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ABSTRACT

A well-known result of Ahlswede asserts that the deterministic code capacity of an ar-
bitrarily varying channel (AVC), under the average error probability criterion, either equals
its random code capacity or else is zero. In this paper, we identify a necessary and sufficient
condition for deciding between these alternatives, namely, the capacity is zero if and only if
the AVC is symmetrizable. We also determine the capacity of the AVC with constraints on
the transmitted codewords as well as on the channel state sequences, and demonstrate that it
may be positive but less than the corresponding random code capacity. A special case of our

results resolves a weakened version of a fundamental problem of coding theory.
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1. Introduction

Arbitrarily varying channels (AVCs) were introduced by Blackwell, Breiman and
Thomasian [3] to model communication channels with unknown parameters which may vary
with time in an arbitrary and unknown manner during the transmission of a codeword. For-
mally, a (discrete memoryless) AVC is determined by a family {W(- | -,5),s¢S} of channels
with (finite) input alphabet X and (finite) output alphabet Y, the individual channels in this
family being identified by an index seS called the state. Thus, W(y | z,s) is the probability
that yel is received given that zeX is transmitted and se$ is the state of the channel. We will
assume that the set § of possible states is also finite. For length-n sequences, the probability of
receiving ¥y = (¥1,...,Yn)€Y™, when x = (21,...,2,)€X™ is transmitted and 8 = (sy,...,8,)eS™

is the channel state sequence, is defined as

W™y | x,8) = f_[ W yk | zk, 8k). (1.1)
k=1

Arbitrarily varying channels afford a wide variety of challenging problems to information
theorists. The coding problems for the AVC vary according to the kinds of permissible coding
strategies and the nature of the performance criteria. Some of these problems are extremely
difficult. For instance, Shannon’s famous zero-error problem (11}, as observed by Ahlswede [1],
is a special case of an AVC-capacity problem. The same is true of the fundamental problem of
coding theory concerning the largest possible rate of binary codes capable of correcting a fixed
fraction of bit errors, as will be indicated in this paper. For a summary of the work on AVCs
and for basic results, we refer the reader to Ahlswede [2], Wolfowitz [12], and Csiszdr-Korner

[4]; much of our terminology is adopted from Csiszdr-Korner [4].

In a previous paper (Csiszdr-Narayan [7]), we had investigated the effects of various types
of constraints on the transmitted or state sequences, on the capacity of an AVC. The code was
not permitted to depend on the states (i.e., both the encoder and decoder were completely
ignorant of the actual state sequence); however, random codes (i.e., correlated randomization
in encoding and decoding) were permitted. Here, we dispense with the last assumption and
determine the capacity of the AVC for determinsstic codes using, as the performance criterion,

the average probability of error. In doing so, we consider constraints on individual sequences,
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for having solved this case, other types of constraints can be treated as in [7]. The capacity
considered in this paper is called the a-capacity in [4], as distinct from the capacity for the
maximum probability of error performance criterion, called the m-capacity. It is a well-known
fact for an AVC that, unlike for a simple (discrete memoryless) channel, these two kinds of
capacity may differ. In particular, the a-capacity may be positive when the m-capacity is
zero. An example due to Ahlswede [2] is the deterministic AVC with X =Y = {0,1,2,},$ =
{0,1},y = z+s mod 3. For notational convenience, we shall use the term “capacity”, without

further specification, as referring to a-capacity.

In the absence of any constraints, a celebrated result of Ahlswede [2] asserts that the
capacity of an AVC either equals its random code capacity or else is zero. Unfortunately,
as Ericson [9] remarks, many AVCs of practical importance are symmetric in the sense that
X =2S8,and W(y| z,2') = W(y| 2, z) for every (z,2',y); such AVCs have capacity equal to
zero. Reasonable models of real communication situations can then be obtained by imposing
constraints on the sequence of channel states, and this may lead to a positive capacity. In
this case, however, the proof technique of Ahlswede [2] does not work. In fact, our results
will demonstrate that the capacity under a state constraint may be posttive but less than the

corresponding random code capacsty.

We first provide a new proof of the basic capacity theorem for the AVC, which also yields,
as a new result, a necessary and sufficient condition for the capacity to be positive. Our proof
employs the method of types, as developed in Csiszdr-Korner [4] (following Csiszér-Korner-
Marton [6]). A good codeword set is identified by plain random selection, using the bounding
technique of Dobrushin-Stambler [8]. The latter, limited by a suboptimal decoding rule, had
determined the capacity of the AVC only under rather restrictive conditions. The main new
idea in this paper consists of a more subtle decoding rule, similar to that in Csiszdr-Kérner
[5], which enables us to bound the error probability as in [5]. The result easily extends to the

case when constraints are imposed on the codeword and state sequences.

Our results are formally stated in section 2 and proved in section 3. Readers not interested
in the details of proofs are advised to proceed from section 2 to section 4, where some interesting
implications of the main results for a few simple special cases are discussed. More examples

and the Gaussian AVC will be treated elsewhere.
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2. Preliminaries and Statement of Main Results

We have adopted our terminology from Csiszdr-Korner [4]. In particular, all logarithms

and exponentials are taken to the base 2.

The message set of a code is identified as the set {1, ..., N} of positive integers, so that a
length-n block code is given by a family of codewords xi,...,xxn, each in X™, and a decoder
é:Y"— {0,1,..., N}. While zero is allowed as a decoder output for the sake of convenience,
it always constitutes an error. The probability of error for message i, when this code is used

on an AVC defined by (1.1), and the actual state sequence is given to be 8eS™, equals

e(s,8) = 2 W™(y | xi,8), (2.1)

y:d(y)#s

and the average probability of error for a state sequence 8 is

#(s) = %Z (i, ). (2.2)

Definition 1: A number R > 0is called an achievable rate for the given AVC (for deterministic
codes and average probability of error criterion) if for every € > 0,6 > 0 and sufficiently large

n, there exist length-n block codes with

1 logN > R - §; mesxxi(s) <e (2.3)
n n

[ 13

The maximum achievable rate is called the capacity of the AVC, and is denoted by C.

For n > 0, we define a family of joint distributions Pxgy of random variables X, S and

Y with values in X, § and Y respectively, by

Cy = {szy : D(szy H Px x Ps x W) < r]}. (2.4)

Here, D denotes (Kullback-Leibler) informational divergence, and Px X Ps X W denotes a
joint distribution on X x § x Y with probability mass function Px(z)Fs(s)W (y | z,5). In

particular, Pxsye€Cop if and only if



Pxsy (z,8,y) = Px(z)Ps(s)W(y | z, ). (2.5)

Further, we define for any distribution P on X, the quantity

I(P)= , min_ I(XAY) (2.6)
for some S, withPx =P

Proposition A (Ahlswede): The capacity of the AVC is either C = maxp I(P) or else C = 0.

A necessary and sufficient computable characterization of AVCs with C = 0 does not
appear in the literature. The next theorem fills this hiatus; furthermore, we prove it with-
out relying on Proposition A, or on the fact (essentially used in Ahlswede’s proof [2]) that
maxp I(P) is the random code capacity of the AVC. Note that maxp I(P) > 0 and C = 0
could well occur. Indeed, maxp I(P) > 0 holds for many symmetric AVCs, e.g., for the AVC

of Example 2 in section 4, whereas C = 0 always for a symmetric AVC.

