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a b s t r a c t

A spatially explicit land use change model is typically based on the assumption that the relationship
between land use change and its explanatory processes is stationary. This means that model structure
and parameterization are usually kept constant over the model runtime, ignoring potential systemic
changes in this relationship resulting from societal changes. We have developed a methodology to test
for systemic changes and demonstrate it by assessing whether or not a land use change model with a
constant model structure is an adequate representation of the land use system given a time series of
observations of past land use. This was done by assimilating observations of real land use into a land use
change model, using a Bayesian data assimilation technique, the particle filter. The particle filter was
used to update the prior knowledge about the model structure, i.e. the selection and relative importance
of the explanatory processes for land use change allocation, and about the parameters. For each point in
time for which observations were available the optimal model structure and parameterization were
determined. In a case study of sugar cane expansion in Brazil, it was found that the assumption of a
constant model structure was not fully adequate, indicating systemic change in the modelling period
(2003e2012). The systemic change appeared to be indirect: a factor has an effect on the demand for
sugar cane, an input variable, in such a way that the transition rules and parameters have to change as
well. Although an inventory was made of societal changes in the study area during the studied period,
none of them could be directly related to the onset of the observed systemic change in the land use
system. Our method which allows for systemic changes in the model structure resulted in an average
increase in the 95% confidence interval of the projected sugar cane fractions of a factor of two compared
to the assumption of a stationary system. This shows the importance of taking into account systemic
changes in projections of land use change in order not to underestimate the uncertainty of future
projections.

© 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

Land use change (LUC) is the result of complex interactions
between socio-economic and environmental processes (Verburg,
2006; Brown et al., 2008). To simulate potential development
pathways in the land use system, scenario storylines are used in
combination with land use change models. Various modelling ap-
proaches have been designed for this. Several such approaches are
founded on the conceptual distinction between 1) the quantity of
change per land use type, also called demand, and 2) the spatial
allocation of this change (Pontius and Neeti, 2010). The quantity of
change can be seen as a model input, because it is dictated by the
scenario storyline, and the spatial allocation of change is defined by
the model structure and parameters. The model structure consists
of a set of suitability factors that serve as proxies for the land use
system being socio-economic and environmental processes that
regulate the location of change (e.g., Verburg et al., 2002; van der
Hilst et al., 2012; Schaldach et al., 2011), such as topography,
accessibility, and potential revenues, and the way these factors
interrelate.

Although there are some exceptions (e.g., Clarke et al., 1997;
Carlson et al., 2012), the selection, relative importance and
parameterization of the suitability factors, i.e. the model structure
and its parameters, are in current applications usually kept con-
stant over model runtime. A crucial assumption, implicit in this
method, is that the relationship between LUC and its explanatory
processes is stationary (Manson, 2007). This assumption ignores
potential systemic changes in this relationship resulting from so-
cietal changes including technological, political or economic de-
velopments. A systemic change is a fundamental change in system
structure. Because the notion of ‘fundamental’ is subjective, we
recognize systemic change in the context of models by: “a system
state change that cannot be simulated using a constant model
structure and/or parameterization”. This definition is further
explained in Section 2.1. Our aim is to develop a general method-
ology, applicable to any type of model, to test for systemic change
given this definition. We demonstrate this methodology in a case
studywith a land use changemodel and try to answer the following
questions: 1) Is the assumption of a spatially explicit LUC model
with a constant model structure and parameters, as generally used
in the land use change community, an adequate representation of
the land use system, or do observations of past land use over time
indicate systemic changes? 2) If systemic changes occur, can these
be related to known societal changes? 3) How does the inclusion of
systemic changes in the model affect model projection
uncertainty?

Evaluation of the stationarity of the relationship between land
use and a set of spatial attributes has been done by others (Aspinall,
2004; Bakker et al., 2011; Bakker and Veldkamp, 2012). These
studies use logistic regression, separately from the land use change
model. Therefore, they do not gain information on how to imple-
ment the (either changing or constant) spatial attributes into the
model, in other words, how to turn these attributes into suitability
factors, which restricts their value for the challenge of modelling
systemic change. In addition, they often do not take into account
uncertainty in the model and/or observational data and compare
only two points in time, with the exception of Bakker et al. (2011),
who compare three points in time.

To overcome these restrictions, we assimilate a time series of
observations of real land use into a spatially explicit LUC model to
find the best model configuration for different points in time. A
similar approach has been demonstrated in the field of hydrology
by Merz et al. (2011). Here, we use the particle filter (van Leeuwen,
2009), which is a Bayesian estimation or data assimilation tech-
nique. A particle filter updates the prior knowledge about the
model structure and parameters during model runtime at points in
time for which observations are available. In this way we assess the
land use system structure, or model structure, as awhole, instead of
only its components independently, in a fashion similar to our
previous study (Verstegen et al., 2014). Unlike in this previous
study, we apply the particle filter here separately for each year for
which a land use map is available. By following this approach,
optimal model structures and parameterizations can be obtained
for these different points in time. This allows us to create a time
series of the evolution of the model structure and parameters. Two
stationarity tests, a distribution comparison test and the Runs test
(Wald and Wolfowitz, 1940), are used to assess deviations in this
time series and to checkwhether these deviations can be attributed
to randomness or not. If not, this indicates systemic change. An
important advantage of the particle filter compared to, for example,
logistic regression is that it provides posterior knowledge including
uncertainty, which enables providing confidence intervals for the
identified model structures and the associated land use change
projections.

