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9 Abstract

10 This paper assesses the potential use of a hyperspectral camera for measurement of yellow rust 

11 and fusarium head blight in wheat and barley canopy under laboratory conditions. Scanning of crop 

12 canopy in trays occurred between anthesis growth stage 60, and hard dough growth stage 87. Visual 

13 assessment was made at four levels, namely, at the head, at the flag leaves, at 2nd and 3rd leaves, and 

14 at the lower canopy. Partial least squares regression (PLSR) analyses were implemented separately on 

15 data captured at four growing stages to establish separate calibration models to predict the percentage 

16 coverage of yellow rust and fusarium head blight infection. Results showed that the standard deviation 

17 between 500 and 650 nm and the squared difference between 650 and 700 nm wavelengths were found 

18 to be significantly different between healthy and infected canopy particularly for yellow rust in both 

19 crops, whereas the effect of water-stress was generally found to be unimportant. The PLSR yellow 

20 rust models were of good prediction capability for 6 out of 8 growing stages, a very good prediction 

21 at early milk stage in wheat and a moderate prediction at the late milk development stage in barley. For 

22 fusarium, predictions were very good for seven growing stages and of good performance for anthesis 

23 growing stage in wheat, with best performing for the milk development stages. However, the root 

24 mean square error of predictions for yellow rust were almost half of those for fusarium, suggesting 

25 higher prediction accuracies for yellow rust measurement under laboratory conditions.
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291 Introduction

30 With the world’s population estimated to reach 9 billion by 2050, sustainable approaches to increase 

31 crop yield are a necessity (Hole et al., 2005; Godfray et al., 2010). Current farming practices are 

32 unsustainable, relying on external inputs and high-yield varieties susceptible to disease (Hole et al., 

33 2005). Site specific management of inputs would reduce the amount required (Wittery and Mallarino 

34 2004; Maleki et al., 2007). Among these resources, fungicide application may well be reduced by 

35 targeted site specific spraying (FRAC 2010). However, accurate measurement of fungal diseases is a 

36 main requirement for sustainable application of fungicides, and expected to contribute to the reduction 

37 and prevention of the spread of crop disease and the losses of quantity and quality incurred from them.

38 Fungal disease control is a large task for a successful production of cereals worldwide. Both yellow 

39 rust and fusarium are fungal diseases which infect small cereal crops, and are responsible for causing 

40 severe yield losses (De Vallavieille-Pope et al., 1995; Bravo et al., 2003). Yellow rust caused by 

41 Puccinia striiformis is a foliar disease, which can reduce crop yields by up to 40%. Alternatively known 

42 as stripe rust, the pathogen produces yellow uredo spores on the leaves. Infection starts with chlorosis 

43 occurring parallel to leaf veins, in a narrow 2 mm wide stripe, which develops later into multiple yellow 

44 coloured rust pustules (De Vallavieille-Pope et al., 1995). Disease presence can vary considerably 

45 between plants. In severe epidemics the yield can be reduced by up to 7 tonne ha-1 (Bravo et al., 2003). 

46 Fusarium head blight is one of the most important pre-harvest diseases worldwide, reducing yield 

47 quantity and quality. The most aggressive and prevalent fusarium strain is Fusarium graminearum, 

48 which is a highly pathogenic strain producing mycotoxins, which can become a significant threat to 

49 both humans and animals. Fusarium head blight symptoms in wheat and barley appear in the head and 

50 peduncle tissues, causing discolouration and early senescence. Disease presence can vary considerably 

51 between plants (Desjardin, 2006; Brennan et al., 2005; Leslie and Summerell, 2006; Rotter et al., 1996), 

52 hence, it is required to adopt site specific treatments of fungal diseases. 

53 Advanced methods for disease detection in crops are vital for improving the efficacy of treatment, 

54 reducing infection and minimising the losses to yield and quality. Traditionally, disease detection is 

55 carried out manually, which is costly, time consuming and requires relevant expertise (Schmale & 

56 Bergstrom, 2003; Bock et al., 2010a). Alternative methods of detection are needed to enable mapping 

57 the spatial distribution of yellow rust and fusarium head blight. Among those methods, optical sensing 

58 methods are recommended candidates since they are non-destructive and allow for fast and repeated data 

59 acquisition throughout the growing season without inhibiting crop growth. It was recognised by West et 

60 al., (2003) that although optical technologies are available for development into suitable disease 
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61 detection systems, many challenges are still needed to be overcome, and this is still arguably the case. 

62 Spectroscopy and imaging techniques have been used in disease and stress monitoring (Hahn, 2009). 

63 One of the optical methods reportedly used to measure disease in crops is hyperspectral imaging in 

64 the visible (vis) and/or the near infrared (NIR) spectral ranges. The reflectance at visible wavelength 

65 range is relevant to leaf pigmentation whilst the infrared wavelength range provides information 

66 on the physiological condition of the plant. The wavelength function for light intensity in 

67 hyperspectral imaging adds to the brightness information of the spectral image, providing a rapid 

68 image-contrast (Huang et al., 2007). Within the visible spectrum, the radiation reflectance from an 

69 environmentally stressed plant will increase. This is due to an increase in the incidence reflection 

70 within the leaf of a stressed plant (Cibula and Carter, 1992). Bélanger et al.,(2008) showed that disease 

71 could be quantified on detached leaves, and reported that the ratio of blue (near 440 nm) over green (near 

72 520 nm) intensities between the healthy and diseased tissue was significantly different shortly after 

73 inoculation. Using a vis-NIR imaging, Bravo et al.,(2003) detected early symptoms of yellow rust on 

74 winter wheat, with a quadratic discriminant model analysis, reporting a correct discrimination accuracy 

75 of 92–98%. To our knowledge none of the above studies incorporated the effect of water stress, in the 

76 prediction model of yellow rust and fusarium head blight intensity in cereal crops. Some studies have 

77 focused on bringing the technology to the field. However, the first step towards field application is to 

78 test the accuracy of the methods under laboratory conditions (allowing more control and observation 

79 of the crop), where disease and water stress are accounted for simultaneously. 

80 The aim of this paper is to assess the potential implementation and performance of a hyperspectral 

81 imager for recognition of yellow rust and fusarium head blight diseases in winter wheat and winter 

82 barley under laboratory conditions, with the intention to establish calibration models and a spectral library 

83 for potential use under mobile on-line measurement conditions. Both diseases (yellow rust and fusarium 

84 head blight) and water stress were introduced and accounted for.