Definition 2: An AVC is symmetrizable if for some channel U : X — §,

ZW(y | z,8)U(s | 2') = ZW(y | z',8)U(s | z) for every z,2’,y. (2.7)

8eS 8€$S

Theorem 1: C > 0 if and only if the AVC is not symmetrizable. If C > 0, then

C= max I(P). (2.8)

The terminology of Definition 2 is motivated by the fact that if a new AVC, with the set
of states coinciding with the input alphabet, is defined by

V(y|z,2')= EW(y | z,8)U(s | 2'),
seS
then (2.7) states that this new AVC is symmetric. The necessity of non-symmetrizability
for C > 0 was observed by Ericson [9]. He also compared this necessary condition with the
sufficient condition of Ahlswede [2], namely that two distributions P; and P, exist on the

input alphabet X, such that for any pair of distributions @,,Q32 on the state space §,
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Z Pi(z)Q:1(s)W(y | z,8) # ZPz(x)Qg(z)W(y | z,8) for at least one yelY.

Ericson’s analysis led to the plausibility of this condition being, in general, strictly stronger
than non-symmetrizability, and, therefore, a necessary and sufficient condition for C > 0 could
not be established. Note, however, that he did not actually prove Ahlswede’s [2] sufficient
condition to be stronger than non-symmetrizability, and nor do we. We need not address this
question, as non-symmetrizability, a simple condition whose verification involves only linear
equations, is proven to be both necessary and sufficient for C > 0.

We observe that if the channel is non-symmetrizable, then I(P) defined by (2.6) is positive
for every P satisfying P(z) > 0 for all zeX. Indeed, if I(P) were zero for such a P, then (2.6)
implies the existence of a random variable S such that for Pxgy defined by (2.5), X and Y
are independent; thus, by (2.5), },.s W(y | z,8)Ps(s) = Py (y) would not depend on z. But
this implies symmetrizability of the channel in a trivial manner, with U(- | z) = Ps(-), not

depending on z, which leads to a contradiction.

We recall from [4] that the type of a sequence x = (1, ...,z )eX™ is a distribution Px on
X where Pyx(z) is the relative frequency of z in x. Similarly, joint types are distributions on
product spaces, e.g., the joint type of three given sequences xeX ™,8¢S™,yely™ is a distribution
Pygyon X x §xY where Py gqy(z,8,y) is the relative frequency of the triple (z, s,y) among
the triples (z;,8i,¥:),1 = 1,..., 7.

In the proof of Theorem 1, good codes are obtained by randomly selecting codewords

Xi,...,Xn from the set of sequences of a fixed type; the key part consists of finding a suitable

decoder ¢. We use a decoder ¢ defined as follows.

Definition 3: Given the codewords x;,1 = 1,..., N, let ¢(y) = ¢ if and only if there exists an
8eS™ such that

(i) the joint type Pk, .,y belongs to C, (cf. (2.4));

(ii) for each competitor j # ¢, i.e., such that Py a,y€Cy for some 8’eS™, we have I(XY A

X' | S) <7, where X, X',S,Y denote dummy random variables such that the joint

type of (xi,X;,8,y) equals Pxx'sy.



If no such ¢ exists, we set ¢(y) = O (i.e., declare an error).

A main step of the proof of Theorem 1 will consist in showing that this decoding rule is
unambiguous if 7 is sufficiently small.

We observe that condition (i) above is a joint typicality condition, i.e., we require that
(x:,8,y) be jointly typical for some s and for a joint distribution of the form (2.5). Dobrushin-
Stambler (8] had employed a decoding rule based on similar joint typicality, but their method
of eliminating ambiguities in decoding (by simply adopting the smallest ¢ that satisfied the
joint typicality condition) did not lead to sharp results. Our condition (ii) above is analogous
to condition (4.10) in Csiszér-Kaorner [5], where I(Y AX' | XS) was required to be small; here,
we additionally ask that I(X A X' | S) be also small.

Let us now consider AVCs with input or state constraints. As in Csiszdr-Narayan [7],

let g(z) and £(s) be given functions on X and S, respectively. For x = (z1,...,2,) and

8 = (81,...,8n), we define

1 n
9(x) =~ _g(=:), (2.9)
=1
1 n
£s) =~ ; £(s;). (2.10)
For convenience, we assume as in [7] that

min g(z) = min £(s) = 0. (2.11)
zeX 8c$S

Definition 4: A number R > 0 is an achievable rate under snput constraint I' and state
constraint A, if for any ¢ > 0,6 > 0 and sufficiently large n, there exist codes with codewords

X3,...,XN, each satisfying g(x;) < T, and such that
1
- - e(s) <e. 2.12
- logN > R -6, -:?(I-ai)éAe(s) <e (2.12)

The largest of such achievable rates is called the capacity of the AVC under input constraint

T and state constaint A; it is denoted by C(T', A).
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T > gmax = maxgcx ¢(z) resp. A > €yax = max,es £(s), then the input resp. state
constraint is inoperative. Thus C(gnax,A) denotes the capacity with state constraint A and
no input constraint, while C(T', €nax) denotes the capacity with input constraint I' and no

state constraint.

The capacity of the AVC under state constraint A may be positive even for symmetrizable
(or symmetric) AVCs. Indeed, for the existence of codes with codewords of type P satisfying

(2.12) for some R > 8, the crucial question is whether A is larger or smaller than

Ao(P) = min Y P(z)U(s | z)4(s), (2.13)

zeX 8€$

where U denotes the set of all channels U : X — § satisfying (2.7). Clearly, Ao(P) is a
continuous function of P if U # ¢, i.e., if the AVC is symmetrizable, and Ao(P) = oo for
a non-symmetrizable AVC. The following Lemma 1 yields, under state constraint A, that no
code with codewords of type P satisfying Ag(P) < A can be “good”. On the other hand, if
Ao(P) > A, Theorem 2 below asserts that good codes do exist.

Lemma 1: Any code of blocklength n with N > 2 codewords, each of type P, with A,(P) < A,

has

N-1 1 22

= > - max .
L2 6) 2 SN T LT A(P))
In particular, for any € < 1/2
2 402
Z8)>eif N> ——, n> max ,
e o6) 2 e N2 7750 n2 G5an - o (P))?

In order to describe our main result for state constraint A, let us denote the set of joint
distributions Pxgye€C, with E£(S) < A by C,(A), where > 0. Then Co(A) is the set of joint
distributions as in (2.5) for which E£(S) < A.

For any distribution P on X, and A > 0, we define

I(P,A) = I(X AY). (2.14)

.
min
Y:PysyeCo(A)
for some S,withPx =P
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Lemma 2: For any A > 0,6 > 0 and € < 1, there exists no such that for any code of
blocklength n > ng with N codewords, each of type P,

1
1 > N - '
nlogN > I(P,A)+ 6 implies ':Zn(sa)séAe(s) > €

The following Theorem 2 is our main technical result. Informally, it asserts that if A,(P) >
A, then I(P, A), the largest coding rate allowed by Lemma 2, is indeed achievable under state
constraint A by codes whose codewords are all of type P. In fact, the above holds even with

an exponentially decreasing probability of error.

