Visible-Light Region

3.2.1. Leaching Experiment. The kinetics of decolorization
of MB in several conditions are shown in Figure 10. It
was found that the decolorization of MB was not observed
if visible light was irradiated in the absence of T0.05-
100/Dia-GO suggesting that MB was stable and did not
undergo photolysis. A leaching experiment was also con-
ducted in which the T0.05-100/Dia-GO was filtered by
centrifugation after 60min. of irradiation. The MB
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decolorization was quenched even when the light was still
irradiated. This indicates that there was no leaching of the
active species into the reaction solution from the heteroge-
neous catalyst. The above experimental results confirmed
that T0.05-100/Dia-GO acted as a heterogeneous catalyst
in the degradation reaction of MB.

Figure 11(a) presents the adsorption kinetics and
photocatalytic decolorization of MB on TiO2/Dia-GO
catalyst. This catalyst presented a low adsorption capac-
ity of MB. The adsorption was saturated from 100min
to 120min depending on the initial MB concentration.
In this study, the light illumination was carried out only

when the dark adsorption reached adsorption/desorption
equilibrium.

3.2.2. Adsorption Isotherm. The equilibrium adsorption
capacity, qe, can be expressed as follows:

qe =
V ⋅ C0 − Ceð Þ

m
, ð4Þ

where C0 and Ce are the MB concentration at initial and
equilibrium time (mg·L-1); V is the volume of the MB solu-
tion (L); m is the mass of catalyst (g).
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The relationship between Ce and qe is expressed by the
Langmuir isothermmodel as equation (5) and the Freundlich
model as equation (6):

qe =
ΚL ⋅ qm ⋅ Ce
1 + KL ⋅ Ce

, ð5Þ

qe = KF ⋅ C
1/n
e , ð6Þ

where qm is the maximum monolayer adsorption
capacity (mg·L-1); KL is the Langmuir adsorption equi-
librium constant (mg-1·L); KF and n are Freundlich
parameters.

The calculated parameters can be obtained from
nonlinear regression of equations (5) and (6) and are
listed in Table 3. A high determination coefficient
(R2 = 0:99) for Langmuir model and Freundlich model
indicated that the equilibrium data was well fitted in
both models. It implies a monolayer adsorption and
the existence of heterogeneous surface in the
adsorbents.

3.3. Decomposition Kinetics. Based on the Langmuir-
Hinshelwood model, the overall reaction could be illustrated
as follows:

T0:05 − 100/GO −Dia +MB ⇄
k1

k−1
T0:05 − 100/GO −Dia⋯MBð Þ∗

!k2 degradation products
ð7Þ

where k1 and k–1 are the forward/back adsorption rate con-
stant, respectively; k2 is the kinetic rate coefficient of the deg-
radation process.

The law rate is expressed as follows:

r = −
dC
dt

= kMLH ⋅ θ, ð8Þ

where C is the dye concentration (mg·L−1) at time t; kMLH is
the kinetic rate coefficient (mg·L−1·min−1); θ is the fraction of
the surface covered by MB. θ is expressed in the Langmuir
model as [37]

θ =
ΚL ⋅ C

1 + KL ⋅ C
: ð9Þ

Substituting (8) to (6) gives

dC
dt

= −kMLH ⋅
KL ⋅ C

1 + KL ⋅ C
: ð10Þ

Then,

ð 1 + KL ⋅ C
KL ⋅ C

⋅ dC = −
ð
kMLH ⋅ dt: ð11Þ

Integrating equation (11) with the boundary conditions
t⟶ 0 and C⟶ C0e gives

1
KL

⋅ ln C + C = −kMLH ⋅ t + I0, ð12Þ

when t = 0, then

I0 =
1
KL

⋅ ln C0e + C0e: ð13Þ

Substituting (13) into (12) gives

1
KL

⋅ ln C + C = −kMLH ⋅ t +
1
KL

⋅ ln C0e + C0e, ð14Þ

where C0e (mg·L−1) is the equilibrium concentration of
adsorbate at time t (min) taken from light illumination.