We have set up a spatially explicit land use change model
simulating sugar cane cropland expansion in the state of S~ao Paulo
in Brazil for the period 2003 to 2012, for which a time series of
sugar cane occurrence maps of high quality (Rudorff et al., 2010;
Adami et al., 2012a) is available as observational data. This case is
suitable for testing our approach, because there are a number of
societal changes in Brazil in the studied period that might have
caused systemic change in the sugar cane expansion patterns, e.g.,
the economic crisis in 2008, and the adaptation of the Forest Code
in 2012. We consider four suitability factors that could potentially
be of importance in the spatial allocation of new sugar cane fields:
sugar cane in the neighbourhood, distance to the sugar cane pro-
cessing mills, potential yield, and slope. First, we use a synthetic
dataset generated by the model for the years 2004e2012 and
demonstrate that the particle filter can reproduce the model
structure and parameters which were applied to generate this
synthetic dataset. Second, we use the real observations as obser-
vational data, to find the best fitting model structure and param-
eters for the real system for each of the years. Significant variations
in optimal model structure and parameters between consecutive
years would indicate that the changes in these years cannot be
simulated using the stationarity assumption, and therefore signify
systemic changes. In our study we try to relate the changes in
model structure over time to the societal changes identified
beforehand.

Next, sugar cane expansion is projected for the years
2013e2022. For this projection phase, the model is run with model
structure and parameters varying over time. The trend in this
variation, if any, depends on the connection between societal
changes and the variation inmodel structure and parameters found
for the time span between 2004 and 2012. This run is compared to a
run with a classical model having a constant model structure and
parameters. Differences in system state behaviour and uncertainty
are evaluated.

The next section explores the concept of systemic change in the
context of models, and provides explanations of the land use
change model, the particle filter technique, and the stationarity
analysis. Section 3 describes the case study, mentions potential
causes of systemic changes in the case study area, and delineates
the different model runs. Section 4, and 5 and 6 are the results,
discussion, and conclusion sections.

2. Methods

2.1. Systemic change

In the introduction, systemic change was defined as a change in the system
indicated by a system state change that cannot be simulated using a constant model



J.A. Verstegen et al. / Environmental Modelling & Software 75 (2016) 424e438426
structure and/or parameterization. The system state as a function of the model
structure can be described as:

yt ¼ fðyt�1; xt ;pÞ; for each t ¼ 1;2;…; T (1)

In Equation (1), yt is the system state at the time step t, f is the set of transition
rules, representing the processes that lead to change in the system state over time,
and the way they are implemented and combined, i.e. the model structure. The
vector xt represents all inputs, both spatial and non-spatial, and p contains the
parameters of the transition rules f. In the case of a spatially explicit land use change
model the spatial inputs are the input maps to calculate the suitability factors and
the non-spatial input is the demand.

Systemic change means that a certain f and/or p, which was at previous time
steps able to give an accurate representation of the change in yt , has to be altered at a
certain point in time to remain able to correctly simulate yt . This coincides with the
special issue editors' description of systemic change as “entities no longer inter-
relating in a particular way” or “changes in the set of exogenous variables to which
the system is sensitive”.

The systemic change visible in f and/or p can be either direct or indirect. Direct
means that an action, e.g. a policy change, directly affects f and/or p. Indirect denotes
that the action has an effect on the inputs xt , in such a way that the transition rules
and parameters have to change as well (Filatova and Polhill, 2012). In other words,
the behaviour of the inputs over time suddenly changes, beyond the function
domain of f, with the result that f becomes invalid.
2.2. Land use change model

The land use change model applied in our study is a branch of the PCRaster Land
Use Changemodel (PLUC) (Verstegen et al., 2012), a spatially explicit LUCmodel. It is,
like many other land use change models (Pontius and Neeti, 2010), grounded on the
conceptual distinction between 1) the quantity of change per land use type, and 2)
the spatial allocation of this change. The total quantity of land required per land use
type, also called the demand xd;n;t , is an input (present in xt in Equation (1)), defined
by historical data in historical runs, the identification phase, and by the scenario
storyline in runs for future land use change, the projection phase. The change in
demand, which can denote expansion as well as contraction, is allocated using the
total suitability map sn;t , a weighted sum of the suitability factors for that land use
type:

sn;t ¼
XKn

k¼1

�
wn;k$un;k;t

�
; for each n in each t

with
PKn

k¼1

�
wn;k

� ¼ 1

and un;k;t ¼ h
�
xn;k;t ;pn;k

�
(2)

In Equation (2), t is the time step in years, with t ¼ 1, 2, …, T; n is the land use
type, with n ¼ 1, 2, …, N; and k is the suitability factor, with k ¼ 1, 2, …, Kn.
Furthermore, un;k;t2½0;1� is the suitability map for suitability factor k; and
wn;k2½0;1� is the weight of factor k, which denotes the importance of this specific
proxy in the total suitability map sn;t . The suitability factors and their weights
together establish the model structure of the LUC model, and are, just like the pa-
rameters pn;k , temporally and spatially constant as in most land use change models.
The function h() uses the spatial attribute xn;k;t and parameter(s) pk;t to create the
proxy for land use change, and normalizes it, i.e. linearly transforms it to a value
between 0 and 1, to obtain the suitability map for suitability factor k, un;k;t . The
transformation is linear, because the actual shape of the relation (linear, convex,
concave) between un;k;t and xn;k;t is determined by the parameters pn;k within un;k;t ,
discussed later. If required, areas where expansion is not allowed (no-go areas) can
be masked out in the total suitability map, so that no change can occur in these cells.

