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Abstract

The growing use of small unmanned rotorcraft in civilian applications means that safe operation is
increasingly important. Here, the fault tolerant properties to faults in the actuators of an L1 adaptive
controller for a quadrotor vehicle are investigated. L1 adaptive control provides fast adaptation along with
decoupling between adaptation and robustness. This makes the approach a suitable candidate for fault
tolerant control of quadrotor and other multirotor vehicles. In the paper, the design of an L1 adaptive
controller is presented and compared to a fixed-gain LQR controller. The L1 adaptive is shown to have
improved performance when subject to actuator faults, and a higher range of actuator fault tolerance.

Keywords: L1 adaptive control, quadrotor control, fault tolerant control, LQR control, UAV control,
rotor failure.

1 Introduction

Quadrotors (or quadcoptors) have become very popular platforms amongst hobbyists and research labora-
tories and are increasingly being used as observation platforms for a number of roles. The main reasons
for this appears to be the mechanical simplicity (compared to traditional rotorcraft) which means very low
cost. Despite lacking inherent stability, the simplicity also means the aircraft is relatively easy to control by
automatic feedback, at least for non-aggressive manoeuvres in calm conditions. For example, Bouabdallah
et al. [2004a] achieved satisfactory results for a PID controller. Using a quarternion description, the attitude
can be controlled using just PD control [Tayebi and McGilvray, 2006]. More recently, PD control [Marks
et al., 2012] has been shown in simulation to achieve good responses even for high upset angles. Satisfactory
trajectory tracking and attitude control can be obtained with LQR control [Cowling et al., 2006, 2010, Rinaldi
et al., 2013]. However, in order for quadrotors and similar unmanned vehicles to undertake many proposed
roles, high levels of safety are required, but the lack of inherent stability means that the control system is
required to be fault tolerant. In this paper we propose the use of an L

1

adaptive controller to provide an
increased tolerance to partial failure of the actuators/e↵ectors.

The L
1

adaptive controller was originally proposed in Cao and Hovakimyan [2006a], and developed through
a series of papers [Cao and Hovakimyan, 2006b, 2007b,c, 2008a,b,c, 2009, Xargay et al., 2010]. Additional
details of the method are given in Hovakimyan and Cao [2010]. The L

1

adaptive control architecture guaran-
tees stability robustness in the presence of fast adaptation, achieved via continuous feedback. An important
feature of this architecture is the separation between estimation (adaptation) and control (robustness). This
is achieved by an appropriate modification of the control objective and consideration of the fact that compen-
sation for uncertainties in any feedback loop can be made only within the bandwidth of the control channel.
The new objective is to track (both in transient and steady-state) the input and the output of an auxiliary
linear closed-loop reference system. This allows the use of high gains inside the adaptation block, thus achiev-
ing fast adaptation rates which are beneficial for both performance and robustness. The trade-o↵ between
these is resolved through the selection of an appropriate filter structure, thus allowing transient tracking to
be improved by increasing the adaptation rate without generating high-frequencies in the control signal.

The L
1

adaptive control approach has been applied to many problem [Cao and Hovakimyan, 2009, Sarhadi
et al., 2014, for example]. It has also been proposed for the control of quadrotors. Michini and How [2009]
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presented a design procedure for L
1

adaptive control output feedback control and demonstrated its potential
by applying it to an indoor quadrotor helicopter. Flight test results demonstrate that the designer specifica-
tions correspond to the expected physical responses. Mallikarjunan et al. [2012] designed and implemented
an L

1

adaptive controller using a backstepping architecture. Three variations were flight tested, and the best
results obtained for the variation that used a quarternion model description. De Monte and Lohmann [2013]
[also see De Monte and Lohmann, 2014] also combine a backstepping approach with an L

1

adaptive control
to account for the time-varying nonlinear error dynamics that arise from the backstepping design. Verifiable
bounds on the tracking error and input signals are provided. In Capello et al. [2013], a mixed deterministic-
randomized approach for the control law design of an L

1

adaptive controller is proposed. The controller is
tested in simulation and shows good performance. An L

1

adaptive controller is designed by Capello et al.
[2012] and implemented on a test platform. Experiments show better response characteristics than a PD con-
troller. Zuo and Ru [2014] proposed improving trajectory tracking for a quadrotor by combining feedforward
control with L

1

adaptive control. Bounds on the tracking error are given. Akkinapalli et al. [2014] presented
a quaternion-based backstepping controller for a hexarotor that uses L

1

adaptive augmentation for robust
attitude tracking.