85

86 2 Materials and methods
87 2.1 Wheat and Barley cultivation and inoculation

88 Treated seeds of winter wheat Triticum sativum (Solstice variety) and winter barley Hordeum 

89 vulgare L. (Carat Variety) were grown outdoors in 600 x 400 mm trays (depth of 120 mm), with 100 

90 seeds evenly sown and spaced in 5 parallel lines. After seeding the trays were predominantly rain fed, 

91 to reduce input of excess salts from treated tap water. Three treatments were adopted, where each 

92 treatment was triplicated in three separate trays. A total of 18 trays of wheat, and 18 trays of barley 

93 were grown for each of the following three treatments:
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94 1) Treatment 1 – Healthy: consisting of six trays of each that were kept healthy by applying a broad 

95 spectrum fungicide (Rubric and Epoxiconazole, at a rate of 1 l ha-1).

96 2) Treatment 2 – Naturally (non-inoculated) yellow rust infected: consisting of six trays that were 

97 not treated with fungicide, as these were to represent the more heavily infected yellow rust trays, and 

98 were not inoculated with fusarium.

99 3) Treatment 3 – Fusarium inoculated: consisting of six trays of each that were infected with fusarium 

100 as the crop first reached anthesis growing stage (Figure 1).

101 When the crop growth reached ‘booting’ growth stage 45 on the Zadoks scale (Zadoks et al., 1974), 

102 half of trays in each treatment were water stressed using a transparent tarpaulin and water content was 

103 monitored throughout the growing season using a moisture-probe ML3 Thetakit (Delta-T Devices Ltd, 

104 Cambridge, UK). Yellow rust occurred naturally in the crops as early as growth stage 30. Therefore, 

105 half of the crop trays were treated early with fungicide to fulfil treatments 2 and 3. This allowed for a 

106 difference in intensity of yellow rust disease. Fusarium inoculation was applied to trays in treatment 

107 3 at the anthesis crop growth stage. The spores were first cultivated in the laboratory by using the 

108 following method. A 2% wheat agar was produced using 100 ml distilled water, with 2 g agar and 2 g 

109 milled wheat. This was autoclaved at 120°C. Plates were poured to a consistent depth, and 

110 inoculated with Fusarium graminearum. The plates were grown for 5-7 days under UV light as this 

111 was shown to help cause sporulation (Leach, 1967). The agar plates were subsequently agitated with 

112 distilled water to suspend the spores with the concentration increased as necessary by gentle use 

113 of the centrifuge. Spore concentrations were standardised at approximately 106 ml-1 using 

114 serial dilutions and a haemocytometer. Every 1 m2 of crop ear was inoculated with 100 ml of the 

115 suspension, which is an adapted method from Lacey (1999). These trays were then kept under a high 

116 humidity conditions for 24 hours.

117

118 2.2 Disease assessments

119 A common approach for disease assessments and general crop health is by visual inspection known as 

120 diagnosis (Oberti et al., 2014 ). Chiarappa (1981) defined two distinct quantitative disease 

121 measurements: 1) Disease incidence, which is the percentage of infected plants to the healthy and 2) 

122 Disease severity, which is the amount of expressed disease tissue of a plant. These disease parameters 

123 can be assessed objectively, with some potential risk of subjectivity. In the current work, we 

124 considered the disease severity measured as % coverage. Each tray was assessed for both diseases at 
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125 four levels, namely, at the head (when present), at the flag leaves, 2nd and 3rd leaves (mid canopy), and 

126 at the lower canopy, as explained next;

127 1) For fusarium infection, only the head of the crop was assessed, since fusarium head blight symptoms 

128 in wheat and barley usually only appear in the head and peduncle tissues, causing discolouration and 

129 early senescence. Earlier visual symptoms consist of a characteristic purple/pink discolouration. The 

130 seed from fusarium head blight affected crop is often shrunken, with a bleached appearance (Andersen, 

131 1948; Goswami and Kistler, 2004; McMullen et al., 1997; Parry et al., 1995). Impey (2012) confirmed 

132 the presence of fusarium leaf lesions in Herefordshire, the leaf lesions are very unusual, and found 

133 only in heavy infections. 

134 The assessment of fusarium head blight considered both early and later symptoms. During the course 

135 of the study the wheat and barley ears were categorized as healthy (0% infected), early infection, where 

136 ears showed early symptoms with half the ears expressing late symptoms (around 50% infected), high 

137 infection (around 75% infected) and full infection, where all the ears in the inoculated trays showed 

138 late symptoms (around 100% infected). 

139 2) For yellow rust infection, the three foliar levels were assessed for percent coverage of yellow rust 

140 lesions. Infection starts with chlorosis occurring parallel to leaf veins, in a narrow 2 mm wide stripe, 

141 developing into multiple yellow coloured rust pustules (De Vallavieille-Pope et al., 1995). Average 

142 disease coverage was given for all the plants in the assessment area at the three different stages. As 

143 it’s needed for each ground truth plot to have a singular assessment for the later analysis, the data from 

144 each stage was combined and weighted appropriately according to HGCA (2008) recommendations; 

145 that 80% of a wheat yield can be calculated from the top 3 leaves (Figure 2).

146

1472.3 Hyperspectral data capture
148

149 A push broom hyperspectral imager (spectrograph) (HS spectral camera model from Gilden Photonics 

150 Ltd., UK) was used to capture high-resolution (1,608 pixels) line images over 1 second, using a diode 

151 array detector. It is a 12 bit Basler piA 1600-35 gm camera, with Schneider-Kreuznach XNP1.4/23 lens 

152 and has a pixel pitch of 7.4 μm interpolated/averaged to 0.6 nm readings with a spectral range of 400 - 

153 1000 nm. The reflected light from the target travels through the lens, past an entrance slit through a 

154 series of inspector optics in the spectrograph and then split by the prism dispersing element into different 

155 wavelengths. This sensor was chosen for its potential for being applied to crop canopy measurements, 

156 and was of a lower price compared to comparable sensors, commercially available in the market.
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157 The spectral data was captured at three separate places along the crop tray at slightly different positions. 