Two types of suitability factors exist in PLUC: attraction or repulsion factors and
feedback effects. Attraction/repulsion factors represent the attracting or repelling
effect of a spatial attribute on a land use type. They are defined as:

un;k;t ¼ norm
�
cn;k$x

an;k
n;k;t

�
; for k 2 attraction=repulsion (3)

In Equation (3), xn;k;t is the attribute of suitability factor k, e.g., potential yield.
The parameter an;k determines the shape of the suitability function. A value of 1
results in a linear function, meaning that suitability increases or decreases linearly
with the increase in the value of the attribute. For 0< ak <1, the shape of un;k;t is
concave, and for an;k >1, the shape is convex. Whether a certain attribute attracts
(higher attribute values lead to a higher suitability) or repels (lower attribute values
lead to a higher suitability) land use type n, is determined by the constant cn;k ,
having a value of 1 in case of attraction and �1 in case of repulsion. The function
norm() normalizes its contents, so that un;k;t2½0; 1�.

Feedback effects characterize the positive effect of the presence of a land use
type on the allocation of another land use type in a pre-defined neighbourhood.
They represent temporal feedback in the system because the land use updated in the
previous time step, yt�1, is used as an input, and thereby generate non-linear system
behaviour. They are calculated as:

un;k;t ¼ norm
�
xn;k;t�1

2 þ 2$fn;k$l
2
n;k;w$xn;k;t�1

�
; for k 2 feedback (4)

In Equation (4), xn;k;t�1 is the number of neighbours of the land use type of
interest (usually land use type n itself) in the neighbourhood window in time step
t� 1, derived from the system state in the previous time step yt�1. Parameter ln;k;w is
the window length (in number of cells) of the window that determines whether or
not a cell belongs to the neighbourhood. Furthermore, fn;k is the ‘preferred’ fraction
of neighbours of the land use type of interest appearing in the total number of
neighbours, that is l2n;k;w , within the window. Equation (4) creates a parabolic shape

of un;k;t against xn;k;t�1. The rationale for this, is that e.g., financial and policy related
principles can lead to a specific optimal number of neighbours. More as well as less
neighbours than this optimum reduces the suitability un;k;t. For example, for farmers
it can be advantageous when some of their neighbours cultivate the same crop, for
they can share machinery, but it can also be disadvantageous, as the land price in-
creases due to this favourable situation under a growing demand.

Allocation of the demand xd;n;t occurs at each t by sorting sn;t and allocating cells
to land use type n until xd;n;t has been fulfilled. This mechanism (Equation (2) plus
the allocation) is f in Equation (1). Systemic change concerning f can happen trough
a required change in wn;k . The land use map resulting from applying f is yt in
Equation (1). The inputs xt in Equation (1) are xd;n;t and xn;k;t or xn;k;t�1, depending
on k. The parameters p are an;k , ln;k;w , and fn;k .

We do not use a single, deterministic model run to simulate land use change, but
an ensemble of runs, a Monte Carlo simulation (Verstegen et al., 2012; Aerts et al.,
2003). For land use type n, in each cell, in each year, this ensemble represents the
probability distribution of the occurrence of n. The ensemble is created by sampling
from the prior probability distributions of the weights (wn;k) and parameters (pn;k)
of the suitability factors (equations (2)e(4)), and running the land use change model
for each of the ensemble members i, with i ¼ 1, 2, …, I.

2.3. Particle filter

The ensemble of runs represents the range of possible model outcomes in each
year given the uncertainty in model structure and parameters. The sequential
importance resampling (SIR) particle filter (van Leeuwen, 2009) is a Bayesian esti-
mation technique that uses observations to reduce the uncertainty in the ensemble,
in our case to identify the optimal model structure and parameters. At a time step
when observations are available, i.e. a filter moment, the particle filter solves Bayes'
theorem for each ensemble member i, also called particle:

p
�
zit jot

�
¼ p

�
ot jzit

�
$p

�
zit
�

pðotÞ ¼ p
�
ot jzit

�
$p

�
zit
�

PN
j¼1p

�
ot jzjt

�
$p

�
zjt
�; for each i ¼ 1; 2;…;N (5)

In Equation (5), pðzit jotÞ is the posterior probability of the model state zit of
ensemble member i. The model state consists of the system states as well as the
transition rules, inputs and parameters, i.e. zt ¼ (yt, f, xt, p) (see Equation (1)). Thus,
when pðzit jotÞ is updated, not only the system state pðytÞ is updated, but the prob-
ability distributions of the weights, pðwn;kÞ, and of the parameters, pðpn;kÞ are
updated as well, because they are enclosed in the same ensemble member.
Furthermore in Equation (5), pðzitÞ is the prior probability of ensemble member i,
and pðotÞ is the probability distribution of the observations, i.e. the measurement
data and their uncertainty. If the observations are not of the state variable, but of a
derived measure, the modelled system state yit has to be converted to that measure
before filtering. The prior probability of ensemble member i is always equal to 1/I
due to the sequential importance resampling (SIR) strategy (van Leeuwen, 2009).
Namely, SIR samples a new set of I ensemble members after each filter moment,
where the probability that an ensemble member is resampled equals the posterior
probability of ensemble member i in that filter moment. Finally, pðot jzitÞ is the
probability of the observations given ensemble member i. Under the assumption
that the observation error has a Gaussian distribution, the latter can be calculated as
(van Leeuwen, 2009):

p
�
ot jzit

�
¼ e�

1 =

2½ot�HðzitÞ�TR�1
t ½ot�HðzitÞ�; for each t (6)