The question of tolerance to failure of a quadrotor actuator/e↵ector has been addressed previously. Main-
taining hover while losing control of one degree-of-freedom (notably yaw) is an approach considered by, for
example, Mueller and D’Andrea [2015] [see also Mueller and D’Andrea, 2014] and by Lanzon et al. [2014].
Control allocation methods that use actuator redundancy in hexrotor or octorotor arrangements have been
proposed by, for example, Ad̂ır et al. [2011], Marks et al. [2012], Hamayun et al. [2015] and Alwi and Ed-
wards [2015]. A number of approaches to partial actuator failure have been investigated. For example, a
backstepping approach is described in Zhang et al. [2010], whilst a Lyapunov-based adaptive control strategy
is investigated in Zhang and Zhang [2010]. A model reference adaptive control approach is described by
Dydek et al. [2013], and an LPV model reference approach by Rotondo et al. [2015]. An approach that
incorporates trajectory replanning is proposed by Chamseddine et al. [2015]. A review of these and some of
the other approaches is provided by Zhang et al. [2013] and Zhang and Chamseddine [2012].

L
1

adaptive control does not appear to have been explicitly investigated for its fault tolerant properties
for quadrotors. Hence that is the theme of this paper. In the next section, the quadrotor model is described.
In Section 3, L

1

adaptive control is summarized. Section 4 describes the L
1

adaptive controller design. In
addition, a fixed-gain LQR controller with integral action is described. Simulations were performed for the
vehicle when subjected to actuator faults, some of the results are presented in Section 5, and the results for
the two controllers compared. Finally some conclusions are drawn.

2 Quadrotor Model

Dynamic modelling of small VTOL UAVs has been well covered in many sources. In this research, the
Newton-Euler approach is used [Bouabdallah et al., 2004b, Mian and Wang, 2008, Michini et al., 2011, for
example] with the following assumptions:

• the structure is rigid and symmetric,

• the propellers are rigid,

• the rotor thrust and the drag are proportional to the square of the speed of the rotor,

• the rotor axes are parallel and lie in the z direction,

• ground e↵ect is neglected,

• the inertia matrix is diagonal,

• the rotor Coriolis force and wind forces are not included,

• and the motor dynamics are ignored.

2

e805814
Text Box



B

z

y

x

R
1

f

1

, ⌧
1

R
2

f

2

, ⌧
2

R
3

f

3

, ⌧
3

R
4

f

4

, ⌧
4

E

Z

Y

X

R

Q

P

Figure 1: Quadrotor schematic

The basic vehicle configuration, Earth frame, E, and body frame, B, are shown in Figure 1. The body
frame has the axes originating at the center of mass of the vehicle. An inertial coordinate frame is fixed to
the Earth and has axes in the conventional North-East-Down arrangement. It is assumed that the Earth
is flat and stationary. Each rotor provides a thrust force, f

i

, and torque, ⌧
i

. These combine to a vector of
moments about the body axis, M = [L,M,N ]T and a thrust force in the negative z direction, �T .