The plot of the (ð1/KÞ ln C + C) against t gives a straight
line with slope kMLH (Figure 11(b)).

For the kinetics of unimolecular reaction on heteroge-
neous catalyst the Langmuir-Hinshelwood model is widely
used. In this study, the Langmuir-Hinshelwood was also
applied to calculate the kinetic data for the sake of compari-
son. This model is as follows:

ln
Ct

C0
= −kLH ⋅ t, ð15Þ

where kLH is the rate constant of the degradation process
(min−1); C0 and Ct are MB initial concentration and concen-
tration at time t (mg·L−1).

The values of kMHL at different initial MB concentrations
for both models are listed in Table 4.

The determination coefficients of the straight lines
derived from the modified Langmuir-Hinshelwood model
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are significantly higher than those of the conventional
Langmuir-Hinshelwood model, demonstrating that the pro-
posed modified Langmuir-Hinshelwood model fitted better
for the experimental data. The comparison of rate constant
calculated by the Langmuir-Hinshelwood model of the pres-
ent catalyst with published literature is listed in Table 5. The
results show that the photocatalytic activity of TiO2/diazo-
nium/GO was relatively high compared with previous
reports.

3.3.1. The Proposed Mechanism of MB Degradation.
Figure 12 presents the UV-Vis spectra of MB solution at dif-
ferent reaction time.

The MB solution after 30 minutes of photocatalytic oxi-
dation were analyzed by mass spectroscopic LC-MS studies
(see Figures S1, 2, 3, 4, and 5). The finding showed that the
intermediates with the retention time of 1.88, 1.90, 1.93,
2.13, and 2.21 have m/z, respectively, 91.00259, 153.06585,
139.05020, 103.07536, and 167.08150. The molecular
formulae were HOOC-COOH, CH3-CH2-CH2-CH2-
COOH, H2N-C6H4-O-N=O, CH3-HN-C6H4-O-N=O, and
(CH3)2N-C6H4-O-N=O (see Schemes S1, 2, 3, 4, and 5).
These results indicate that phenothiazine structure and
benzene were possibly attacked by the hydroxyl or
superoxide radicals which were formed with the presence of

photoinduced hole/electron pairs. As the results, they
were oxidized and opened the ring to form the
intermediates during photocatalytic oxidation. The time
dependence of the total organic carbon (TOC) in MB
solution during photocatalytic degradation is presented in
Figure 12 showing that the TOC value reduced with an
increase in irradiation time (13.12mg·L-1 for initial time
and 0.67mg·L-1 for 600min. of photocatalytic degradation).
TOC reduced to 95% after 600 minutes which implied that
almost all MB is mineralized.

It is well known that the mechanism of photocatalytic
reaction in the intermediate phase involves the formation of
free radicals, the photoluminescent electrons, and the clear
optical holes [60]. In order to understand the mechanism of
the reaction, the effect of some quenchers during the catalyst
degradation of MB was investigated. In this work, we used
benzoquinone (BQ) as a quenching agent for ⋅O-2, ammo-
nium oxalate (AO) as the optical h+ hole scavenger, tert-
Butanol (TB) to quench ⋅OH, and dimethyl sulfoxide
(DMSO) to quench electron, e-. The solution was quenched
with an initial concentration of quencher of 1mM, for an ini-
tial TB concentration of 10mM. The results are presented in
Figure 13.