In Equation (6), H is the measurement operator that transforms the model state
to the observation, i.e. it selects the modelled system state yit from zit and, if
necessary, converts it to the same support as the observations of the system state. Rt

is the covariance matrix of the observation error and T indicates matrix trans-
position. The diagonal elements of Rt represent variance of the observation error,
s2
o;t . The off-diagonal elements of Rt are relevant only when observation errors are

correlated over space and/or time, otherwise they are zero.
We apply Equations (5) and (6) in two different ways (Fig. 1). The traditional way

to use the particle filter is sequentially (see Fig. 1a) in order to, in the end, obtain
pðzT joT Þ, the posterior of the model state at the final time step T. We have used this
method before to identify model structure (Verstegen et al., 2014). This approach



Fig. 1. Functioning of the particle filter, (a) in the traditional approach with sequential importance resampling (SIR) (published before in Verstegen et al., 2014), and (b) in the
approach used to assess the presence of systemic changes. ‘Obs 1’ means observations at filter moment 1, the blue line indicates the median system state, grey areas represent the
confidence interval. Histograms underneath the plots illustrate the effect of the filter moments on a general parameter a. In panel a, the prior of parameter a at filter moment t is
always equal to the posterior of parameter a at filter moment t-1. In panel b this relation is not present; all priors are the same and not dependent on any of the posteriors. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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assumes a constant model structure and constant parameters: observations of the
system state at a certain point in time are used as additional information about the
best-fit model structure and parameters. So, although the number of ensemble
members remains the same, due to the SIR, the variation in the ensemble members
in terms of their uniqueness in parameter values will typically diminish over time.
This means that the probability distributions of these parameters are gradually
narrowed. This, however, also means that the approach does not work when pa-
rameters ‘in reality’ change over time, because there is no stationary parameter
value the model state can converge towards. Therefore, this approach is suitable
only under the assumption of model structure and parameter stationarity, i.e. no
systemic changes.

Because in this paper we want to validate that assumption, we also apply
Equations (5) and (6) in an atypical way (Fig. 1b). Observations of the system state
at a certain point in time are used as distinctive information about the best-fit
model structure and parameters at that point in time. Equations (5) and (6) are
not applied sequentially, but separately at each filter moment. So, the model is
initiated with the system state provided by ot�x and is run up to the next filter
moment, obtaining pðzt�x; t jotÞ, where x is the number of time steps between
model start and filter moment. Next, the model is initiated with the system state
provided by ot, with all parameters set to their initial prior probability distribu-
tion again, and the model is run up to the next filter moment. Using this approach,
we find a distinctive pðzt�x;t jotÞ at every filter moment, not limited by previous
observations, valid for period t � x to t (one subplot in Fig. 1b). Hence, we can
explore whether the optimal model structure and/or parameters vary signifi-
cantly over time. If one of them does, the various observed system states cannot
be simulated using a constant model structure and/or parameters, reflecting
systemic change.

2.4. Stationarity analysis

Of course it can be viewed in a qualitative way whether the posterior probability
distributions of the weights, pðwn;kÞ, and of the parameters, pðpn;kÞ vary notably
over time, but it is more objective to use a quantitative test. Two general approaches
exist to quantitatively test for stationarity: parametric and non-parametric tests
(Grazzini, 2012). Parametric tests rely on the assumption that the distribution of the
variable being sampled is known. Because this is often not the case for models of
complex systems, like land use change models, a non-parametric test is more
applicable (Lazante, 1996, Grazzini, 2012).

First, a non-parametric distribution comparison test is applied to check to what
extent the distribution of a parameter at time t differs from the average distribution
over all other time steps T*. In this test we first calculate a random variable dn,k,t,
which represents the difference between the posterior distribution of a parameter at
a particular time step and themean of the parameter over all time steps. This is done
in an approach similar to bootstrapping (Efron and Tibshirani, 2003), by subtracting
a value randomly taken from the posterior distribution of a parameter at time step t
from a value randomly taken from the average distribution of this parameter over T*.
This is done I times, i.e. as many times as we have Monte Carlo samples. If the
posterior distribution of a parameter at time t and the average distribution of this
parameter over T* are the same, the resulting distribution p(dn,k,t) is centred on zero.
So, under the null hypothesis of stationarity (H0), p(dn,k,t) has an expected value of
zero. To test this hypothesis, taking into account the full distribution of the
parameter, we infer whether or not zero falls within the confidence interval of
p(dn,k,t):

H0 : Qa=2
�
p
�
dn;k;t

��
<0<Q1�ða=2Þ

�
p
�
pn;k;t

��
; for each t (7)

In Equation (7), Qa=2ðpðdn;k;tÞ is the a/2 percentile of pðdn;k;tÞ, e.g. the 2.5th
percentile when verifying if a < 0.05. If the H0 is rejected, there is systemic change in
time t. The same is done for the weights.