The orthogonal rotation matrix S
b

to transform from body frame to Earth frame is [Cook, 2013]
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where c

✓

denotes cos ✓, s
✓

denotes sin ✓, etc and (�, ✓, ) is the standard Euler angle roll-pitch-yaw triplet.
The gravitational force vector, F

g

, in the body axis is
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where g is gravitational field constant which is taken as g = 9.81N kg-1.
The Newton-Euler equations of motion of the body axes frame are

F = mV̇ + ! ⇥mV, (3)

M = I!̇ + ! ⇥ I! (4)

where V = [U, V,W ]T is the vector of velocities in the body frame, ! = [P,Q,R]T is the vector of angular
rates in the body frame, I = diag(I

x

, I

y

, I

z

) is the moments of inertia matrix, m is the mass of the vehicle,
F = F

g

+ [0, 0,�T ]T is the vector of the forces acting on the center of mass, and M = [L,M,N ]T is the
vector of moments acting about the center of mass.

Expanding and rearranging (3) gives
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Similarly expanding and rearranging (4) gives
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The rotation matrix, S
b

, from (1) is used to express the movement of the vehicle in the Earth axes once the
body-centric velocities are known:
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The Euler angle rates are related to the body angle rates through
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A general state space model, ẋ = f(x,�), is obtained from (5), (6), (8) and (10) with state variables
given by

x =
⇥
U V W P Q R X Y Z � ✓  

⇤
T

, (11)

and control given by

� =
⇥
T L M N
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T

. (12)

The resulting model is
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2.1 Draganfly X-pro

The vehicle that is modelled for use in this work is the Draganfly X-pro quadrotor (developed by Draganfly
Innovations Inc) shown in Figure 2. The quadrotor arm length is 0.50 m. Each rotor has two blades. The
radius of the rotor is 0.258 m, and the mean chord of the blade is 0.032 m. A 14.8 V lithium-ion polymer

4



Figure 2: Draganfly X-pro

battery is used for supplying the electric power, this being the maximum voltage that can be supplied to a
motor. A full model of the vehicle has been obtained by wind-tunnel and other experiments [Mart́ınez, 2007].
The mass and inertia terms are

m = 2.356 kg, I

x

= 0.1676 kg m2

, (14)

I

y

= 0.1676 kg m2

, I

z

= 0.29743 kg m2

. (15)

2.2 Actuator model

The control is e↵ected by four actuators, each of which makes a contribution to the force and moment by
means of a thrust vector, ⌧

i

, i = 1, . . . , 4, that acts in the �z direction at the end of each arm as shown in
Figure 1. The rotors are driven by voltages to four electronic motors, the thrust-voltage relationship can be
expressed as [Mart́ınez, 2007]

f

i

= k

f

v

i

2

, i = 1, 2, 3, 4 (16)

where f

i

is the individual thrust from ith rotor, v
i

is the individual voltage input and k

f

= 0.11 N/V2 has
been calculated from the experimental data presented in Mart́ınez [2007].

The individual torque of each rotor is [Mart́ınez, 2007]

⌧

i

= k

⌧

v

i

2 (17)

where ⌧
i

is the individual torque from ith rotor and k

⌧

= 0.052 Nm/V2 is calculated from the data in Mart́ınez
[2007]. The force and moments are not linear with voltage, but linear with squared voltage, therefore the
squared voltages are used as the final full system model input vector, U = [v2

1

, v

2

2

, v

2

3

, v

2

4

]T .
The total thrust force provided is the sum of the forces provided by each rotor. The roll and pitch

moments are generated by di↵erences between the respective pairs of rotors. The yaw moment is generated
by the unbalanced torque of the four rotors. These are represented by a control allocation matrix, ⇤, such
that

� = ⇤U (18)
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where

⇤ =

2
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and l is the moment arm, which is 0.5 m [Mart́ınez, 2007].
In order to simulate the actuator failure, a failure model is also needed. A matrix � is defined as follow:

� = diag
⇥
�

1

�

2

�

3

�

4

⇤
�

i

2 (0, 1] , i = 1, 2, 3, 4 (20)

where �

i

denotes the thrust/torque fraction after failure. For example, �
1

= 0.6, means rotor 1 lost 40%
thrust/torque. Thus the full actuator model is:

� = ⇤�U. (21)

3 L1 Adaptive Control

The approach to the L
1

adaptive control taken here is to design an inner-loop state-feedback controller that
stabilizes the quadrotor for the nominal design case. An output feedback L

1

adaptive controller [Cao and
Hovakimyan, 2007a] is then wrapped around the stable inner loop to provide adaptation for failure and
modelling uncertainties; this follows the basic scheme of Michini and How [2009]. The approach was also
used by Ene et al. [2013] for a high manoeuvrability aircraft.