158 Captured in the form of a line array, each pixel has a spectrum and one detector per pixel across the 

159 swath. In order to compile a full image, every line across a target must be captured (Gilden 

160 Photonics Ltd, Glasgow, UK). When configured on a consistent moving platform, the imager 

161 sweeps across an area to build up an image. Due to practical constraints of applying a consistent 

162 moving platform, the spectraSENS v3.3 (Gilden Photonics Ltd, Glasgow, UK) software was adapted 

163 to record a single line array, which required an additional RGB photo taken by a 5 megapixel camera 

164 with a 3.85 mm f/2.8 lens at the same time of image capture, so that the scanned area could be 

165 comprehended. Two laser pointers were added at each side of the hyperspectral imager to indicate the 

166 area of the canopy to be scanned (Figure 3). The laser pointers were shut off when the spectral image 

167 was captured to remove any interference. The collected scans were corrected by means of a dark 

168 and a white reference (spectralon 99% white reflectance panel) providing the relative reflectance. The 

169 latter was used before spectral capture, and at 10 minute intervals until scanning was completed. The 

170 optimal configuration of the push broom hyperspectral imager including light sources was 

171 optimised in the laboratory (Whetton et al., 2016). A schematic illustration of the configurations can be 

172 observed in Figure 3, where two 500 watt diffused broad spectrum halogen lamps were positioned at 

173 either end of the crop sample tray. Light angle was kept constant at 45°, which is suggested as the optimal 

174 angle to provide the strongest response (Huadong, 2001). The optimal configuration adopted included 

175 integration time, light height, light distance, camera height, and camera angle, of 50 ms, 1.2 m, 1.2 m, 

176 0.3 m and 10°, respectively (Whetton et al., 2016). These configurations were used in the current work, 

177 for crop canopy scanning that started at booting growth stage 60 on Zadok’s scale and continued until 

178 reaching ripening at growth stage 87. Four scans collected at four growth stages are considered in this 

179 study for both wheat and barley: 1) at anthesis (GS 60), 2) at kernel development; early milk (GS 72), 

180 3) at kernel development; late milk (GS 77), and 4) hard dough (GS 87) (Table 1). 

181 2.4 Data pre-processing and modelling
182

183 If the spectral data are too noisy there is a risk that key features of the spectrum are hidden, which 

184 necessitates smoothing to remove noise. But, aggressive smoothing can also remove significant 

185 features (Dasu & Johnson, 2003), hence the need for a gentle smoothing to avoid losing of useful 

186 spectral features. Furthermore, a noisy spectrum can result in poor model performance, due to noise 

187 being considered a feature. Thus, the first step towards successful measurement should be to obtain a 

188 good quality spectrum. This was ensured in the current work by adopting the optimal configurations 

189 established in Whetton et al., (2016). The three lines of captured spectral data from each tray at each 
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190 time were averaged first, before they were linked with the visual crop assessment. The spectral range 

191 outside of the 400 to 750 nm range was removed as it was noisy. The first and last 320 pixels from each 

192 line scan were removed due to variation and risk of overlapping the crop to the surrounding background. 

193 Both these pre-processing steps of the data are in line with Whetton et al., (2016). The spectral data 

194 was averaged to reduce the number of wavelengths (variables), which was successively followed by 

195 maximum normalisation, Savitzky–Golay first derivative and smoothing (Mouazen et al., 2006). 

196 Maximum normalisation is typically used to get all data to approximately the same scale, or to get a 

197 more even distribution of the variances and the average values. The maximum normalisation is a 

198 normalisation that “polarizes” the spectra. The peaks of all spectra with positive values scale to +1, 

199 while spectra with negative values scale to −1. Since all soil spectra in this study have positive values, 

200 the peaks of these spectra scaled to +1. This scaled spectra between 0 and +1. Using the Savitzky–

201 Golay first derivative enables the computation of  the first or higher-order derivatives, including a 

202 smoothing factor, which determines how many adjacent variables will be used to estimate the 

203 polynomial approximation used for derivatives. A second order polynomial approximation was 

204 selected. A 2:2 smoothing was carried out after the first derivative to decrease noise from the measured 

205 spectra. All pre-processing steps were carried out using Unscrambler 10 software (Camo Inc.; Oslo, 

206 Norway).

207 Analysis of variance (ANOVA) was used to analyse two spectral indices captured at growth stage 

208 72. A factorial treatment structure was incorporated to test for differences between disease type 

209 (healthy, fusarium, yellow rust), water treatment (watered, water-stressed) and crop type (barley, 

210 wheat). In addition, a contrast was used to test for differences between healthy and diseased trays and 

211 between the different diseases. Analysis of the index SD was done on a log scale, whilst analysis of 

212 SQdiff was done on a sqrt scale to ensure homoscedascity of variance. GenStat 18th Edition (© VSN 

213 International Ltd, Hemel Hempstead, UK) was used to compute the ANOVA tables.

214 Principal component analysis (PCA) was used to investigate the multivariate hyperspectral 

215 response over the different scanning intervals for barley and wheat data separately. The first two 

216 principal components accounted for 92% of the variation in both the barley and wheat data. 

217 Consequently, for both crops, PCA provides a reasonable summary of the hyperspectral response 

218 in two dimensions. 

219 Separate PLSR analyses were applied to each of the four scanning intervals to establish quantitative 

220 models to predict yellow rust and fusarium head blight infection (Table 1). This means that for 

221 each crop four PLSR analyses were carried out. Before PLSR analysis, data were divided into two sets 

222 of 80% (e.g., 43 samples) and 20% (e.g., 11 samples), representing the calibration and prediction 
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223 data sets (Tables 2 and 3), respectively. The pre-processed spectra and visual assessments of yellow 

224 rust and fusarium head blight of the calibration dataset were subjected to PLSR with leave-one-out 

225 full cross-validation to establish calibration models. The performance of these models was 

226 evaluated by predicting crop disease using the prediction dataset. Separate models for wheat and 

227 barley were developed and evaluated for yellow rust and fusarium head blight. The following models 

228 were developed and validated:

229 1) Yellow rust prediction in wheat and barley, estimated as % of disease symptoms spread on the leaves. 

230 This was referred to as yellow rust % coverage.

231 2) Fusarium head blight prediction in wheat and barley, estimated as % of infected ears. This was 

232 referred to as fusarium % coverage.