The test above indicates the probability of systemic change in a certain
parameter at a certain time step, but does not tell anything about the temporal
correlation of potential deviations. To investigate this temporal correlation we use
the non-parametric WaldeWolfowitz test, also called Runs test (Wald and
Wolfowitz, 1940). This test was successfully applied before to test for stationarity
in a complex system model by Grazzini (2012). Given a time series and a function
that aims to explain the trend in these time series, the values in the time series
should be randomly distributed above and below the function, uncorrelated over
time, if the function gives an adequate description of the time series. This is true
regardless of the shape of the error distribution in the time series. Values above the
function are labelled as þ and values below the function are labelled as �. In the
Runs test, a run is defined as a sequence of identical instances, i.e. either pluses or
minuses. For example, the series þ, þ, þ, �, þ, �, �, þ, þ contains five runs, namely
one run of three pluses, followed by a run of one minus, etc. In a time series con-
taining a number of Nþ� values, with random temporally uncorrelated errors, the
expected, or mean, number of runs, mr , is (Wald and Wolfowitz, 1940):

mr ¼
2NþN�
Nþ�

þ 1 (8)

And the variance of mr is:
s2r ¼ 2NþN�ð2NþN� � Nþ�Þ
N2þ�ðNþ� � 1Þ (9)

In Equations (8) and (9), Nþ is the number of plus instances, N� is the number of
minus instances. Using this probability distribution of the number of runs, the Runs
test checks whether the null hypothesis of randomness can be rejected or not. In
other words, it checks whether the distribution of values in the time series above
and below the function can be considered random, uncorrelated over time, given a
certain level of significance a. If it is not, the function is not an appropriate repre-
sentation of the time series. When one uses a constant value for this function, one
can test whether this constancy, of e.g. a parameter, is a correct representation of
this parameter in the studied system. If it is not, there is a systemic change in our
definition (Section 2.1).

3. Case study

3.1. Background

A case study on sugar cane cropland expansion in S~ao Paulo
state is set up to examine the presence of systemic changes in a land
use system. Expansion of the sugar cane area is related to an
increasing demand for both sugar and ethanol. Brazilian ethanol
production from sugar cane is seen as one of the most efficient
biofuel technologies currently available, and it is profitable without
subsidies, so in the future the expansion is expected to continue
(Sparovek et al., 2009; Walter et al., 2011; Cerqueira Leite et al.,
2009). Sugar cane cultivation in Brazil is concentrated in the
South-Central region (Rudorff et al., 2010). This region, which in-
cludes S~ao Paulo state, has been annually mapped since 2003 in the
Canasat project (Rudorff et al., 2010) with an overall thematic ac-
curacy of 98% (Adami et al., 2012a), providing a reliable time series
of observational data for the particle filter.

Within the period between 2003 and 2012, a number of societal
changes in Brazil might have caused systemic change in the sugar
cane expansion. The review provided here is a reflection of societal
changes that were deemed of importance by the authors after
consultation of literature and experts, and should therefore not be
considered exhaustive. We focus on developments that potentially
change the spatial allocation of sugar cane, not the quantity of
change (demand) as in PLUC the demand is exogenous (Section
2.2). We provide hypotheses of how they might change the model
structure or parameters when this is not immediately clear.

Some policy changes in the last decade may have had, and are in
fact established to have, an effect on the land use system. According
to Sparovek et al. (2010) “Land-use modelers exploring the Brazil-
ian case generally pay little attention to the influence of legal as-
pects, i.e., howBrazilian regulations influence agriculture, including
the size and spatial distribution of the expansion potential”.
Therefore we discuss these aspects in detail, and explore whether
they can be traced as systemic changes in our case study. Firstly,
sugar cane straw is currently often burned before harvesting the
sugar cane to improve the safety of the ‘cane cutters’ and to in-
crease the yield. The Brazilian government tries to eliminate pre-
harvest burning because it has negative effects on human health
and on the environment due to the emission of pollutant gases
(Aguiar et al., 2011). Replacing manual harvesting by mechanical
harvesting can eliminate pre-harvest burning, because mechanical
harvesting does not require burning. However, the harvest ma-
chines cannot operate on sloping ground; 12% is considered the
maximum slope for mechanical harvesting (Macedo, 2007).
Therefore, schemes are established, specifying the maximum area
on which pre-harvest burning can be practiced as a proportion of
the total sugar cane area, per slope category per year (Fig. 2). With
the most recent of the three schemes, the Green Ethanol protocol,
compliance is not obligatory, but can be advantageous for the
producers because the protocol resembles importer's preferences
and offers a first step towards certification. By 2008, 145 out of the



Fig. 2. Schemes specifying the required area without pre-harvest burning as a proportion of the total sugar cane area (a) for slopes � 12% and (b) for slopes > 12%.
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177 ethanol plants in S~ao Paulo complied to the protocol, repre-
senting 89% of total cane crushing (Lucon and Goldemberg, 2010).
However, a study by Aguiar et al. (2011) for the years 2009 and 2010
shows that in some areas the harvesting system was shifted in the
wrong direction in these years, i.e. from green harvest to harvest
with burning.

The second important policy change is the initiation of sugar-
cane agro-environmental zoning (AEZ) in S~ao Paulo in 2008 (Lucon
and Goldemberg, 2010). Using eight physical indicators (climate,
surface water, slope, ground water, biodiversity protection areas,
biodiversity connectivity, and integral protection units) a map with
four categories is created: suitable, moderately restricted, highly
restricted, and unsuitable for sugar cane cultivation (Padua Junior
et al., 2012). The initiative of the state zoning has led to the
launch of the federal Sugarcane Agro-ecological Zoning (ZAE Cana)
in 2009 (Lucon and Goldemberg, 2010). It uses similar physical
indicators, and in addition aims to protect the Amazon and Pan-
tanal biomes and Upper Paraguay River Basin. The initiation of
these zonings might increase the importance of physical suitability
factors in the model structure.