Theorem 2: Given A > 0 and arbitrarily small « > 0, 8 > 0, § > 0, for any blocklength
n > ng and for any type P with

Ao(P) > A+ a, 21‘1%1 P(z) > B, (2.15)

there exists a code with codewords x;,...,X, each of type P, such that

1
i — & € < - .
- log N > I(P,A) - 6, ':ir(llja)éAe(s) < exp(—n%), (2.16)
where n, and 4 > 0 depend only on «, and §, and the given AVC,

The proof of Theorem 2 is similar to that of Theorem 1, replacing C, by C,(A) in the

definition of the decoding rule.

The following result on capacity under input constraint I' and state constraint A is an

easy consequence of Theorem 2. For notational convenience, we define

g(P) =) P(2)g(); (2.17)

zeX

then, clearly we have

g(x) = g(Px) for every xeX ™. (2.18)
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Theorem 3: For any I > 0,A > 0,

(l) C(F,A) =0, if maxp.g(P)<T Ao(P) < A
(ii) C(F, A) = ma«XI;:g((:));AF I(P, A) > 0, if ma-Xp:a(P)Sr AQ(P) > A.
] E4

The case when maxp.;(p)<r Ao(P) = A remains unsolved. It then appears likely that
C(T',A) = 0; however, at present, this can only be proved for special cases, cf. the remark

following the proof of Theorem 3.

For the capacity under state constraint A and with no input constraint, i.e., for C(gpax,

A), Theorem 3 yields the following
Corollary: For any A > 0, with Ag denoting maxp Ag(P),
(i) C(gmax,A) =0 if Ag < A
(ii) C(gmax,A) = maxp.a,(py>a I(P,A) if Ag > A.
We know that the random code capacity of the AVC under input constraint I' and state

constraint A, is

C.(T,A) = P::r(lg‘;csr I(P,A) (2.19)
(cf. [7], Theorem 1, where the random code capacity was denoted by C(T,A)). In particular,
the random code capacity under state constraint A and with no input constraint (obtained by
setting I' = gmax) is maxp I(P,A). In either case, if the maximum is not achieved by an input
distribution P satisfying A,(P) > A, then the capacity (for deterministic codes) is strictly
smaller than the random code capacity, while still being positive if the hypothesis of Theorem

3(ii) (or of Corollary (ii)) holds. This is illustrated by Example 2 in Section 4.

3. Proofs of Main Results

For notational convenience, joint types of length-n sequences will be represented by joint
distributions of dummy random variables. Then, for instance, if X, S,Y represent a joint type,
i.e., Pxsy = Px,,y for some xeX",8¢S™,yelY™, we write Tx = {x : xeX", Py = Px}, Txy =
{(x,y) : xeX™,yeYy ™, Pxy = Pxy}, Txsy = {(x,8,y) : XxeX™,8¢S™,yeY™, Pe sy = Pxsy},
etc, Similarly, we use self-explanatory notation for sections of Txy, Txsy, etc.; for example,

Trix(x) = {y: (0, ¥)eTxy}, Ty |xs(x,8) = {y : (x,8,¥)eTxsy}, etc.
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We state below, as facts, a few basic bounds on types (cf. e.g., Csiszdr-Korner [4]).
Fact (i): The number of possible joint types of sequences of length n is a polynomial in n.
Fact (i): (n+1)"*lexp{nH(X)} < | Tx | < exp{nH(X)} if Tx # ¢;

(n+1)"1 X Wlexp{nH(Y | X)} < | Ty|x(%) | < exp{nH(Y | X)} if Ty|x(x) # 4.
Fact (41i): For any channel V: X — Y,

Y. V™y|x) < exp{-nD(Pxy || Px x V)},

ycTy|x(x)

where Px xV denotes the distribution on X x Y with probability mass function Px (z)V (y | z).

The set of codewords x;,...,X» used in proving our main results is any set with the
properties stated in the following lemma. We prove in the Appendix that a randomly selected
codeword set will possess these properties with probability arbitrarily close to 1. We remark
that Lemma 3 below does not require the codewords to be distinct (although in our actual

application, this could be assumed).

Lemma 3: For any € > 0, n > ng(e), N > exp(ne) and type P, there exist codewords
Xi,...,Xn in X", each of type P, such that for every xeX™, 8eS™, and every joint type Pxx's,

upon setting R = %log N, we have:

| {7: (%,%,8)eTxxrs} |< exp{n(| R — I(X'AXS) |* +€)}, (3.1)

.le | {i: (x:,8)eTxs} |< exp(—ne/2) if I(XAS)> e, (3.2)

and

—J%I'_ | {¢: (xi,%x;j,8)€Txxrs for some j # i} |< exp(—ne/2) if I(XAX'S)— | R—I(X'AS) |T> e
(3.3)

In addition to Lemma 3, we will need the following lemma which establishes the inambi-

guity of the decoding rule in Definition 3.
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Lemma 4: If the AVC is non-symmetrizable and # > 0, then for a sufficiently small %, no

quintuple of random variables X, X', S, S’,Y can simultaneously satisfy

Px = Px» = P with mi}l P(z) > B, (3.4)
PxsyeCy, Px'siyeCy, (3.5)

and
IXYANX'|S)<n, IX'YAX|S)<n. (3.6)

Proof: By the definition of C, in (2.4), the condition Pxsy€eC, means that

Pxsy(z,8,9)
D(Pxsy || Px x Ps x W) = 3 Pxsy(z,5,3)lo s
( XSY ” X S ) ’g;y XSY( y) & Px(:C)PS(S)W(y I z’s)

Upon adding to this

FX'IXSY(“" | 2, 8,9)

! !

I(XY X S) = E P ' .z (s < n
( /\ | ) XXSY( ’ ’s’y)lg P Il ( ,'s) - b

x,8',8,y

we obtain

PXX'SY(Z’x"say)
< 2n.
y| z,8)P(z)Pxis(',8) ~ K

Z Pxxisy(z,2',8,y) log WY

z,x's,y

Here, the left-side is the divergence of two distributionson X x X x § X Y, namely, of Pxx'sy
and the distribution with probability mass function W (y | z,s)P(z) P(z') Pg|x:(s | 2'). Pro-
jeéting both these distributions on X x X x Y, the divergence does not increase, and hence

we get

D(Pxxiy “ P x P x V') < 27, (37)
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where P x P x V' is defined by the probability mass function P(z)P(z")\V'(y | z,z'), with

Viy]| z,2') = ZW(y | z,8) Ps|x: (s | «'). (3.8)

Since the variational distance between any two probability distributions is bounded above by
the square-root of their divergence times an absolute constant ¢ (Pinsker’s inequality [10], cf.

Csiszdr-Korner [4], p. 58), it follows that
" | Prxr (2,2,3) - P@PEWV (v | 2,2') | e/ (39)
z,z'y

Commencing with the conditions Px:s'y€C, and I(X'Y A X | §') < n, we obtain in a similar

manner that
S | Pxxor(2,2',9) = P@P@E)V (v | ,2') |< e/2m, (3.10)
z)z’ly

where

V(y|z,2')= ZW(y | ', 8)Ps|x (s | ). (3.11)

Comparing (3.9) and (3.10), we obtain that

Y P(@)P(z) | V(y]z,2") = V'(y ] ,2") |< 2¢v/27,

'
z,z°,Y

whence

max | V(y | z,2') — V'(y | &,2") |[< 2 ﬂvf” (3.12)
z,z!,y
if min,.x P(z) > 8.
For a non-symmetrizable AVC, there is some £ > 0 such that
max | Wy | 2 e)Ui(s| ) = S Wy | 2 6)Uale | 2) 2 € (3.13)
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for every Uy : X — S,Us : X — § (cf. Lemma A2 in the Appendix). In particular, for the
choice of Uy = Pgx:,U; = Ps|x, (3.13) yields

max |V(y]|z,2')-V'(y]| z,2") |> &, (3.14)

which contradicts (3.12) if < 58:51.