3.1 L
1

problem formulation

Consider the following MIMO nonlinear system with uncertainty input gain

ẋ(t) = Ax(t) +B
m

�(t)u(t) + f(t,x(t)), x(0) = x
0

(22)

y(t) = Cx(t) (23)

where x(t) 2 Rn is the measurable system state vector, u(t) 2 Rm is the control signal, y(t) 2 Rm is the
regulated output, A 2 Rn⇥n is known, B

m

2 Rn⇥m and C 2 Rm⇥n are known and constant, (A,B) is
controllable and (A,C) is observable. Matrix �(t) 2 Rn⇥n consists of unknown time-varying parameters
and f : R⇥ Rn ! Rn is a vector of unknown nonlinear functions.

Now consider the control
u(t) = u

1

(t) + u
2

(t). (24)

An inner-loop controller K
1

2 Rm⇥n is designed so that u
1

(t) = K
1

x(t) and A
m

= A �B
m

K
1

is Hurwitz
[Cao and Hovakimyan, 2008c]. The resulting system to be controlled by the adaptive control is

ẋ(t) = A
m

x(t) +B
m

�(t)u
2

(t) + f̃(t,x(t)), x(0) = x
0

(25)

y(t) = Cx(t) (26)

with the control signal, u
2

(t), generated by the adaptive controller and f̃ : R ⇥ Rn ! Rn is a vector of
unknown nonlinear functions that includes the B

m

(I ��(t))u
1

(t) term.

3.2 L1 adaptive control architecture

Figure 3 shows the main structure of this architecture which includes a state predictor block, a fast adaptation
block with projection-based adaptive laws, and the control law with a low-pass filter. The approach follows
that proposed in Hovakimyan and Cao [2010, Section 3.2] where further detail is presented.

Assume that the function f̃(t,x(t)) that represents the uncertainties and disturbances has the following
form

f̃(t,x(t)) = B
m

f
1

(t,x(t)) +B
um

f
2

(t,x(t)) (27)
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where B
um

2 Rn⇥(n�m) is a constant matrix such that BT

m

B
um

= 0 and [B
m

B
um

] has rank n so that


f
1

(t,x(t))
f
2

(t,x(t))

�
=

⇥
B

m

B
um

⇤�1

f̃(t,x(t)) (28)

We define the following state predictor [Hovakimyan and Cao, 2010, pp 144]

˙̂x(t) = A
m

x̂(t) +B
m

⇣
�̂u(t) + ⌘̂

1

⌘
+B

um

⌘̂
2

(29)

where x̂(t) is the state of the predictor, �̂ is the estimated uncertain input gain matrix and ⌘̂
i

= ✓̂
i

kx(t)kL1,t

+�̂
i

, i = 1, 2 where ✓̂
i

(t) and �̂
i

are vectors of the estimated parameters and

kx(t)kL1,t

:= max
0⌧t

✓
max

i=1,...,n

|x
i

(⌧)|
◆

(30)

is the L1-norm of the state, x, over all time prior to the current time, t.
The following adaption laws are defined for the estimated variables

˙̂
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⇣
�̂(t),�(x̃T (t)PB

m

)TuT (t)
⌘

(31)
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(34)

˙̂�
2

(t) = �proj
�
�̂

2

(t),�(x̃T (t)PB
um

)T
�

(35)

where x̃(t) = x̂(t) � x(t) is the predictor error, � 2 R
+

is the adaption gain, P is the solution to the
algebraic Lyapunov equation A

m

TP+PA
m

= �Q for Q = QT

> 1 and P = PT

> 0 and proj(·, ·) denotes
the projection operator defined in Appendix A. The projection operator ensures that the estimates remain
within allotted bounds.