A third policy change that might have had an effect on the
spatial allocation of sugar cane is the adaptation of the Forest Act, or
Forest Code, in 2012. The Forest Act, established in 1965, is themain
legal framework in Brazil for natural vegetation (not only forest)
conservation. Among other things, it specified the fraction of the
farmland that should be set aside for biodiversity conservation,
meaning that natural vegetation should be kept in place. This
fraction was 35% inside the Legal Amazon, and 20% outside. A low
compliance in the past and several amendments of the Forest Code
between 1965 and 2012 that allowed farmers to sometimes pre-
serve lower fractions of farmland, had put a large part of the Bra-
zilian farmers in an illegitimate situation (Sparovek et al., 2012). As
this illegality was a national and international (certification)
problem and total compliance with the prescribed fractions
through vegetation restorationwould be too costly, a revision of the
Forest Act was accepted in 2012. The exact rules in the new Forest
Act remain vague up to this point in time. It is expected that it
maintains the preservation requirements for future expansion, but
legalizes the farmers' situation for those who deforested illegally
before 2008 (Costa and Gray, 2011). The story goes that, as the
process of the revision started already in 2009, farmers anticipated
on the new Forest Code since then by accelerated illegal forest
cutting, hoping that amnesty would be granted, but, as far as we
know, this is not scientifically proven. In the model the new Forest
Code might affect the neighbourhood suitability factor or the pa-
rameters herein that determine the ‘preferred’ fraction of neigh-
bours, fn;k (Equation (4)), as a percentage of the land cannot be used
for cultivation.

Economically, many developments have taken place affecting
the sugar cane sector, and it goes beyond the scope of this paper to
discuss them in detail. Obviously, the crisis in 2008 may have
affected the sugar cane demand (model input) but also the spatial
distribution. The crisis led to a discontinuation of investments,
forcing farmers to produce at older, less productive sites (G�omez,
2013), and to postpone modernization of agricultural machinery
(Aguiar et al., 2011). The latter might cause farmers to care less
about the slope of the field, since they cannot afford machinery to
harvest mechanically anyway.

Finally, a shift not in the human but in the environmental sys-
tem that could affect the allocation of sugar cane is that Brazil has
experienced some bad harvests between 2009 and 2011. Aguiar
et al. (2010) report that from season 2006/2007 to 2008/2009 the
area of sugar cane left unharvested has gone up from 3.0 to 4.1 to
11.6%. They believe that this was related to unfavourable harvest
weather conditions as well as delays in constructing planned
mills, with the result that the mills were not operational in time. In
2009/2010 the unharvested area rose to 18.1%, thereafter
decreasing to 6.9% and 1.0%, reaching 4.1% in the season 2012/2013
(Aguiar et al., 2011, Aguiar, Personal communication, July 17th
2014).

3.2. Model setup

The land use changemodel described in Section 2.2, is applied to
the S~ao Paulo case study as follows (Table 1). Sugar cane (n ¼ 1) is
the only ‘active’ land use type, i.e. a land use type responding to a
demand, thus N ¼ 1. The suitability map for sugar cane expansion
s1;t (Equation (2)) is calculated using four suitability factors (K1¼4),
derived from discussions with experts and literature review
(Rudorff et al., 2010; Adami et al., 2012a; Walter et al., 2011; Aguiar
et al., 2011; Sparovek et al., 2012, 2007; Lapola et al., 2010; de Souza
Soler and Verburg, 2010, Macedo and Seabra, 2008) (Table 1). A
similar model setup has been calibrated before with the particle
filter, resulting in a minimum reduction factor of 3 in the root mean
square error of three spatial metrics compared to the reference
model (Verstegen et al., 2014). Sugar cane in the neighbourhood
(k ¼ 1) is expected to be important because larger plantations
require less investment costs per hectare as equipment and



Table 1
Suitability factors for sugar cane in S~ao Paulo, including type of suitability factor used (attraction/repulsion or neighborhood effect), the probability distributions of the pa-
rameters (p1;k), and the data sources. The probability distributions of the stochastic variables, e.g., Zw1;k , represent prior distributions; during filtering they change.

k 1 2 3 4

Suitability factor Sugar cane in neighbourhood Distance to sugar cane mills Potential yield Slope
Process represented Economies of scale Transportation costs to

processing units
Profits Mechanization potential

Weights (w1;k) (equation (2)) w1;1 ¼ Zw1;1P4

k¼1
ðZw1;k

Þ
; w1;2 ¼ Zw1;2P4

k¼1
ðZw1;k

Þ
; w1;3 ¼ Zw1;3P4

k¼1
ðZw1;k

Þ
; w1;4 ¼ Zw1;4P4

k¼1
ðZw1;k

Þ
;

with Zw1;k � Uð0;1Þ
Type of suitability factor Neighbourhood effect (equation (4)) Attraction/repulsion (equation (3)) Attraction/repulsion

(equation (3))
Attraction/repulsion
(equation (3))

Parameters (p1;k;t )
(equations (3) and (4))

l1;1;w ¼ eZl ; with Zlw � Nð9:6;0:7Þ
f1;1 ¼ Zf1;1 ; with Zf1;1 � Uð0;1Þ

a1;2 ¼ eZa1;2 ; with Za1;2 � Nð0; 1:8Þ
c1;2 ¼ �1

a1;3 ¼ eZa1;3 ;
with Za1;3 � Nð0;1:8Þ
c1;3 ¼ 1

a1;4 ¼ eZa1;4 ;
with Za1;4 � Nð0;1:8Þ
c1;4 ¼ �1

Original map attribute for x1;k;t Sugar cane Location of mills Potential yield Digital elevation model
Map source Rudorff et al., 2010 Picoli, 2013 T�oth et al., 2012 Farr et al., 2007
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infrastructure can be shared. The distance from the field to the
sugar cane mill (k¼ 2) determines the transportation costs of sugar
cane to the processing unit. The distance to the mill is expected to
bemore eminent than the distance from themill to the distribution
centre, because the end product (ethanol or sugar) has a higher
energy density than the sugar cane and thus lower transport costs
per energy unit. Potential yield (k ¼ 3), an indicator linking agro-
climate conditions to crop requirements, is important for the po-
tential revenues per hectare. Slope (k ¼ 4) defines the potential for
sugar cane harvest mechanization (see Section 3.1). Table 1 gives
more details about the parameterization of the processes described
above.