233 For both models, a logit transformation of the % coverage response was applied to ensure 

234 homoscedascity of variance. The inverse LOGIT function (exp(p)/(1+exp(p)) was applied before 

235 assessment of the prediction results. PLSR analysis was carried out using Unscrambler 10 software 

236 (Camo Inc.; Oslo, Norway). Outliers were detected, and removed to a maximum of 5% of the total 

237 input data. The model performance was evaluated in cross-validation and prediction by means of 

238 coeefecient of determination (R2), root mean square error of prediction (RMSEP) and ratio of 

239 prediction deviation (RPD), which equals standard deviation divided by the RMSEP. In order to 

240 compare between the performances of the developed models we proposed classifying RPD values into 

241 the classes mentioned in Table 4. The entire pre-processed spectrum was used in both the PCA and 

242 PLSR analyses.

243 3 Results and discussion
2443.1 Crop canopy spectra
245

246 Example of crop canopy spectra for wheat and barley are shown in Figure 4. The spectral signatures 

247 were selected to demonstrate clearly the variations in shape. An arrows have been added to highlight 

248 wavelengths that define spectrum regions containing the most visible variation between the two crops.  

249 In Figure 4, wheat has higher reflectance. This may be due to the particular spectrum selected, as 

250 generally the reflectance intensities of wheat and barley were witnessed to be similar. However, it may 

251 also be attributed to the larger leaf area of wheat, which reflected more light than barley, which has 

252 smaller surface area. Within the visible range of 400–550 nm, there is low reflectance due to larger 
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253 absorption of the light, attributed to the photosynthetic pigments of the plant leaves, governed by the 

254 abundance of chlorophyll, which absorbs most of the light radiation (Gates et al., 1965; Thomas & 

255 Gausman, 1977). Both plant chlorophylls and carotenoids have strong absorption at 480 nm, the 

256 waveband associated with blue colour (Hunt et al., 2013). Another interesting band at 670 nm 

257 (associated with red colour band at 680 nm) can be linked with chlorophyll a absorption that also 

258 appears at 550 nm (Hunt et al., 2013). The latter wavelength is designated as the green leaf reflectance 

259 (Buscaglia and Varco, 2002 and Zhao et al., 2005). The strongest absorption wavelength band appears 

260 at the red edge around 715 nm, with deeper absorption in the barley spectrum than in wheat. Raper 

261 and Varco (2015) found that the strongest wavelength correlations with leaf nitrogen concentration, 

262 yield and plant total nitrogen content are near 700 nm. Further analysis of these bands as linked with 

263 crop diseases studied is discussed below. 

264 Average spectra of healthy, yellow rust and fusarium head blight infected wheat crop canopies at growth 

265 stage 72 are plotted in Figure 5. While plots a, b and c juxtapose irrigated and water stressed spectra, plot 

266 d compares between healthy and infected canopies under irrigated conditions. Generally, all spectra 

267 are similar, although slight differences can be observed by close examination of individual plots 

268 (Figure 5, b and c). The water-stressed spectra are less reflective than watered spectra, particularly 

269 for yellow rust (Figure 5a). Slight differences in spectral shape can be observed in the healthy canopy 

270 (a), which is in line with the findings from Earl and Davis (2003) who attributed these differences to 

271 alterations in leaf internal structure, variations in leaf angle (due to wilting) and leaf area index. Lower 

272 reflectance at the green edge (500-570 nm) and red edge (670-750 nm) can be attributed to water 

273 stress. However, these slight differences may indicate that water-stress has only slight influence on crop 

274 canopy, hence, on the performance of PLSR models in predicting yellow rust and fusarium head blight. 

275 The influence of water stress on yellow rust infected crop canopy is more obvious, where the water-

276 stressed spectrum is consistently of lower reflectance (higher absorption) than the watered spectrum 

277 throughout the entire waveband (Figure 5b). This indicates that water stress may have a considerable 

278 influence on yellow rust prediction. However, spectra pre-processing e.g., maximum normalization used 

279 in this study will eliminate difference in reflectance e.g., due to scattering, as all spectra will be scaled 

280 between 0-1. Only a small deviation is observed between fusarium head blight infected spectra 

281 (Figure 5c), indicating little effect of water stress on fusarium head blight prediction. This is supported 

282 by the statistical analysis of the indices discussed below (Table 6).  

283 A close examination of Figure 5d indicates notable differences in spectra between healthy, yellow rust 

284 and fusarium head blight infected crop canopies under watered conditions. The healthy spectrum is of 

285 lower reflectance than both infected spectra in the range between 400 to 700 nm. This could be 

286 attributed to larger photosynthetic pigments of the plants associated with chlorophyll (Gates et al., 
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287 1965; Thomas and Gausman, 1977). Cibula and Carter (1992) reported larger reflectance in infected 

288 leaves than healthy leaves, which is in line with findings of the current study. Indeed, after crop 

289 infection from foliar diseases, such as yellow rust, noteworthy visual symptoms can usually be 

290 observed. Early symptoms such as chlorosis, associated with a reduction in chlorophyll results in 

291 increasing reflectance due to a reduction in light absorption (Lorenzen and Jensen, 1989). Therefore, 

292 the sharpest increase in reflectance from 650 to 700 nm takes place in the healthy spectrum. Figure 6 

293 compares between the average spectra of healthy, yellow rust and fusarium head blight infected barley 

294 canopy at growth stage 72. The water-stressed canopy spectrum shows more reflection or less 

295 absorption than the watered canopy spectrum for the healthy canopy in Figure 6a. This may reflect 

296 the darker (greener) canopy of the watered canopy resulting in larger absorption of light. This is in 

297 line with findings of other researchers, who have attributed the increased reflectance of the healthy 

298 canopy to early senescence caused by drought, and a reduction in chlorophyll absorption (Jamieson 

299 et al., 1995; Hunt et al., 2013). With yellow rust infected canopy (Figure 6b), the opposite trend can 

300 be observed, where higher reflectance is shown for the water-stressed canopy. This trend is observed 

301 in both the wheat (Figure 5b) and barley (Figure 6b) canopies, indicating a larger influence of yellow 

302 rust on crop canopy when combined with water stress, compared to fusarium (Figures 5c and 6c), 

303 where the differences between watered and water-stressed are minimal. As for wheat canopy, yellow 

304 rust infected canopy has again the highest reflectance, compared to those of fusarium head blight and 

305 healthy canopies (Figure 6d). The % coverages of yellow rust and fusarium head blight is larger in 

306 wheat than in barley. In wheat, yellow rust watered canopy have an average infection of 42%, yellow 

307 rust water stressed 45%, fusarium watered 83%, fusarium water stressed 86%, whereas in barley, 

308 these are 36%, 33%, 48% and 52%, respectively.  