Proof of Theorem 1: The necessity of non-symmetrizability for C > 0 is well-known. In fact,
as Ericson [9] indicates, an idea of Blackwell-Breiman-Thomasian [3] leads to the conclusion

that for a symmetrizable AVC, every code with N > 2 codewords has

-1
s |
maxe(s) 2 —

(3.15)

More specifically, this follows from (3.29) in the proof of Lemma 1 below. It is also well-known

(and is a consequence of Lemma 2 with A = £,x) that C' < maxp I(P).

As observed after the statement of Theorem 1, non-symmetrizability implies that I(P) > 0
for every strictly positive P. Thus, it remains to establish the hard part of Theorem 1, namely
that for a non-symmetrizable AVC, maxp I(P) is an achievable rate. To this end, since I(P)
is a continuous function of P, it suffices to prove the following Lemma 5, which is our first key

result.

Lemma 5: Given any non-symmetrizable AVC and arbitrary 8 > 0,6 > 0, for any blocklength
n > ng and any type P with min P(z) > §, there exists a code with codewords xi,...,Xn,

each of type P, such that

llogN > I(P) -6, mzsxxE(s) < exp(—nv). (3.18)
n seS™
Here, ng and 7 > 0 depend only on the given AVC, and on 8 and 6.

Proof: Let x1,...,xn be as in Lemma 3, with R = %logN satisfying

I(P)-6 <R < I(P)- ga, (3.17)
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and with € (from Lemma 3) to be specified later. Let the decoder ¢ be as described in Definition
3. Lemma 4 provides that this ¢ is unambiguously defined if  is chosen sufficiently small.
In fact, if for some yeY ™, and some ¢ # j, both x; and x; satisfied conditions (i) and (ii) in
Definition 3, then there would exist some 8 and 8’, with the joint types of (x;,x;,8,8’,y) being
represented by the dummy r.v.s. X, X', 8,8, Y (ie., (xi,Xx;,8,8,y)eTxx's5'y), that satisfy
(3.4), (3.5) and (3.6) simultaneously; this contradicts Lemma 4.

In order to establish (3.16), fix any 8eS™, and observe first by (3.2) and Fact (i) that

_JIV | {72 (x:,8)e U Txs} | £ (number of joint types) - exp(—ne/2)
I(XAS)>e (3.18)

< exp(—ne/3).

(All bounds in this proof are valid for n larger than a suitable threshold no, which depends

on €.)

Hence, to obtain an exponentially decreasing upper bound on
1 & 1
€(8) = N Ze(z,s) =¥ Z Z 'W"(y | x:,8), (3.19)
i=1 1=1y:¢(y)#s
it suffices to deal with only those codewords x; for which (x;,8)eTxg with I(XAS) < e. Then,
for Pxgsy £Cy (cf. (2.4)), we have
D(szy “ Pxg X W) = D(szy “ Py x Pg X W) - I(X/\S) >n—k¢,

and, thus, by Fact (iii),
Y W™y |x:8) < exp{—nD(Pxsy || Pxs X W)} < exp{—n(n - €)}.
yeTyxs (xi,8)

Hence, by Fact (i),
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Y. W™y |x:8) < exp{-n(n — 2¢)}. (3.20)

¥:Px 0,54,

Next, notice that if (x;,8,y)eC, and ¢(y) # ¢, then condition (ii) of Definition 3 must be
violated. Let us, therefore, denote by D, the set of all joint distributions Px x/sy such that

(i) Pxsye€Cy; (ii) Px's'y€Cy for some S'; and (iii) I(XY A X' | S) > . Then it follows that

Z W"(y l x,-,s) < Z exxrsy(i, s), (3.21)

¥i(=;,8,¥)eCyp

P ! eD,
oy £ XXI'sy ¢¥n

where

CXX'SY(ia 5) = Z Wn(y I X,’,S), (3'22)

Y‘(z.'vxj’l-Y)‘Txxlsy
for somejg#s

and the summation in (3.21) extends to all joint types Px x:sy €D, (of course, exx'sy (z,8) =0

unless Px: = Px = P and Pxg = Py, 4)-

Combining (3.18) - (3.21), we have thus far obtained that

N
e(8) < exp(—ne/3) + exp{—n(n — 2¢)} + %r- z Z exx'sy (7,8). (3.23)

i=1 Pxxisvep,

Before proceeding to bound exx'sy(t,8), we notice that it suffices to do so when

Px xi1sy €D, satisfies

IXAX'SYS|R-IX'AS) | +e. (3.24)

Otherwise, by (3.3),

%/: | {#: (%:,%;,8)eTx x5 for some j # 1} |< exp(—ne/2).
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Since (x;,X;,8)eTxx's for some j # 1 is a necessary condition for ex x' sy (¢,8) > 0 (cf. (3.22)),
it follows from Fact (i) that the contribution to the double summation in (3.23) of the terms

with Pxx'sy €D, not satisfying (3.24) is less than exp(—ne/3).
Now, from (3.22),

exx sy (i,8) < > > W™ (y | x;,8). (3.25)

Fi(%i5,8)eTxxrs VCTY|xx's(x-' X5 ,8)

As Wn(y | x;,8) is constant for yeTy|xs(x:,8) and this constant is < (| Ty|xs(x:,8) [) 77, the
inner sum in (3.25) is bounded above by | Ty|xx's(Xi,X;,8) | (| Ty|xs(x:,8) [)~*, which in
turn is < exp{—n(I(Y AX' | XS)—¢€)}, by Fact (ii). Hence, using (3.1), it follows from (3.25)
that

exx'sy(t,8) < exp{-n[I(Y AX'| XS)— | R— I(X'AXS) |T —2¢]}. (3.26)

To further bound exx'sy(¢,8) when (3.24) holds, we distinguish betwen two cases: (a) R <
I(X'"AS),and (b) R > I(X'AS).
In case (a), (3.24) yields

I(XAX'|S)<I(XAX'S) < e

and, hence, by condition (iii) in the definition of D,

IYAX' | XS)=I(XYAX'|S)-I(XAX'|S)2n—¢

Since now R < I(X'AS) < I(X' A XS), it follows from (3.26) that

exx'sy(t,8) < exp(—n(n — 3¢)). (3.27)

In case (b), we obtain from (3.24) that

R>IXAX'S)+I(X'AS)—¢
=I(X'AXS)+I(XAS)—¢
>I(X'AXS) ¢
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and, hence,

|R-I(X'AXS)|* >R-I(X'AXS)—e

Substituting this into (3.26), it follows that for case (b),

exx'sy(1,8) < exp{—n(I(X'AXSY) - R - 3¢)}
<exp{-n(I(X'AY)— R -3¢}

Recall that Px x'sy €D, implies, in particular, that Px: sy €C, for some S’. Thus, by the
definition of C, (cf. (2.4)), Px's'y is arbitrarily close to PxngnyneCo defined by Pxugnyn =
P x Pg» x W, if 5 is sufficiently small; then I(X' AY) is arbitrarily close to I(X"” AY"), say,
I(X'AY) > I(X"AY") - 6/3. Using the definition (2.6) of I(P) and the assumption in
(3.17), it follows that