The total area of S~ao Paulo state is about 250,000 km2 and a
resolution of 5 km is used. We purposefully model at a resolution
larger than the average farm size in Brazil. The land tenure system
in Brazil is complex and includes farms managed by the mill, farms
held by the mill and leased to a farmer, farms held by the farmer
with a contract obligation to deliver to a certain mill for a fixed
price, farms held by a farmer having no such contract, and other
constructions (see e.g., Sparovek et al., 2007). Spatial data on this
with a complete coverage is not available so modelling at farm level
would have limited value as the inputs of such a model are highly
uncertain. Apart from this, a much finer resolution would increase
model run time which hampers the application of the Monte Carlo
based particle filter. By aggregating to a cell size of several farms we
hope to average out the effects related to the land tenure situation
of the individual farmer and focus more on general sugar cane
expansion trends, resulting in a model with a relatively short run
time.

The model is run in two phases: an identification phase, in
which we identify the relative importance of the suitability factors
and their parameterization (Table 1) and try to recognize systemic
changes; and a projection phase, in which we use this information
to propagate the land use change (further explained in Section 3.4).
In total T is 20 time steps, with t¼ 1 representing the year 2003. The
initial land use map (a Boolean map: 1 ¼ sugar cane, 0 ¼ no sugar
cane) is the 2003 Canasat map (Rudorff et al., 2010), which has a
resolution of 30 m, resampled to the model resolution (5000 m).
The resampling is done in such a way that the total sugar cane area
in the resampled map matches the total sugar cane area in the
original map, i.e. the demanded area for sugar cane is harmonized
because this is an important model input. Note that the class ‘no
sugar cane’ is passive: it has no demand and can only change
through conversion by the active land use type ‘sugar cane’.

So, the input variable ‘demand’ is in the identification phase
simply the total area of sugar cane found in the Canasat maps
(Fig. 3). In the projection phase two data sources are used to
construct the demand. The first is the Brazilian Land Use Model
(BLUM) (ICONE, 2012; Nassar et al., 2008), an economic partial
equilibrium model, and the second is the Brazilian agricultural
economics institute, IEA (Torquato, 2006). As we have equal trust in
both sources, the demand in PLUC from 2013 to 2022 is the mean of
the two time series created from these sources (Fig. 3).
3.3. Particle filter setup

The data assimilation framework in the PCRaster Python
framework (Karssenberg et al., 2010) is used for the particle
filtering. The data used to create the observational data are nine
annual maps of sugar cane occurrence (Rudorff et al., 2010), from
2004 to 2012 (the data of 2003 is used as the initial system state).
We, together with others (e.g., Parker et al., 2008), believe that the
purpose of land use change models is not, and should not be, to
simulate precisely the land use of each single cell in each year. For
this reason, we do not use the sugar cane map directly as ot

(equation (5)), but calculate the fraction of sugar cane in 25� 25 km
blocks and take that as ot . In total the study area consists of 473 of
such blocks, making the length of the array ot 473. Obviously, we
also convert the model output to that measure (fraction of sugar
cane in 25 � 25 km blocks) before filtering.

The observational data has two error sources: 1) errors in the
classification of the remote sensing image and 2) errors from the
upscaling to a larger cell size. We assume that there is no spatial or
temporal correlation in the errors of the observational data, so only
the diagonal elements of Rt need to be defined, i.e. the variances of
the observation error, s2

o;t .
A study by Adami et al. (2012b) shows that the user's accuracy

(the probability that a cell classified as a certain class is actually that
class (Lillesand et al., 2003)) of the Canasat data is 0.97 for the sugar
cane class and 0.98 for the no-sugar cane class. To obtain the
standard deviation, so;t;u, for the 25 � 25 km blocks belonging to
these user's accuracies, we simulate for every potential fill of a
block (0e100% sugar cane) 1$105 events where sugar cane cells
have a probability of 0.03 to become no-sugar cane, and no-sugar
cane cells have a probability of 0.02 to become sugar cane. The
results indicate that so;t;u is linearly related to the fraction of sugar
cane per block, as:

s2
o;t;u ¼

�
2:8$10�2 þ 1$10�2$ ot

�2
; for each t (10)

The upscaling error arises from the fact that in the modelled
land use in a cell is either sugar cane or no sugar cane (Boolean),
while in the data the fraction of sugar cane per cell is given, leading



Fig. 3. Demand per year for the identification phase (2003e2012) and the projection phase (2012e2022). The demand increase with respect to the previous year (area for the model
to allocate) is hatched to enhance visibility of variation over time in this demand increase.
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to a difference between model output and observations. This error
has a maximum of 100% (a cell has in reality a sugar cane fraction of
0.5, but the model output is 0 or 1) and a minimum of 0%. The
distribution of this error is difficult to estimate, because it depends
on the observed values. For this reasonwe assume normality of this
error (required to fulfil the conditions of equation (6)) and apply its
maximum possible size of 0:5$ot to all observations.