309 In order to quantify differences between healthy, yellow rust and fusarium head blight infected spectra 

310 two indices were taken into account in this study, namely, standard deviation (SD) of all wavelengths in 

311 the 500-650 nm range and squared difference (SQdiff) of 650 and 700 nm (Table 5). Moshou et al., 

312 (2004) recommended the use of wavelength range between 460 and 900 nm for successful yellow rust 

313 detection. Bauriegel (2011) recommends spectral analysis using the range intervals of 500–533 nm 

314 (green), 560–675 nm (yellow), 682–733 nm (red) and 927–931 nm (red edge) for recognition of 

315 Fusarium head blight infection (in growth stages 71–85, according to zadoks scale). Krishna, et al., 

316 (2014), suggested particularly useful spectra wavelengths of 428, 672, and 1399, for quantitative 

317 detection of yellow rust from healthy crop. 

318 These two proposed indices show clear differences in response both in the different crops and the 

319 different treatments. The largest differences are observed between infection type, a significant F statistic 
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320 of F1,24=1199 (p<0.001) and F1,24=33 (p<0.001) was observed for the comparison between fusarium 

321 infection and yellow rust infection, for index SD and SQdiff respectively.  

322 Analysis of the index SD revealed significant differences in response in barley and wheat (F1,24=94.59, 

323 p<0.001) and big differences between healthy and diseased trays (F1,24=874.11, p<0.001). The largest 

324 differences were observed between fusarium infection and yellow rust infection (F1,24=1199.23, 

325 p<0.001). In contrast, there was no evidence of a significant main effect of water stress (F1,24= 1.79, 

326 p=0.193), meaning that on average (over all disease types and crops) there is no evidence of a difference 

327 in the SD index for watered and water stressed trays. However, analysis of the index SD does 

328 demonstrate a significantly different response to water stress both within different crops and under 

329 different disease infections (full ANOVA table is given in Table 6), i.e. the response to water stress is 

330 not the same in the different conditions.

331 Analysis of the index SQdiff revealed significant differences between healthy and diseased trays 

332 (F1,24=12.66, p=0.002) and also significant differences between fusarium infection and yellow rust 

333 infection (F1,24=33.29, p <0.001). Moreover, different responses in the different crops was observed 

334 (F1,24=7.61, p=0.011) with a significant interaction between crop type and disease type indicating the 

335 index SQdiff responds differently to disease type in the different crops (F1,24=9.88, p=0.004). There was 

336 no evidence to suggest a differing response to water treatment (F1,24=0.07, p=0.799).

337 Although the largest SQdiff in reflectance between 650 and 700 nm is observed for the healthy canopy 

338 (both watered and water-stressed) of wheat, the smallest SD is observed for yellow rust (Table 5). For 

339 the barley canopy, the largest SD and SQdiff can be observed for fusarium head blight infected 

340 canopies, indicating that these proposed two indices respond differently for different crops (Table 5). 

341 Consequently, the two indices adopted in the current work highlight a distinguishable difference 

342 between the yellow rust, fusarium head blight and healthy wheat and barley crop canopies. It is 

343 important to mention that whilst these indices have worked in establishing a difference between 

344 yellow rust, fusarium and a healthy canopy at growth stage 72 in this paper, it may be specific to the 

345 method and equipment used. Further work should be undertaken to assess the reliability of such 

346 indices, if captured at different growth stages, under different circumstances, with alternative 

347 equipment. This is an important point to make as a strong correlation of time to spectral change was 

348 observed through PCA. The first two PCs (principal components) are shown in Figure 7 (for wheat) 

349 and figure 8 (for barley). The separation of observations in this two-dimensional representation is 

350 strongly associated with the time of scanning. Moreover, very little association with disease 

351 coverage could be discerned.  This demonstrates that in the captured data when all timings are 

352 considered, the strongest influence on the canopies reflectance is time. These results supported the 

353 decision to split the scans per time of capture, for the PLSR of yellow rust and fusarium predictions.
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354

355 3.2 Model performance for yellow rust detection

356 The PLSR cross-validation and prediction results for yellow rust detection in are shown in Table 7. 

357 Separate PLSR were carried out for each time intervals of T1, T3, T5 and T7 for barley and T2, T4, 

358 T6 and T8 for wheat (Table 1). The cross-validation results indicate good model performance for yellow 

359 rust % coverage in wheat and barley (R2 values for wheat are 0.82, 0.92, 0.77 and 0.84, for T2, T4, T6 

360 and T8 and barley 0.88, 0.78, 0.76 and 0.83 for T1, T3, T5 and T7, respectively), showing low root 

361 mean square errors of cross-validation (RMSECV) ranging from 3.3 to 8.8%. In general, the barley 

362 cross-validation results for yellow rust, have a slightly lower R² values and larger RMSECV than the 

363 corresponding values for wheat (Table 7). As yellow rust is a foliar disease, this reduction in prediction 

364 performance for barley may be attributed to the crop having a smaller flag leaf, and due to density of 

365 the crop, causing a smaller foliar area to be captured by the hyperspectral imager.

366 When the developed PLSR models where used to predict the yellow rust % coverage of 20% of samples 

367 (11 samples) in the prediction set, the RMSEP values in both wheat and barley show larger values in the 

368 predictions than in the cross-validations. However, RMSEP is a valuable index for assessing individual 

369 model performance, but is not recommended to compare the performance between different models 

370 (e.g., those for wheat and barley and between different growing stages), due to the different data range. 

371 To compare between the performances of different models, RPD was used in this work, according 

372 to the RPD classes proposed in the current work (Table 4). The RPD values for prediction of each 

373 timing (growth stage), shown in Table 7, suggest good prediction capability for 6 out of 8 growing 

374 stages (RPD ranges of 2.16-2.49 in wheat and 2.18-2.43 in barely), a very good prediction for T4 

375 (kernel development, early milk (GS 72) in wheat (RPD = 2.79) and a moderate prediction capability 

376 for T5 (kernel development; late milk (GS 77) in Barely (RPD) = 1.83). 