I(X'ANY)-R>I(P)-6/3—R>6/3,

if n is sufficiently small and depends only on é. Fixing the heretofore unspecified % accordingly
(and small enough for the decoding rule to be unambiguous), the last bound on exxsy (%, s)

yields for case (b) that

exxsy(i,8) < exp{—n(—g- ~ 39} (3.28)

By (3.27), (3.28), and the observation made in the paragraph containing (3.24), we obtain
from (3.23) and Fact (i) that

&(s) < exp(—ne/4),
if, for instance, ¢ < min(n/4,6/10), and n is sufficiently large. As this bound holds uniformly
in 8¢S™, the proof of Lemma 5, and, thereby, also of Theorem 1 is complete.
Proof of Lemma 1: Consider any code with codeword set xi,...,x and decoder ¢, where

X; = (Zi1y ey Tin),t = 1,00, N. For Uell, i.e., U satisfying (2.7), consider N §"-valued random
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variables S; = (Sj1,...,Sjn) With statistically independent components, where Pr{S;; = s} =

U(s| z;x). Then for each pair (7,7) and every y = (y1,...,¥n) in Y™, we have by (1.1) and the
definition of S; that

EW™(y | %:,8;) = [[ EW (v | zix» Sj) H > Wk | zix, 6)U (s | zj1).
k=1 k=1 s€§

On account of (2.7), it follows that

EW™(y | x:,8;) = EW™(y | x;,8.),

and hence, by (2.1), for ¢ # J, we have

Ee(i,S;) + Ee(5,S8:) = Y, EW™(y|x:,8;)+ > EW™y|x;,S;)
y:6(y)#i y:6(y)#i

> > EW™(y|x;S;) =1
yeyn

Using this fact and (2.2), we obtain

N N N
1 1 ) 1 NN-1) N-1
5 O BE(S) = 75 Y D e 85) 2 - o =
j=1 i=1j=1
whence, it follows that

N-—l 1

> -
Ee(S;) 2 2N 4

for some je{1,...,N}. (3.29)

Suppose now that each codeword x; is of type P where Ao(P) < A, and let Uell attain the
minimum in (2.13). Then, using (2.10),

=%§5 Ee(S;) = ZZe (8)U(s | zjx)

k 1 8¢S

19



and

1 ¢ £
var £(S;) = = Z var £(S;x) < —m;—x
k=1

Hence, by Chebyshev’s inequality

Pr{£(S;) > A} = Pr{£(S;) — E¢(S;) > A — Ao(P)}
2 (3.30)
> 22X (A — £o(P)) 2

Since

Be(S5) < _max %6+ Prt(S;) > A}
the lemma follows from (3.29) and (3.30).

Proof of Lemma 2: First we show that for some S satisfying

E(S) < A(1—1n) (3.31)

(with n > 0 depending on 6 but not on P) and for

Pxsy(z,s,y) = P(z)Ps(s)W (y | =, s), (3.32)

we have

I(XAY)<I(PA)+6§/2. (3.33)

In fact, let Pg+ achieve the minimum in (2.14), i.e., let I(X AY*) = I(P,A) for Pxs-y-
as in (3.32) with E£(S*) < A. Pick soeS with £(sg) = 0 (cf. (2.11)), and define Ps(s) =
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(1—1n)Ps-(s) if s # 80, Ps(s0) = n+ (1 —n)Ps-(s,). Then (3.31) is clearly satisfied, and so is
(8.33) for a sufficiently small 7, since I(X AY) is a uniformly continuous function of the pair
(P, Ps) if Pxgsy is given by (3.32).

Now consider any code with codewords x;, ...,Xn, and decoder ¢, and let S = (S, ...,Sy,)
be n independent repetitions of S as defined above. Then by (2.1), (2.2), (1.1), and the

independence of Sy, ..., Sy,

N N
1 .
Be(S) =+ ) EG,S) = %Z S EW(y|x:S)
=1 i=1y:(y)#s
(3.34)
1 N n
=¥ > N II EW (v; | 21, S5)-
1=1y:¢(y)#i j=1
Introducing a discrete memoryless channel (DMC) {Wg} defined by
Ws(y|z) =EW(y|z,S), (3.35)

(3.34) yields that E€(S) is equal to ew;, the average probability of error when the given code
is used on the DMC {Wg}. Since (3.31) implies, by (2.10) and Chebyshev’s inequality, that

Pr{£(S) > A} = Pr{% iZ(S,') > EL(S)+nA}

=1

(e S _ B
= n(nA)2 T np?A?’

it follows that

(3.36)

Finally, notice that (3.32) means that Y is connected with X by the channel Wy defined
in (3.35). Hence (3.33) implies, by the strong converse to the coding theorem for a DMC with
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codewords of type P (cf. Csiszér-Korner [4], Corollary 1.4, p. 104), that if all the codewords
X1,.-,XN are of type P, then €y is arbitrarily close to 1 if 2log N > I(P,A) + 6 and n is
large enough. This and (3.36) complete the proof of Lemma 2.

Proof of Theorem 2: As mentioned in section 2, we now use a slightly modified decoding
rule, replacing C,, in Definition 3 by
C,,(A) = {szy : szyeC,,,Ee(S) < A}.

To prove that this modified decoding rule is unambiguous if the codewords are of type
P satisfying (2.15), we have to establish that no quintuple of random variables X, X', S, S',Y

can simultaneously satisfy

Px = Px» = P with Ao(P) 2 A+ «, mi%l P(z)> B : (3.4")
PxsyeCy (A), Px:ig1yeCy (A), (3.5')

and (3.6). The proof is identical to that of Lemma 4, with the only difference being that now
(3.13) need not hold for every Uy, U;. This does not however affect the proof, because by the
second assertion of Lemma A2, (3.13) does hold subject to the constraint (A.14) which, by
assumptions (3.4') and (3.5'), is satisfied for Uy = Pg|x:, Uz = Pg|x.

Using the codeword set of Lemma 3 and the decoder specified above, the remainder of

the proof of Theorem 2 is identical to that of Lemma 5 and is, therefore, omitted.

Proof of Theorem 38: Part (i) follows immediately from Lemma 1. To prove part (ii), we

first claim that

Fla)=, max_ I(P4) (3.37)
Ag(P)Z2A+a

is a continuous function of « in a sufficiently small neighborhood of 0, say (—#,%). To see
this, observe that by (2.14), I(P,A) is the minimum of a family of concave functions of P
(since I(X AY) is concave in P for Pxsy = P X Ps x W for a fixed Pg) and, hence, is
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itself a concave function of P. Similarly, Aq(P) is also a concave function of P. It then
follows in a standard manner that F(a) is a concave function of a in the interval where
{P:9(P) <T —a, Ao(P) 2 A+ a} # ¢. The assumption maxp.,(p)<r Ao(P) > A implies
that this interval contains O in its interior, establishing our first claim.