The research results showed that the presence of a
quencher reduced the optical decomposition efficiency of
MB compared to the nonquenching system (WQ). The
most obvious effect was DMSO where the degradation effi-
ciency only decreased to 18%, followed by AO with a
decrease to 37% and then BQ with a drop in the efficiency
to 42%. Meanwhile, TB scavenger did not show significant
effect on the degradation efficiency. From the contents dis-
cussed above, it can be concluded that the original

0 60 120 180 240 300 360 420

0

20

40

60

80

100

Time (min)

Photocatalytic degradation

Dark adsorption

C
 (m

g·
L−

1 )

C0e

20 mg/L
40 mg/L
60 mg/L

80 mg/L
100 mg/L

(a)

0 50 100 150
Time (min)

200 250 300

80

100

120

140

160

180

200

220

240

260

(I
nC

)/
K

L
+
C

y = - 0.1205x + 115.10369, R2 = 0.99 20

y = - 0.1797x + 157.85109, R2 = 0.99 40

y = - 0.2419x + 190.67130, R2 = 0.98 60

y = - 0.3096x + 217.98471, R2 = 0.99 80

y = - 0.4106x + 244.20044, R2 = 0.99 100

(b)

Figure 11: (a) The adsorption and photodegradation kinetics of MB on T0.05-100/Dia-GO catalyst; (b) the plots of the ð1/KÞ ln C + C against
t different initial MB concentration.

Table 3: The parameters of Langmuir and Freundlich model.

Langmuir model Freundlich model
KL (L·mg-1) qm (mg·g-1) R2 KF N R2

3.2.10-2 138.12 0.99 5.837 1.35 0.99
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superoxide anion (⋅O-2), photogenic electrons, e-, and
photogenic holes, h+, all contribute to the MB decomposi-
tion process. Among the three determinants of the photo-
catalytic process performance of the study material are
photoluminescence and photonic hole, the most important
is the presence of photogenic electrons.

Table 4: The value of kMLH and kLH at different initial MB concentration over T0.05-100/Dia-GO.

Concentration (mg·L−1) Modified Langmuir-Hinshelwood model Langmuir-Hinshelwood model
kMLH (mg·L−1·min–1) R2 kLH (min-1) R2

20 0.121 0.99 0.160 0.98

40 0.180 0.99 0.019 0.97

60 0.242 0.99 0.207 9.96

80 0.310 1 0.235 0.97

100 0.411 1 0.289 0.98

Table 5: Comparison of rate constant of the present catalyst with published literature.

Catalyst
BET-specific

surface area (m2·g-1)
Light source
(nm, powder)

C0 (mg·L-1)/volume
(mL)/mcatalyst (mg)

kLH
(min-1)

References

ZnO 8.21 UV, 20W 10/100/50 0.022 [52]

ZnO/graphene oxide 31.58 UV, 20W 10/100/50 0.098 [52]

Pristine TiO2 (P25) — 254, 11W 10/100/50 0.009 [53]

Graphene-like carbon/TiO2 — 254, 11W 10/100/50 0.248 [53]

Pristine TiO2 (P25) 51 ≤370, 18W 9.60/100/50 0.050 [54]

Sm-TiO2 46 370, 18W 9.60/100/50 0.030 [54]

Ce-TiO2 46 370, 18W 9.60/100/50 0.025 [55]

TiO2 50 340, 125W 23/2750/375 0.025 [56]

CdS 111.2 >420, 500w 25/200/80 0.008 [56]

g-C3N4 9.8 >420, 500w 25/200/80 0.004 [56]

g-C3N4-CdS 166.5 >420, 500w 25/200/80 0.012 [56]

Ag/ZnO — >570, (high pressure sodium lamp) 5/-/150 0.005 [57]

Ta-ZnO 36 >420, 300 10/50/50 0.040 [58]

Eu-TiO2 — (400-800 nm), 60W, halogen lamp 3.19/100/100 0.008 [59]

TiO2/diazonium/GO 151.4 75W - 220V 20/100/100 0.160 The present work
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Proposed mechanism for the degradation of MB under
visible light-illumination in the presence of the TiO2/Dia-
GO photocatalyst is as follows:

TiO2/Dia −GO + hv⟶Dia/GO e−CBð Þ + TiO2 h+VB
� �

Dia/GO e−CBð Þ +O2 ⟶Dia/GO + •O−
2 ⟶Dia/GO + •OH

TiO2 e−CBð Þ +O2 ⟶ TiO2 + •O−
2 ⟶ TiO2 + •OH

TiO2 h+VB
� �

+OH− ⟶ •OH + TiO2

•O−
2, •OH, e−CB, h

+
VB +MB⟶Degradation products

ð16Þ

3.3.2. Recyclability. The T0.05-100/Dia-GO catalyst was
reused for several times. After each run, it was separated by
centrifugation, then washed with water and ethanol for three
times to remove any dye residual, and finally dried at 120°C
for 15h. The photocatalytic degradation efficiency of T0.05-
100/Dia-GO decreased from 100% to 92.72% after three
cycles (Figure 14(a)). The XRD patterns of the recycled
TiO2/Dia-GO samples stayed unaltered; therefore, it can be
inferred that TiO2/Dia-GO remained stable during photocat-
alytic degradation reactions (Figure 14(b)).

In addition, the obtained catalyst manifested excellent
photocatalytic degradation of several other dyes, including
phenol, methyl orange, and Congo red. As can be seen in
Figure 15, T0.05-100/Dia-GO composite exhibited superior
visible-light-responsive photocatalytic degradation of MB
compared with single TiO2 and TiO2/GO.

4. Conclusion

The synthesis of TiO2/diazonium/GO and an application to
MB photocatalytic degradation in a visible region have been
studied. Rutile or anatase phase in TiO2/diazonium/GO
composites can be controlled by adjusting the amount of
TiCl4 in the reaction mixture or ethanol/water ratio for
hydrolysis. TiO2/diazonium/GO with ac. 70% anatase in tita-
nia phase provided the highest MB degradation efficiency.

The photocatalytic oxidation exhibited a complete decompo-
sition of MB by the cleavage and oxidation of one or more of
the methyl substituents on the amine groups. We have pro-
posed a kinetic model by the combination of classical
Langmuir-Hinshelwood kinetic model and Langmuir iso-
therm model. The experimental data fit well the proposed
model. In addition, TiO2/diazonium/GO composite can cat-
alyze for photodegradation of several dyes such as phenol,
Congo red, and methyl red. The present catalyst with its sta-
bility and recyclable advantages is promising for application
in the treatment of dye wastes.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.
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Supplementary Materials

The liquid chromatography-mass spectroscopy (LC-MS)
analysis of the methylene blue (MB) solution recorded
after 30min of photocatalytic treatment is presented in
Figure 1–5S. This experimental data implies that at the
end of 30min irradiation, the reaction solution was signif-
icantly decolorized or degraded. This is evident by the
decrease in the MB peak intensity and the appearance of
new peaks detected at lower retention times which corre-
spond to new photocatalytic products of the dye. The find-
ing showed that the intermediates with the retention time
of 1.88, 1.90, 1.93, 2.13, and 2.21 have m/z, respectively,
91.00259, 153.06585, 139.05020, 103.07536, and
167.08150. The molecular formulae were HOOC-COOH,
CH3-HN-C6H4-O-N=O, H2N-C6H4-O-N=O, CH3-CH2-
CH2-CH2-COOH, and (CH3)2N-C6H4-O-N=O (Schemes
1, 2, 3, 4, and 5S). The proposed mass spectrometry frag-
mentation mechanism for the compound at retention time
of 1.88min is shown in Scheme 1S. This compound has
a formula that could be HOOC-COOH. The proposed
mass spectrometry fragmentation mechanisms for the
compound at retention time of 1.9min. The possible for-
mula is CH3-HN-C6H4-O-N=O. The proposed mass
spectrometry fragmentation mechanisms for the com-
pound at retention time of 1.93min is shown in Scheme
3S. The possible formula of this compound is H2N-
C6H4-O-N=O. The proposed mass spectrometry frag-
mentation mechanisms for the compound at retention
time of 2.13min is shown in Scheme 4S. Its formula
could be CH3-CH2-CH2-CH2-COOH. The proposed
mass spectrometry fragmentation mechanisms for the
compound at retention time of 2.21min. is shown in
Scheme 5S. This possible formula is (CH3)2NC6H4-O-
N=O. (Supplementary Materials)
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