377 It is well known in spectral analysis that successful measurement of a concentration, be it soil properties 

378 or other, depends on presence of variability of that said concentration. For example, Kuang and 

379 Mouazen (2011) reported that although larger R2 and RPD can be obtained with larger variability in 

380 soil analysis, larger RMSEP is to be expected. Furthermore, with a small variability, weak or even no 

381 correlation can be established with PLSR, so that no models can be developed. Having said that, we 

382 believe that the scale of variability in % coverage of yellow rust is rather small (Tables 2 & 3), although 

383 a reasonably high infection is recorded at few points (see the mean and SD values). The small 

384 variability may be due to the experiment being run in trays under rather controlled conditions, where 

385 only water is varied artificially. These controlled conditions may lead to small variability in yellow 

386 rust (Tables 2 & 3). The percentage of disease coverage which is a method discussed by Chiarappa 
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387 (1981) and defined as “disease severity”, is the amount of expressed disease tissue of a plant. This 

388 method can be objective, but is definitely not free of subjectivity. In the current study all 

389 assessments are made by the same individual, which decreases the between assessment variability due 

390 to the subjective nature of the measurement. The more spectral wavelength indices captured and 

391 accounted for, the greater understanding of the object (Gilchrist, 2006). However, for noisy spectra 

392 there is a need to minimise noise in the signal, by adopting an optimised measurement configuration 

393 (Whetton et al., 2016) and suitable spectra pre-processing. Furthermore, stresses in the field are 

394 combined and might include water stress, nitrogen stress, disease stress, and other stresses that are 

395 mainly reflected on crop canopy as a yellowing of the leaves. In the current work we have combined 

396 water stress and yellow rust infection in the tray experiments, to evaluate the prediction accuracy 

397 of the yellow rust models. 

398 The results obtained in this study for yellow rust prediction encourage exploring the ultimate goal of 

399 the current study, which is on-line measurement of yellow rust in the field using the hyperspectral 

400 imager (400 – 750 nm). However, additional affecting parameters exist in the field on top of the water 

401 stress accounted for in the current study, and these should also be evaluated. Using wheat trays under 

402 glass house controlled conditions, Moshou et al. (2014) reported successful discrimination of water-

403 stressed from healthy plants with 99% accuracy. Their approach was based on a combination of 

404 hyperspectral (460–900 nm) and fluorescence imagery and machine learning models. The early 

405 success in field studies for hyperspectral imager’s detection of yellow rust disease such as Moshou et 

406 al. (2004) and Bravo et al. (2003) focused on the presence of yellow rust in the field, not necessarily 

407 the intensity. Typically disease recognition attempts with hyperspectral and multispectral imaging are 

408 targeted to leaves rather than the canopy (Bock et al., 2010b). Whilst recent attempts using lower cost 

409 solutions for disease quantification in wheat based on RGB images (Zhou et al., 2015) provided larger 

410 error margins. Compared to other studies the current work achieved moderate to very good accuracy 

411 based only on a relatively cost-effective hyperspectral camera in the visible range only. In addition, we 

412 have accounted for the effect of water stress in the experimental trial, hence, this effect was included 

413 in the PLSR prediction models.

414

415 3.3 Model performance for fusarium head blight detection

416 The cross-validation results for % coverage of fusarium head blight indicate good model performance 

417 in both wheat and barley (R2 values for wheat are 0.84, 0.89, 0.81 and 0.83, for T2, T4, T6 and T8 and 

418 barley 0.95, 0.83, 0.75 and 0.79 for T1, T3, T5 and T7, respectively), with RMSECV range of 8.6 to 

419 29 % in wheat and 14 to 25 % in barley (Table 7). However these RMSECV ranges are higher than 



14

420 those calculated for yellow rust. The lowest R² for cross-validation was once again for the late milk 

421 stage. Due to the method of inoculation explained-above, there was little variability observed in fusarium 

422 head blight disease intensity per timing (growing stage). Although the relatively low variability recorded 

423 for fusarium, the cross-validation results for both wheat and barley indicate good model performances 

424 (Table 7).  

425 The prediction results indicate larger RMSEP values for fusarium head blight (RMSEP = 7.9 – 16.1 % 

426 for wheat and 10.4 – 15.1 % for barley) are calculated than those for yellow rust (RMSEP = 7.2 – 8.8 % 

427 for wheat and 7.2 – 8.1 for barley). However, for RPD, the opposite case is true. According to RPD values, 

428 good (for one growing stage) to very good (for three growing stages) predictions are recorded for fusarium 

429 in wheat, whereas very good predictions are calculated for the four growing stages in barley (Table 7). 

430 Also, higher RPD values are calculated for the prediction of fusarium head blight in both crops. The lower 

431 RMSEP values calculated for yellow rust than those for fusarium suggest higher prediction accuracy for 

432 yellow rust (smaller error). This means that yellow rust can be detected with higher accuracy than 

433 fusarium head blight, an observation to be taken into account for future variable rate applications or 

434 relevant fungicides. 

435 Fusarium head blight symptoms appear on crop heads at a late stage in the crop growing season 

436 (normally only after anthesis, but potentially at head emergence), allowing for limited number of 

437 scans to be collected. Bauriegel et al. (2011) claimed that fusarium head blight can be detected by 

438 spectral analysis in the spectral range of 400–1000 nm, with an identification accuracy of 87%. These 

439 authors advised that the ideal timing for measurement at the medium milk stage (growth stage 75), 

440 though the scans were based on the crop ears against a black background. Delwiche et al. (2011) 

441 successfully differentiated between healthy kernels from fusarium head blight infected, 

442 reporting a 95% classification accuracy. The results reported in the current study support the previous 

443 findings, as the highest prediction performance is recorded for the kernel development stages, at both 

444 the early and late milk. Bauriegel et al. (2011) have also reported the highest measurement accuracy 

445 of fusarium in the milk kernel development stage. However, the relatively lower RPD scores in the 

446 earlier scans (T1 for barley and T2 for wheat), may be attributed to a smaller standard deviation of the 

447 data sets (Tables 2 and 3). 

448 In order to account for the temporal dependence in observations over the different scanning intervals 

449 collected at the four growing stages in this study (Table 1), it was necessary to run a separate PLSR 

450 analysis for each growing stage. This has resulted in a rather small number of samples for each PLSR 

451 analysis (e.g., 43 and 11 for the calibration and prediction sets, respectively). Therefore, it is necessary 

452 to consider a larger dataset in the PLSR analysis in a future work, and to explore new methods of data 
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453 analysis based on machine learning and/or image processing, or adopt a modelling approach that can 

454 explicitly account for temporal dependence/repeated measures structure. It is also suggested to adopt a 

455 data fusion approach of both spectra and images, which is expected to provide more reliable model 

456 prediction performance. However, the results reported in this work are successful and encouraging 

457 to suggest testing the proposed hyperspectral technique in the visible range of 400-750 nm, coupled 

458 with PLSR as a potential tool for on-line measurement of the named two fungal diseases. However, 

459 there are other affecting parameters in the field than water stress that should be accounted for, 

460 which include within field variability in soil properties, varying ambient light, sensor-to-crop 

461 canopy height and angle.  