Now, for any a > 0, let P* achieve the maximum in (3.37), and let £ > 0 be small enough -
so that for every P with

max | P(z) - P*(z) |< &, (3.38)

I(P,A) differs from I(P*,A) = F(c) by less than §, and g(P) < T, Ao(P) > A+ §. I
B > 0 is small enough, there exists (for sufficiently large n), a type P satisfying (3.38), as also
mingcx P(z) > B. Then, by Theorem 2, there exists a code with codewords xy,...,xn, each

of type P - thus satisfying g(x;) < T - such that

%logN>I(P,A)—6>F(a)—26,

and maX,;¢(s)<a €(8) is as small as desired. Since F(a) is continuous at a = 0, this proves the
forward part of Theorem 3, i.e., the achievability of R = F(0) under input constraint I' and
state constraint A (cf. Definition 4).

To prove the converse, i.e., that no R > F(0) is an achievable rate, observe that Lemmas

1 and 2 immediately imply that no R larger than

max _ I(P,A)
P:g(P)<T
Ao(P)2A-a

can be achieved, for any o > 0. Since the last maximum < F(—a) (cf. (3.27)), the desired

converse follows from the continuity of F at a = 0.

Remark: While the case maxp.;(py<r Ao(P) = A remains unsolved in general, for certain
AVCs it is easily seen that C(I',A) = O in this case, too. This occurs if the set U of all
channels satisfying (2.7) is the convex hull of a set of deterministic channels, i.e., of 0-1

matrices. In fact, the minimum in (2.13) is then attained for some 0-1 matrix U, and in the
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proof of Lemma 1 the state sequences S; will now be non-random, say S; = 8;. Then (3.29)
reduces to €(s;) > YR, where £(s;) = Ao(P) (rather than E€(S;) = Ao(P). Thus, codes with

codewords of type P cannot be “good” under state constraint A, even when A,(P) < A.

4. Examples

Two simple examples are considered in this section. In both examples, the input alphabet

and the set of states are binary, i.e., X = § = {0, 1}, and the channel output is a deterministic
function of the input and the state. Furthermore, the functions g(z) = z and £(s) = s are used
in the input and state constraints in either example. Thus, g(x) and £(s) are the respective

normalized Hamming weights of the binary n-sequences x and s.

Example 1: Let Y = {0,1} and let W(y | z,5) = 1 if y = 2+ s mod 2, and 0 otherwise. This
is a symmetric AVC, and, hence, C = 0. Further, since PxgsyeCo (cf. (2.5)) if and only if
Y = X+ S mod 2, X and S independent, (4.1)

we obtain that I(P) = O for every P (cf. (2.6)), as Ps = (1/2,1/2) in (4.1) yields I(XAY) = 0.

Thus, the random code capacity of this AVC is also equal to zero.

To determine the capacity C(T',A) under input constraint T' and state constraint A, we

first evaluate Ag(P) (cf. (2.13)). For this AVC, (2.7) is satisfied iff U is symmetric, i.e.,

u 1—wu

u={(1_“ * ):ogugl},
and, thus, for P = (1 — p, p), (2.13) yields

Ao(P) = orsn&rsll[(l — p)u + p(1 — u)] = min(p, 1 — p). (4.2)

By Theorem 3(i), and the remark following the proof of Theorem 3, we have C(T',A) = 0 if
maxp.g(p)<r Ao(P) < A. Since g(P) = p, by (4.2) we get

C(T,A) = 0 if A > min(T, 1/2). (4.3)
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For A < min(T,1/2),C(T,A) is given by Theorem 3(ii). To determine it explicitly, we must
find I(P,A) (cf. (2.14)).

For Px = P=(1-p,p),Ps = (1 - gq,q) in (4.1), write

L(pg)=I(XAY)=H(Y)- H(Y | X)=h(p*q) — h(g), (4.4)

where p*x ¢ = pg+ (1 — p)(1 — ¢), and h(t) = —tlogt — (1 — t) log(1 — t) is the binary entropy
function. By standard properties of mutual information (cf. e.g., Csiszdr-Korner [4], p. 50,
Lemma 3.5(d)), I1(p,q) is concave in p and convex in ¢. For a fixed p, I;(p, q) is minimized
when ¢ = 1/2; hence, it is a decreasing function of ¢ for 0 < ¢ < 1/2. Since E£(S) = g, it
follows from (2.14) that

if A <1/2

_ . . Il(p:A)
1P =min(ra) = { P HASY (45)

Now Theorem 3(ii) gives, by (4.2) and the fact g(P) = p, that

C(T,A) = Jax Ii(p,A) if A <min(T,1/2).

Since I, (p, ¢), defined in (4.4), is concave in p and maximized when p = 1/2 (for any fixed q),
we finally obtain that

C(T,4) = {11(1/2,A) =1-h(A), ifA<1/2<T )

I;(T,A) = k(T +A) — h(A), fA<T<1/2

Notice that the random coding capacity under input constraint I' and state constraint A is,

by (2.19) and (4.5),

0 ifA>1/2
C,(T,A)={ I,(1/2,A) ifA<1/2<T (4.7)
I(T,A)  ifA<1/2,T <1/2.

Thus, the capacity under input constraint I" and state constraint A is equal to the corresponding

random code capacity, except for the case I' < A < 1/2 when C(T,A) = 0 while C,(T',A) > 0.
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As a particular case of (4.6), the capacity of the AVC in this example under state constraint
A < 1/2 and with no input constraint equals C(1,A) = 1 — h(A). A remarkable feature of
this result is that this capacity is the same as that of a binary symmetric channel (BSC) with
crossover probability A. Since the AVC in this example is deterministic, the error probability
e(s,8) (cf. (2.1)), is either 0 or 1 for any code, any message and any state sequence. Hence,
€(s), defined in (2.2), is simply the average number of incorrectly decoded messages when the
state (or “noise”) sequence is 8. Notice that the expected value of this &(s) over the ensemble
of “noise vectors” s with independent bits, each of which has probability A of being equal
to 1, is just the average probability of error of the given code over a BSC with crossover
probability A. By the standard coding theorem for a BSC, this can be made arbitrarily small
while maintaining a rate close to 1 — h(A). The result we have established says that the same
rate is achievable even under the stronger requirement that the fraction of incorrectly decoded
messages be small not only in expected value over an ensemble of noise vectors s but for every

8 individually, subject to £(8) < A (where, of course, 8 is unknown both to the sender and

decoder).

It is instructive to point out that, for the AVC in this example, the problem of determining
the m-capacity (rather than the a-capacity) under state constraint A is equivalent to a basic
unsolved problem of coding theory. The m-capacity of an AVC under state constraint A is
the largest R such that for every € > 0 and § > O there exist codes with —,l;logN >R-6
and max,;(s)<a Maxi<i<n €(t,8) < e. For a deterministic AVC, the last condition means that
e(i,8) = O for every message ¢ (rather than for “most messages” as above) and for every s with
£(s) < A. Thus, the m-capacity of the AVC in this example under state constraint A equals
the maximum rate of binary codes such that the normalized Hamming distance of any two

codewords is larger than 2A.

Example 2: Let Y = {0,1,2} and let W(y | z,8) = 1if y = 2 + 5, and 0 otherwise. This is
the simplest example (due to Blackwell et al. [3]) of an AVC with C' = 0 and positive random

code capacity.