The following are required for the subsequent definition of the adaptive control law:

H

xm

(s)
H

xum

(s)

�
= (sI �A

m

)�1


B

m

B
um

�
, (36)


H

m

(s)
H

um

(s)

�
= C


H

xm

(s)
H

xum

(s)

�
. (37)
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The linear control law is given in the Laplace domain by

u
2

(s) = �K
2

H
D

(s)⌘̂(s) (38)

where K
2

2 Rm⇥m is a feedback gain matrix, H
D

(s) is an m ⇥m strictly proper transfer function matrix,
⌘̂(s) is the Laplace transform of ⌘̂(t) which is

⌘̂(t) = K
g

r(t)�
⇣
�̂u

2

(t) + ⌘̂
1

(t) + ⌘̂
2m

(t)
⌘

(39)

where r(t) is the reference input, ⌘̂
2m

(t) is the inverse Laplace transform of the signal

⌘̂
2m

(s) = H
m

(s)�1H
um

(s)⌘̂
2

(s), (40)

and K
g

ensures the system output tracks the reference signal in the steady state. Transfer function matrix
H

D

(s) leads to a strictly proper stable low pass filter matrix, H
C

(s), with H
C

(0) = I. A block diagram of
the arrangement is shown in Figure 4. The transfer function matrix, H

C

(s), is

H
C

(s) = �K
2

H
D

(s) (I +�K
2

H
D

(s))�1

. (41)

K
g

H
D

K
2

⇧

r +

�

u
2

�̂

+

⌘̂
1

+

+

⌘̂
2m

+

Figure 4: Low Pass Filter for L
1

Adaptive Controller

4 Controller Design

4.1 LQR Inner-loop Controller

An LQR controller is designed as the inner-loop stabilizing controller, K
1

, described in Section 3.1. A
standard formulation is used [Stevens and Lewis, 2003, e.g.]. That is, for a linear system ẋ(t) = Ax(t)+Bu(t),
the control that minimizes the quadratic cost function

J =

Z 1

0

�
xTQx(t) + uT (t)Ru(t)

�
dt (42)

where Q and R are weighting matrices, is given by u(t) = �Kx(t), with

K = R�1BTP (43)

where P = PT � 0 is the solution to

ATP+PA+Q�PBR�1BTP = 0. (44)

Hence K
1

is set to this optimal controller.
A small perturbation linear model of (13) is required. Linearizing about the hover equilibrium state, x

0

and control u
0

gives
�ẋ = A�x+B�u (45)
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where �x and �u represents the small perturbations of the state and control about x
0

and u
0

respectively,
and

A =

2

664

0
1⇥6

0
1⇥3

0
1⇥1

�g 0
1⇥1

0
1⇥6

0
1⇥3

g 0
1⇥1

0
1⇥1

0
4⇥6

0
4⇥3

0
4⇥1

0
4⇥1

0
4⇥1

I

6⇥6

0
6⇥3

0
6⇥1

0
6⇥1

0
6⇥1

3

775 , (46)

B
m

=

2

664

0
2⇥1

0
5⇥3

�1/m 0
1⇥3

0
3⇥1

0
3⇥3

0
3⇥1

I�1

3

775 , (47)

and
u
0

=
⇥
v

h

2

v

h

2

v

h

2

v

h

2

⇤
T

(48)

where

v

h

=
q

(mg)/(4k
f

) (49)

is the voltage for each actuator required for hover condition. Hence we define u = U� u
0

.
The weighting matrices are chosen to be Q = 100I and R = I. The resulting inner-loop controller is

K
1

=

2

664

�11.46 0 �8.86 0 14.9 6.27 �7.07 0 �5.0 0 56.5 5.0
0 �11.46 �8.86 �14.9 0 �6.27 0 �7.07 �5.0 �56.5 0 �5.0

11.46 0 �8.86 0 0 6.27 7.07 0 �5.0 0 �56.5 5.0
0 11.46 �8.86 14.9 14.9 �6.27 0 7.07 �5.0 56.5 0 �5.0

3

775 .