462

463 4 Conclusions

464 The study explored the potential of a hyperspectral line imager (400-750 nm) for the detection of 

465 yellow rust and fusarium head blight in wheat and barley, based on partial least squares regressing 

466 (PLSR) analysis. The experiment was carried out in the laboratory under partially controlled 

467 environmental conditions where water stress effect was introduced. The results reported allowed the 

468 following five main points to be concluded:

469 1) The standard deviation of the wavelength range from 500 to 650 nm and the squared difference 

470 between 650 nm and 700 nm are of interest in discrimination between healthy, from yellow 

471 rust or fusarium head blight infected wheat and barley canopy.

472 2) The principle component analysis run on canopy spectral data collected on healthy, yellow rust 

473 and fusarium infected crops at multiple growth stages, reveal temporal pattern and time serial 

474 autocorrelations, which suggested the need for separate PLSR for each growing stage.

475 3) The best PLSR prediction performance for yellow rust in wheat was at the early milk of the 

476 kernel development stage, whereas for barley the best performance was at the anthesis and the 

477 early milk stages. 

478 4) The best PLSR prediction performance for fusarium was at both the early and late milk of the 

479 kernel development stages in both wheat and barley. 

480 5) Although higher ratio of prediction deviations were calculated for fusarium head blight, the 

481 smaller root mean square error of prediction for yellow rust suggested more accurate 

482 measurement of the latter under laboratory conditions. 
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483 The laboratory trials in this study have been designed to emulate a field. The data used in the models 

484 was all collected from the wheat and barley trays, designed to simulate a field canopy, so the variance 

485 of reflectance due to canopy is included in the models. Whilst other properties such as illumination 

486 angle, view positions, shadows, plant species, maturity and phenology can be controlled under 

487 laboratory conditions, these parameters will have considerable influences under field conditions, which 

488 need to be evaluated with a future work planned in Part 2 of this study.

489
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632 Figure captions

633 Figure 1: Fusarium inoculation of wheat and barley trays in the laboratory. Inoculation took place at 

634 the anthesis crop growth stage. 

635 Figure 2: Illustrating influence of foliar health on yield (HGCA, 2008). The weight given in this study 

636 was as follows; flag leaf 55%, mid canopy 40%, and lower canopy 5%. This allowed a single yellow 

637 rust assessment to be associated to a tray. 

638 Figure 3: Schematic illustration of the laboratory configurations of hyperspectral camera and light 

639 source (Whetton et al., 2016).

640 Figure 4: Example spectra of wheat and barley canopy, after white and dark corrections.

641 Figure 5: Comparison of an average wheat crop canopy (growth stage 72) spectra between watered 

642 (-) and water-stressed (----) treatments for healthy (a), yellow rust infected (b) and fusarium infected 

643 (c) crop canopy. Panel d compares canopy spectra under watered conditions of healthy (---), yellow 

644 rust (---) and fusarium (-).Watered yellow rust had an averaged infection of 42%, water stressed 

645 yellow 45%, watered fusarium 83%, and water stressed fusarium 86%.

646 Figure 6: Comparison of an average barley crop canopy (growth stage 72) spectra between watered 

647 (-) and water-stressed (----) treatments for a) healthy , b) yellow rust infected  and c) fusarium infected 

648 crop canopy. Panel d compares canopy spectra under watered conditions of healthy (---), yellow rust 

649 (---) and fusarium (-).  Watered yellow rust had an average infection of 36%, water stressed yellow 

650 rust 33%, watered fusarium 48%, and water stressed fusarium 52%.  

651 Figure 7: Principal component analysis (PCA) similarity map of wheat canopy spectral data 

652 determined by principal components 1 (PC1) and 2 (PC2), showing separation of different spectra 

653 collected at Timing 2 (T2) of anthesis growth stage 60, T4 of early milk growth stage 72, T6 of late 

654 milk growth stage 77, and T8 of hard dough growth sage 87. 

655 Figure 8: Principal component analysis (PCA) similarity map of barley canopy spectral data 

656 determined by principal components 1 (PC1) and 2 (PC2), showing separation of different spectra 
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657 collected at Timing 1 (T1) of anthesis growth stage 60, T3 of early milk growth stage 72, T5 of late 

658 milk growth stage 77, and T7 of hard dough growth sage 87. 



















Table 1: Hyperspectral scanning intervals of the wheat and barley trays, at four growth stages (GS) 

according to Zadoks scale (Zadoks et al., 1974).

Timing Growth stage

1 (T1) Anthesis (GS 60)

3 (T3) Kernel development; early milk (GS 72)

5 (T5) Kernel development; late milk (GS 77)

Barley

7 (T7) Hard dough (GS 87)

2 (T2) Anthesis (GS 60)

4 (T4) Kernel development; early milk (GS 72)

6 (T6) Kernel development; late milk (GS 77)

Wheat

8 (T8) Hard dough (GS 87)



Table 2: Statistics of % coverage of both fungal diseases of wheat samples used in the partial least 

squares regression (PLSR) analyses, with 80% and 20% of samples were considered for cross-validation 

and prediction, respectively, at four separate timings (growth stages).

Yellow rust Fusarium
T2 T4 T6 T8 T2 T4 T6 T8

Cross-
validation
Sample Nr. 43 43 43 43 43 43 43 43
Maximum (%) 70 65 55 40 55 100 100 100
Minimum (%) 0 0 0 0 0 0 0 0
Mean (%) 30.4 20.8 17.4 15.9 17.5 24.1 30.1 31.5
SD (%) 21.4 11.8 11 11.3 23.0 32.4 43.2 45.0
Prediction
Sample Nr. 11 11 11 11 11 11 11 11
Maximum (%) 70 70 50 60 50 100 100 100
Minimum (%) 0 10 5 0 0 0 0 0
Mean (%) 33.6 30 19.4 17.9 12 40 47 34
SD (%) 20.1 26.1 19 16.3 20.4 47.6 49.7 44.5

SD is standard deviation; T2 is anthesis growth stage 60; T4 is early milk growth stage 72; T6 is late 
milk growth stage 77;  and T8 of hard dough growth sage 87 in wheat.



Table 3: Statistics of % coverage of both fungal diseases in barley samples used in the partial least 

squares regression (PLSR) models, with 80% and 20% of samples were considered for cross validation 

and prediction, respectively, at four separate timings (growth stages).