To determine C(T',A), we may assume that A < 1. Since for this AVC, only U = the
identity matrix satisfies (2.7), we obtain from (2.13) that Ag(P) = p for any P = (1 — p, p).
Also, since g(P) = p, by Theorem 3 and the remark following its proof we have
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0, T <A
ona = {maXA<p<r I(P,A), T > A. (4.8)

Now observe that PxgyeCo (cf. (2.5)) iff

Y =X 48, X and S independent. (4.9)

Then,

I(XAY) = I.(p,q) = H(pg,(1-p)(1 -~ q),p+ ¢ — 2pq) — h(q), (4.10)

if Px =P=(1-p,p),Ps =(1-g,q), and from (2.14),

I(P,A) = mln Ig (p,q). (4.11)

As in Example 1 above, it is seen that Iz(p,q) is concave in p and convex in ¢g. Further, we
can see by differentiation that p* = %, gt = % is a saddle point of I;(p,q). Thus, the random

code capacity, without constraints, is

. e oy 1
Cr = max mquz(p,q) = L(p*,¢") = 2

The random code capacity with input constraint I' and state constraint A is

C.(T,A) = max I(P A)= max m<1n I (p, q), (4.12)
a<

and, thus, C,(T,A)=C, =3 ifT > 1,A > 1.
Observe that I(P,A) is a concave function of p, since by (4.11) it is the minimum of

concave functions. If A > %, this function is maximized at p* = % Hence the maximum in

(4.8) is attained at p= A if I' > A > 7. Then, writing Py = (1 — A, A), we get

C(T,4) = I(P,A) = min Io(A,q) < Cr.
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This means that C(T', A) is positive but smaller than the corresponding random code capacity
C,(I',A) =C, =1/2if T > A > 1/2. In particular, the capacity under state constraint A > 1

and no input constraint is positive but less than the corresponding random code capacity.

On the other hand, if A < 1/2,T > A, then C(T,A) = C,(T,A). To verify this, we need
only establish that the input distribution P = (1 — p,p) achieving the maximum in (4.12)
satisfies 5 > A. This will follow if we show that I(P,A) is an increasing function of p in the
interval 0 < p < 1/2if A < %; thus by (4.11), it suffices to show that I>(p,¢) is an increasing

function of 0 < p < % if g < % This follows by differentiation. In fact, as I3(p, q) is concave

in p, it suffices to check zf—pIg (p,q) at p= %, which is seen to be non-negative if ¢ < 1.
5. Discussion

Ahlswede (2] demonstrated that the capacity C of an AVC for (deterministic codes and)
average probability of error is equal either to its random code capacity, or else to zero. A
necessary and sufficient computable characterization of AVCs for deciding between these al-
ternatives was not available. We have established that non-symmetrizability, stated by Er-
icson [9] as a necessary condition for C > 0, is, in fact, both necessary and sufficient; for
a non-symmetrizable AVC, C equals its random code capacity. Our proof does not rely on
Ahlswede’s [2] theorem. A good codeword set is selected at random, using a bounding tech-
nique of Dobrushin-Stambler [8]; a subtle decoding rule, similar to that in Csiszdr- Kérner (5],

leads to an adequate bound on error probability.

Employing the same method, we have also determined the AVC capacity when constraints
are imposed on the state sequences. Now, symmetrizability need no longer render C = 0.
Instead, the crucial factor is whether or not Ag = maxp Ao(P) (cf. (2.13)) is larger than the
state constraint A. As remarked in [7], Ahlswede’s elimination technique [2] does not apply
when state constraints are present, unless the capacity without state constraints is positive.
Our results demonstrate that under a state constraint, the capacity may be positive but less
than the corresponding random code capacity. Similar results have also been obtained for the

case where constraints are additionally imposed on the transmitted codewords.

Our results resolve, as a special case, a weakened version of a fundamental problem of
coding theory. This unsolved problem concerns the determination of the largest asymptotic

rate of binary codes which enables a codeword to be correctly recovered, regardless of which
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error vector of normalized Hamming weight A is added to it (mod 2). If, instead, an arbitrarily
small fraction of the codewords is allowed to be incorrectly decoded, we have shown that the

largest achievable rate is equal to the capacity of a BSC with crossover probability A.

In this paper, the input and state constraints are “peak constraints” in the sense of
[7]- In [7], for random codes, “average constraints” were also considered, where “average state
constraint A” meant that the state sequence could be random subject to E(1 37 £(S;)) < A.
The same could be done for deterministic codes, too. Indeed, for non-symmetrizable AVCs,
the results are completely analogous to those in [7]. For symmetrizable AVCs, however, a
difficulty in determining the e-capacity under “average state constraint A”, arises due to the
fact that while a symmetrizable AVC has zero capacity, its e-capacity may be non-zero for
€>1/2.

We conclude with a comment on another aspect of the relation of ocur work with that
of Ahlswede [2]. Ahlswede has established, by his elimination technique, that the capacity
of an AVC for codes with a stochastic encoder (and deterministic decoder), and maximum
probability of error is the same as its capacity for deterministic codes and average probability
of error criterion. We remark that even though the elimination technique does not apply in the
presence of state constraints, the said result nevertheless remains true. To see this, a minor
modification of our proof yields the existence of codeword sets, as in Theorem 2, with the
additional property that the message set {1,..., N} can be partitioned into subsets Ay, ..., An

of sizes ~ exp(ne) such that for each subset

1 .
max ——— e(1,8) < exp(—n~y).
8:4(8)<A I Ak | g ( ) ( )
Then, the resulting code can be modified to a code with a stochastic encoder, and with a
message set {1,...,N'}. Each ke{1,...,N'} is encoded by a codeword randomly selected from
Ajg. Clearly, this new code will have maximum probability of error less than exp(—n~) for

every 8eS™ with £(s) < A.

29



APPENDIX

In this appendix, we prove Lemma 3 and another technical lemma referred to in section

We will show that N = exp(nR) randomly selected codewords will possess, with prob-
ability close to 1, all the properties stated in Lemma 3. Inequalities (3.1) and (3.2) are a
consequence of Csiszér-Korner [5, Lemma 1]; nevertheless, for completeness, we give a simple
proof below. To establish (3.3), Chernoff bounding has to be applied to dependent random
variables, as in Dobrushin-Stambler [8]. The Chernoff bound required by us is stated as Lemma

Al, and is related to [8, Lemma 9.

Lemma A1l: Let Z4,...,Zn be arbitrary random variables and let f;(Z,,...,Z;) be arbitrary
with0< f; <1, =1,..., N. Then, the condition

E'[f;(Zl, seey Z,‘) | Zl, seey Z,‘_1] S a a.s., 1= 1, ...,N, (Al)
implies that
1 N
Pr{5 ; fi(Z1, .., 2;) >t} < exp{~N(t — aloge)}. (42)

Of course, (A2) is a non-trivial bound only for ¢t > aloge.