(50)

4.2 L
1

adaptive controller design

Design of the state predictor, (29), is considered first. The L
1

adaptive controller is applied to a system of
the form in (25). Considering the system (22), we can obtain a model of f(t,x) by subtracting the linear
model (45) from the nonlinear model (13) giving

f(x) =

2

6666666666666666664

(✓ � s

✓

)g � (QW �RV )
(c
✓

s

�

� �)g � (RU � PW )
(c
✓

c

�

� 1)g � (PV �QU)
� ((I

z

� I

y

)/I
x

)QR

� ((I
x

� I

z

)/I
y

)RP

� ((I
y

� I

x

)/I
z

)PQ

(c
 

c

✓

� 1)U + (c
 

s

✓

s

�

� s

 

c

�

)V + (c
 

s

✓

c

�

+ s

 

s

�

)W
(s
 

c

✓

)U + (s
 

s

✓

s

�

+ c

 

c

�

� 1)V + (s
 

s

✓

c

�

� c

 

s

�

)W
�s

✓

U + (c
✓

s

�

)V + (c
✓

c

�

� 1)W
(t
✓

s

�

)Q+ (t
✓

c

�

)R
(c
�

� 1)Q� s

�

R

(s
�

/c

 

)Q+ (c
�

/c

✓

� 1)R

3

7777777777777777775

(51)

To simplify the calculations, we assume that � = I, hence f̂ = f and factor the unknown nonlinear part
f(t,x(t)) into matched component of unknown nonlinearity, f

1

(t,x(t)) and unmatched uncertainties, f
2

(t,x(t))
as in (27) with B

m

from (47) and

B
um

=

2

4
I

2

0
2⇥6

0
4⇥2

0
4⇥6

0
6⇥2

I

6

3

5 (52)

so that the required conditions that BT

m

B
um

= 0 and [B
m

B
um

] has rank 12 are both satisfied.
The adaption gain for the variable estimation in the adaptation laws, (31) is set to � = 1000, whilst

P 2 R12⇥12 is calculated from the algebraic Lyapunov equation with Q = I

12

. The bounds of the estimator
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parameters are chosen conservatively by trial and error, which the L

1⇢

r

= 40, B

10

= 10, L

1⇢

r

= 2 and
B

20

= 1, thus

�̂

1

2 [�40, 40]I
4

, �̂

1

2 [�10, 10]I
4

, (53)

�̂

2

2 [�2, 2]I
8

, �̂

1

2 [�10, 10]I
8

. (54)

The bound for uncertain gain matrix estimator is defined as

�̂ =

2

664

�̂

1

0 0 0
0 �̂

2

0 0
0 0 �̂

3

0
0 0 0 �̂

4

3

775 , �̂

i

2 (0, 1] , i = 1, 2, 3, 4. (55)

For the low pass filter design, H
D

(s) is simply chosen to be H
D

(s) = 1

s

I

4

, this leads to the low pass filter
matrix H

C

(s) = �K(sI
m

+�K)�1. The feedback gain matrix, K, is set to a K = kI

4

The output of the state space system is chosen to be the physical location and the yaw angle. The yaw
angle is used, because of in such a mission like surveillance, the camera direction is depends on the yaw
angle. The output of the system is chosen to be the vehicle position in the earth axes, and the yaw angle,

i.e. y =
⇥
X Y Z  

⇤
T

and since y = Cx, the output matrix C is

C =


0
3⇥6

I

3

0
3⇥2

0
3⇥1

0
1⇥6

0
1⇥3

0
1⇥2

1

�
. (56)

Finally, K
g

= �(C(A�BK
m

)�1B)�1, which ensures that the output y(t) tracks the reference r(t) at steady
state.