Yellow rust  Fusarium  
T1 T3 T5 T7 T1 T3 T5 T7

Cross 
validation         

Sample Nr. 43 43 43 43 43 43 43 43
Maximum (%) 50 60 60 55 50 75 100 100
Minimum (0) 0 0 0 0 0 0 0 0
Mean (%) 15.6 14.3 13.2 9.5 16 22.3 26.8 29.2
SD (%) 9.5 10.7 13.3 13.5 22.1 31.6 39.2 41.2
Prediction    
Sample Nr. 11 11 11 11 11 11 11 11
Maximum (%) 60 60 45 55 50 75 100 95
Minimum (%) 0 5 5 2 0 0 0 0
Mean (%) 17.7 18 17.3 14.3 16 17 31 24
SD (%) 18.8 15.4 14.2 16.4 22.1 30.4 45.5 37.1

SD is standard deviation; T1 is anthesis growth stage 60; T3 is early milk growth stage 72; T5 is late milk 
growth stage 77; T7 is hard dough growth sage 87 in barely.



Table 4: Classes of the ratio of prediction deviation (RPD) and their suitability for predicting yellow 

rust and fusarium head blight in cereal crops, and is based on the classifications..

RPD range Class and prediction capability Prediction Category

< 1 Poor model predictions - not useful. A

1-1.5 Possibility to discriminate between low and high values B

1.5-2.0 Moderate prediction capability C

2.0-2.5 Good prediction capability D

2.5-3.0 Very good prediction capability E

>3.0 Excellent prediction capability F



Table 5: Spectral differences indicated as standard deviation (SD) of the 500-650 nm range and squared 

difference (SQdiff) of 650 and 700 nm, calculated on the maximum normalised spectra for healthy, 

yellow rust, and fusarium infected wheat and barley canopies under watered and water-stressed 

conditions. 

SD 500-650 
(nm)

Squared difference of 650 & 700 
(nm)

Wheat

Yellow rust watered 0.089 0.062

Yellow rust water-stressed 0.081 0.076

Healthy watered 0.057 0.15

Healthy water-stressed 0.063 0.14

Fusarium watered 0.16 0.10

Fusarium water-stressed 0.15 0.11

Barley

Yellow rust watered 0.056 0.08

Yellow rust water-stressed 0.061 0.077

Healthy watered 0.051 0.15

Healthy water-stressed 0.065 0.18

Fusarium watered 0.15 0.25

Fusarium water-stressed 0.13 0.18



Table 6: Analysis of Variance (ANOVA) tables for the analysis of transformed spectral indices 

over the different treatments. Analysis of the index the squared difference of 650 and 700 nm 

(sqDiff) was done on the square root scale, whilst analysis of the index standard deviation (SD) 

is done on of the range 500-650 nm. 

log(SD)      
 d.f. s.s. m.s. v.r. F pr.
Disease Status (Healthy vs Infected) 1 7.48442 7.48442 874.11 <.001
Water (Watered vs Water stressed) 1 0.015325 0.015325 1.79 0.193
Crop (Barley vs Wheat) 1 0.809884 0.809884 94.59 <.001
Disease Status: Disease Class (Fusarium vs 
Yellow rust) 1 10.26827 10.26827 1199.23 <.001

Disease Status:Water 1 0.273841 0.273841 31.98 <.001
Disease Status:Crop 1 0.233846 0.233846 27.31 <.001
Water:Crop 1 0.053444 0.053444 6.24 0.02
Disease Status:Disease Class:Water 1 0.054515 0.054515 6.37 0.019
Disease Status:Disease Class:Crop 1 0.323653 0.323653 37.8 <.001
Disease Status:Water:Crop 1 0.001909 0.001909 0.22 0.641
Disease Status:Disease Class:Water:Crop 1 0.051774 0.051774 6.05 0.022
Residual 24 0.205497 0.008562 1.05  
  
sqrt(SQdiff)      
 
Disease Status (Healthy vs Infected) 1 0.118056 0.118056 12.66 0.002
Water (Watered vs Water stressed) 1 0.000618 0.000618 0.07 0.799
Crop (Barley vs Wheat) 1 0.07096 0.07096 7.61 0.011
Disease Status:Disease Class (Fusarium vs Yellow 
rust) 1 0.310476 0.310476 33.29 <.001

Disease Status:Water 1 0.000456 0.000456 0.05 0.827
Disease Status:Crop 1 0.013211 0.013211 1.42 0.246
Water:Crop 1 0.001336 0.001336 0.14 0.708
Disease Status:Disease Class:Water 1 0.015536 0.015536 1.67 0.209
Disease Status:Disease Class:Crop 1 0.092105 0.092105 9.88 0.004
Disease Status:Water:Crop 1 0.012195 0.012195 1.31 0.264
Disease Status:Disease Class:Water:Crop 1 0.012502 0.012502 1.34 0.258
Residual 24 0.22381 0.009325 5.08  
      

  



Table 7: Summary of model prediction performance for yellow rust and fusarium head blight % 

coverage in wheat and barley in cross-validation and prediction. Results are shown for the determination 

coefficients (R2), root mean square error of the prediction (RMSEP) and cross validation (RMSECV), 

and the ratio of prediction deviation (RPD), which is the standard deviation divided by RMSEP

Cross-validation Prediction
RMSECV (%) R² RMSEP (%) R² RPD PCat

Timing 2 8.6 0.84 7.9 0.84 2.45 D
Timing 4 27.7 0.89 15.1 0.91 2.97 E
Timing 6 22.0 0.81 16.1 0.91 2.92 E

fu
sa

riu
m

Timing 8 29.0 0.83 16.0 0.93 2.83 E

Timing 2 6.2 0.82 7.7 0.86 2.49 D
Timing 4 5.0 0.92 8.8 0.91 2.79 E
Timing 6 3.3 0.77 8.3 0.91 2.17 D

W
he

at

ye
llo

w 
ru

st

Timing 8 7.0 0.84 7.2 0.86 2.16 D

Timing 1 14.9 0.95 14.4 0.97 2.52 E
Timing 3 14.0 0.83 10.4 0.86 2.69 E
Timing 5 14.0 0.75 15.5 0.93 2.72 E

Fu
sa

riu
m

Timing 7 25.0 0.79 15.1 0.88 2.62 E

Timing 1 8.8 0.88 8.1 0.90 2.43 D
Timing 3 4.8 0.78 5.8 0.92 2.41 D
Timing 5 3.9 0.76 7.6 0.71 1.83 C

B
ar

le
y

ye
llo

w 
ru

st

Timing 7 4.4 0.83 7.2 0.86 2.18 D
PC at timings in prediction category, to those detailed in Table 4.
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