Proof: We observe that

N N
1
Pr{—ﬁ Z fi(Zy, ..., Z;) > t} = Pr{exp Z fi(Zy, ..., Z;) > exp(Nt)}
=1 =1
N
< exp(—Nt)E[exp Z fi(Zy, ..., Z;)] (by Markov's inequality)
=1

= exp(—Nt)E[(exp Z_ fi(Z1,....2,))E(exp fn (Z1y .y ZN) | Zy, ey ZN 1)) (A3)

=1
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Since 0 < f < 1 implies that exp f < 1+ f (recall that exponentials are to the base 2),
we obtain by assumption (A1), and (A3), that

E(exp fN(Zl,..., ZN) | Zl,...,ZN_l) <14 E(fN(Zl,...,ZN) | Z,,...,ZN_I)

<1+4a<e*=exp(aloge). (A4)

By substituting this into (A3) and repeating the procedure in (A3), (A4) (N-1) times, we
obtain (A2).

Proof of Lemma 3: Let Z,,...,ZN be independent random variables, each uniformly
distributed on Tx. First fix xeTx,8¢S™, and a joint type Pxx's with Pxg = Py ¢, Px' = Px.
Apply Lemma A1l to

. N 1 if ZjCTXlIXS(x,S)
fi(Zs s 25) = { 0 otherwise; (45)
(as the random variables defined in (A5) are independent and identically distributed, the full

strength of Lemma A1l is not needed at this point). By Fact (ii) in section 3, the condition
(A1) is now fulfilled with

Tx X, 8
a = PT{ijTxllxs(x,S)} = l X II}{TSX(l ) |

exp{nH(X'| XS)}
= (n+ 1)~ Xlexp{nH(X)}

= (n+ 1)*lexp{—nI(X' A XS)},

where the last step follows because H(X') = H(X). Setting

t= %eXp{nq R—I(X'AXS) | +€)}
where R = n~llog N, we see that N(t — aloge) > } exp(ne) if n > n(e), where
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ma() = min{n: (n+1)!Tloge < - exp(ne)}. (46)

Then (A2) results in

Pr{| (it ZicTroixs(%,8)} |> expln(| R = I(X' A XS) [* +4} < expl- L exp(ne)].  (47)

By the same argument, replacing Tx:xs(x,8) by Tx|s(8) in (A5), we also get that

Pr{|{j:2Z;eTxs(8)} |>exp[n(| R— I(X'AS) |* +€]} < exp[—% exp(ne)]. (A8)

In particular, if I(X' A S) > € (and R > € as postulated), from (A8) with €/2 replacing ¢, we
obtain for n > ni(e/2) that

ne

Pr{-ll\—r |5 Z€Toos (6)} > exp(~ )} < exp[—% exp(%)]. (49)

The doubly exponential bounds (A7) and (A9) will suffice to establish (3.1) and (3.2).
To obtain (3.3), we proceed as follows. Let A; denote the set of indices § < ¢ such that
2;eTx:|5(8), provided their number does not exceed exp{n(| R — I(X' A S) |*) + £)}; else, let
A; = ¢. Further, let

' N1 ifz;eU-A..Tx|x'S(zjas) Al0
fi(21,-..,2:) 0 otherwijsee. ( )

Then by (A8), applied with ¢/4 instead of € and for n > n;(e/4), we have

ne

) (A1)

N
. .. 1
Pr{) _ fi(Z1, . Zs) #| {5 : ZieTx x5 (Z;,8)for some 5 < i} |< exp(~ 5 exp(
=1

By the independence of the Z;’s and by Fact (ii), we obtain from (A10) that
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E(fi(Z1, .0, Zi) | L1,y Zic1) = Pr{Zse |J Tx|x'5(Z,8) | Z1, .., Ziz1}
JeA;

exp{nH(X | X'S)}
+ 1)~ 1 Xlexp{nH(X)}

SI Ai I (n
< (n+ 1) *lexp{n(| R— I(X' A S) |* —~I(X A X'S) + 2)}.

Supposing that I(X A X'S) >| R — I(X' A S) |* +e, (A1) holds with

3
a=(n+1)*! exp(—zne).

Then (A2), with t = exp(—%F), and for n > n;(e/4) (cf. (A6)) yields that

N
N
PT{% ; [i(Zy,..., Z;) > exp(—%e)} < exp[—? exp(—%)] < exp[—-;- exp(ﬁzs)],

where, in the last step above, we used the assumption N > exp(ne). Hence by (A11),
1 . .
Pr{ﬁ | {1 : Z:eTx|x+5(Z;,8)for some 5 < i} |} <

1 ne 1 ne 1 ne
< exp[—§ exp(—z—)] + exp[—E exp(T)] < 2exp[—§ exp(—‘i—)].

By symmetry, the same holds when “for some 5 < ¢” is replaced by “for some 7 > ¢”. Thus

we finally obtain that

Pr{l—t; | {# : ZieTx|x'5(Zj,8)for some j # 1} |} < 4exp[—% exp(%)], (A12)

fI(XAX'S)>|R-I(X'AS)|T +€ and n > ny(e/4).
Now, the proof is completed in the standard manner. As the total number of all possible

combinations of sequences xeTx,8¢S™ and joint types Px x+s grows only exponentially with n,
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the doubly exponential probability bounds (A7), (A9) and (A12) ensure that with probability

close to 1 all the inequalities

| {7:2;6Tx xs(x,8)} |[< exp[n(| R — I(X' A XS) |* +¢)],

1 .
& | 07 56T s (8)} | exp(—l‘-zf) if I(X'AS)>¢

and

1 . .,
N | {1 : 2:€Tx x5 (2;,8)for somes # ¢} |< exp(—%) if (XAX'S)>|R—I(X'AS) |t +¢,

hold simultaneously if n is sufficiently large, n > no(e). Any realization of the random N-tuple
{Z1,...,Zn} simultaneously satisfying all these inequalities is a proper choice for {x;,...,x N}

in Lemma 2.

Lemma A2: For a non-symmetrizable AVC, there exists ¢ > 0 such that for each pair of
channels Uy =X - S, U, =X — §

|ZWy|zs)U1 (s| ) ZWy|a: s)Us(z | 8) |> €. (A13)

zz'

Further, for any AVC and o > 0 there exists £ > 0 such that (A13) holds for every U; and U,
for which a P can be found with

Z P(z)Uy(s | z)¢(z) < Ao(P) — Z P(z)Us(s | 2)€(z) < Ao(P) — . (A14)

z,8

Proof: The maximum in (A13) does not change upon interchanging the two sums and then

z and z'. Thus
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ma.x|ZW(y|z,s)U1 (s] ') ZW (v] 2,8)Usz(s]| 2) |=

z,z!,

_maleWy|a:,s)U2 | 2') — ZW(ylz s)Ui(s | 2) |> (A15)
>ma,x|ZW(y|zsU(s|z ZW (y]2',s)U(s| ) |,

where U = %(U 1+ Uz). Notice that if U; and U, satisfy (A14) for some P, then it holds that

ZP(z)U(s | z)€(s) < Ao(P) — . (Ale)

Denote the last maximum in (A15) by F(U). As a continuous function on the compact
set of all channels U : X — §,F(U) attains its minimum at some U*. If the AVC is non-
symmetrizable, U* cannot satisfy (2.7), and, hence, F(U*) > 0. This proves the first assertion
with { = F(U*). Further, by considering F(U) as a continuous function of (P, U) ranging over
the compact set of all pairs (P,U) satisfying (A16), we see that its minimum is attained for
some (P*,U*). As (P*,U*) satisfies (A16), U* cannot satisfy (2.7) (by (2.13)). Hence, once
again, F(U*) > 0, completing the proof of Lemma A2.
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