4.3 LQR+I Controller

The L
1

controller design is characterized by an integrating block in the H
D

(s) element along with the inner-
loop LQR controller. To test the adaptive properties of the L

1

controller, an LQR+I controller is designed
for comparative purposes as a non-adaptive controller but with similar structure to the L

1

controller. The
LQR+I controller is an LQR optimal controller based on an augmented plant model of the system that
includes integral action on the output error. The structure is shown in Figure 5.

LQR+I controller

R
K

i

B
R

A

K
p

C
r + ė

i

e
i

� u

+

+ ẋ x

�

y

�

Figure 5: LQR+I Controller

To augment the plant model with integral action, define the integral of the error as

e
i

=

Z
t

0

(r� y)dt, (57)
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giving the state equation

ė
i

= r� y, (58)

= r�Cx, (59)

so augmenting the plant model gives


ẋ
ė
i

�
=


A 0
�C 0

� 
x
e
i

�
+


B
0

�
u+


0
I

�
r (60)

with state feedback

u =
⇥
�K

p

�K
i

⇤ x
e
i

�
, (61)

= �K
p

x�K
i

e
i

. (62)

The controller
⇥
�K

p

K
i

⇤
is designed using the LQR method described in Section 4.1. The weighting

matrices are chosen to be Q = diag([100I
12

, 1000I
4

]) and R = I

4

.

5 Simulations

The model and controller are tested in simulation for the recovery performance to partial failures in the actu-
ators/e↵ectors. The failures are assumed to be a partial loss of input voltage that results in an instantaneous
decrease in the thrust of a rotor. It is assumed that a voltage loss also results in a loss of the maximum
voltage supplied to a motor. The maximum voltage is 14.8 V. From (49), to maintain hover a faulty voltage
supply must be able to supply v

h

= 7.28 V. Mapping this value to the failure model given by (20) gives a
range, �

i

2 (0.2420, 1.0].
Figure 6 shows the failure free transient response for both the LQR+I and L

1

controllers to a 1.0 m step
demand change simultaneously in both the X and Y positions. The performances are fairly comparable, with
a slightly faster response for the LQR+I controller at the expense of some additional altitude undershoot
and yaw deviation. The applied voltages are shown in Figure 7.

5.1 Failure at hover

The first test case considers the upset from hover of an instantaneous failure in i = 1 motor voltage supply
occurring at t = 1 second, that is

�

1

(t) =

(
1.0 for 0  t < 1.0

�̃

1

for 1.0  t

(63)

and �

i

(t) = 1.0 for i = 2, 3, 4.
For the LQR+I controller, simulation results for �̃

1

= {0.35, 0.4, 0.6, 0.8} are presented in Figure 8. The
vehicle is at steady state hover until t = 1.0 s. When the voltage supply fault occurs, rotor 1 loses some thrust
and there is a subsequent loss of altitude. It also generates a pitch moment with a resulting displacement
in the X position. The dynamic coupling also causes a smaller roll moment and a displacement in the Y

position. The change in rotation rate of rotor 1 also causes a yaw moment and resulting yaw rotation. Values
of �̃

1

. 0.34 result in an unstable response, the reason is that the reduced maximum supply voltage results
in a saturated motor demand. For �̃

1

= 0.35, the reduced maximum supply voltage is 8.76 V, which, from
Figure 9, is reached for a short time between 4 and 5 seconds.

For the L
1

adaptive controller, simulation results for �̃

1

= {0.3, 0.4, 0.6, 0.8} are presented in Figure 10.
Values of �̃

1

. 0.27 result in an unstable response for the same reason that the reduced maximum supply
voltage results in a saturated motor demand. This can be seen in Figure 11 for �̃

1

= 0.3. From the plots,
it is clear that the L

1

adaptive controller has a better performance, with reduced deviations from hover and
faster response. In addition it has a greater range of �̃

1

for which the system remains stable.
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Figure 6: Response to unit demand in X and Y positions – failure free case

0 5 10
time, t (s)

7.1

7.2

7.3

7.4

7.5

vo
lt
ag
e,

v
1
(v
)

L1

LQR+I

0 5 10
time, t (s)

7.1

7.2

7.3

7.4

7.5

vo
lt
ag
e,

v
2
(v
)

L1

LQR+I

0 5 10
time, t (s)

7.1

7.2

7.3

7.4

7.5

vo
lt
ag
e,

v
3
(v
)

L1

LQR+I

0 5 10
time, t (s)

7.1

7.2

7.3

7.4

7.5

vo
lt
ag
e,

v
4
(v
)

L1

LQR+I

Figure 7: The voltage input for each rotor in response to a unit demand in X and Y positions – failure free
case
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Figure 8: Output y(t) for Rotor 1 losses of thrust – LQR+I controller
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Figure 9: The voltage input for each rotor for Rotor 1 losses of thrust – LQR+I controller

5.2 Failure during transient

The second test case considers an intermittent failure during a manoeuvre responding to a 1.0 m step change
demand simultaneously in both the X and Y positions. The failure model in i = 2 motor voltage is

�

2

(t) =

8
><

>:

1.0 for 0  t < 1.0

0.5 for 1.0  t < 3.0

1.0 for 3.0  t

(64)
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Figure 10: Output y(t) for Rotor 1 losses of thrust – L
1

controller

and �

i

(t) = 1.0 for i = 1, 3, 4.
The responses shown in Figure 12 clearly show that the L

1

controller is better able to cope with the
intermittent failure, with a less oscillatory response and smaller deviations. Figure 13 shows that this better
performance is achieved by the adaptation to the failure in the voltage supply to rotor 2 by demanding a
greater voltage to that rotor.
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Figure 11: The voltage input for each rotor for Rotor 1 losses of thrust – L
1

controller
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Figure 12: Response to unit demand in X and Y positions – intermittent failure case
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Figure 13: The voltage input for each rotor – intermittent failure case
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6 Conclusions

This paper investigates the performance of an L
1

adaptive controller for the fault tolerant control of a
quadrotor. The proposed scheme uses an LQR controller to stabilize the vehicle in an inner loop, the L

1

adaptive controller is applied in the outer loop to estimate and compensate for the actuator uncertainty
resulting from failures. Whilst some conditions for the stability of non-linear systems subject to uncertainty
have been established for L

1

adaptive controllers [Hovakimyan and Cao, 2010], in practice these are rather
hard to determine except for trivial systems. A trial and error approach was hence used to design the
controller. The simulations show the adaptive properties of the controller to partial failures in the voltage
supply to the motors, and show the better performance of the L

1

adaptive controller compared to an LQG
controller with a similar structure and closed loop performance under non-failure conditions.

Although quadrotors cannot tolerate total failure of a rotor without loss of control of one of the degrees of
freedom, applying the L

1

adaptive controller to a hexrotor or octorotor would increase the reliability of such
vehicles without recourse to methods that require fault detection schemes and control reallocation [Marks
et al., 2012, Hamayun et al., 2015, for example].

The control scheme is tested in simulation of a simple model that ignores aerodynamic and gyroscopic
e↵ects. Hence for further work, testing with a fuller model [Mart́ınez, 2007] is recommended followed by
implementation on an actual platform and flight test. The e↵ect of sensor noise should also be considered
along with investigation into the influence of wind disturbances and tolerance to sensor failures. Furthermore,
performance at other flight conditions such as steady forward flight should be investigated. The consequence
of the loss of a complete e↵ector and the subsequent loss of control of a degree-of-freedom also needs exploring.
The question of whether this scheme can be extended to maintain control over fewer degreees-of-freedom in
a similar manner to Mueller and D’Andrea [2015] is an open one.
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A Projection operator

The projection operator is defined as:

proj(p, z) :=

8
><
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z� (r f)
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where f : Rn ! R is a smooth, convex function given by
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(66)

where p

max

is a norm bound imposed on the vector p, and "

p

> 0 is a chosen tolerance bound.
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