Combining these two error sources, the total variance of the
observations is:

s2
o;t ¼

�
2:8$10�2 þ 5:1$10�1$ ot

�2
; for each t (11)

We are aware of the fact that we havemade a strong assumption
about the shape and magnitude of the variance, but we want to
stress that the stationarity test used to detect systemic change (see
Sections 2.4 and 3.4) employs only the mean of the posterior and
not the full distribution. This diminishes the effect of this
assumption on the conclusions about systemic change.

3.4. Stationarity analysis setup

For the distribution comparison test (Equation (7)), instead of
assuming an a value and reporting whether or not H0 is rejected,
we calculate the a belonging to the tipping point between rejection
and no rejection, which is more transparent. This a value gives the
probability that H0 is unjustly rejected, i.e. the probability that we
assume systemic change in this parameter at twhile in fact there is
stationarity. Hence, low a values indicate a high probability of
systemic change. The Runs test is applied as follows. For the pos-
terior distributions of the weights (wn;k) and parameters (pn;k) of
the suitability factors (Equations (2)e(4)), obtained separately for
each observation time frame (pðzt�x;t jotÞ, Fig. 1b), the overall mean
is obtained. This overall mean is the function aiming to explain the
trend in time series of posteriors. Next, the mean per posterior
distribution, i.e. per observation time, is obtained, and assigned a þ
Table 2
Scenario setup regarding observational data (synthetic or Canasat (Rudorff et al.,
2010)), filter method, and projection method.

Scenario Observational
data

Filter (2004e2012) Projection (2013e2022)

1 Synthetic Method Fig. 1b
e

2 Canasat Method Fig. 1b Using a trend or random
posterior from all pðzt�x;t jotÞ
depending on the results

3 Canasat Method Fig. 1a Using posteriors from 2012
if it is above the overall mean and a� if it is below. On this sequence
the Runs test is applied, and the p-value is reported, indicating the
probability that the pattern found in the deviations from the mean
is random. If the null hypothesis of randomness is rejected, f and/or
p in Equation (1) cannot be considered stationary, so a systemic
change is present. Note that the Runs test checks only if an average
value in the time series is above or below the mean and not how
much it is above or below. Therefore, the detection of systemic
change should be based on the combined results of visual inspec-
tion of the means, the distribution comparison test and the Runs
test.
3.5. Scenarios

Three scenarios are run (Table 2). By the word ‘scenario’ we do
notmean a scenario storyline, i.e. a potential development pathway
of the land use system, but a model setup designed to investigate a
specific property of the used method or studied system. All sce-
narios are run using an ensemble of 5000 members.

In the first scenario, the ability of the particle filter to detect the
correct weights (wn;k) and parameters (pn;k;t) is tested using a
synthetic dataset. The synthetic dataset is created by running the
model deterministically with the demand equal to the demand in
the Canasat data (Rudorff et al., 2010) (Fig. 3) and the settings
specified in Table 3. These settings do not change over time. Next,
the model is run stochastically and the particle filter is applied
separately for each year (themethod shown in Fig. 1b) from 2004 to
2012 using the synthetic data as observations ot . If the method is
working correctly, the distributions of the weights (wn;k) and pa-
rameters (pn;k) should converge to the values in Table 3 in all years,
i.e. the particle filter should trace back settings that were applied to
generate the synthetic dataset.

In the second scenario, we run a new ensemble, applying the
particle filter separately for each year, but now with the Canasat
observational data of sugar cane distribution. Potentially, signifi-
cantly different posterior distributions of the weights and
Table 3
Model settings for the synthetic dataset: the weights (w1;k) and parameters (p1;k),
l1;k;w , neighborhood window length, f1;k , neighborhood fill, and a1;k , suitability
function shape parameter, for k ¼ 1, 2, 3, 4.

k 1, sugar cane in
neighbourhood

2, distance to
sugar cane mills

3, potential
yield

4, slope

Weights (w1;k) w1;1 ¼ 0:25 w1;2 ¼ 0:25 w1;3 ¼ 0:25 w1;4 ¼ 0:25
Parameters

(p1;k)
l1;1;w ¼ 15;000 m
f1;1 ¼ 0:5

a1;2 ¼ 1 a1;3 ¼ 1 a1;4 ¼ 1



Fig. 4. Mean of the posterior distributions of the weights of the suitability factors, w1;k ,
obtained with synthetic observational data (scenario 1).
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parameters are obtained in each year. If any kind of trend or
connection to the societal changes can be detected in distributions,
this trend is prolonged in the projection phase (2013e2022). If no
trend is apparent, and no connection to societal changes can be
found, we assume that for each time step in the projection phase
any of the systems found in the identification phase can be valid. So
in each projection year (2013e2022) a posterior model state
pðzt�x;t jotÞ, containing probability distributions of the
weights, pðwn;kÞ, and of the parameters, pðpn;kÞ, is drawn randomly
Table 4
Results of the two stationarity tests for the weights (weight of neighborhood w1;1, weight
the parameters (window length l1;1;w , neighborhood fill f1;1, and the shape parameters f
synthetic data that is supposed to be stationary) and scenario 2 (with the Canasat data (R
belonging to the tipping point between rejection and no rejection. This a value gives the p
the Runs test gives the probability that the pattern found in the deviations from the mean
systemic change and high values (green colors) indicate a high probability of stationarit
from all posteriors model states of the identification years
(2004e2012). The projection phase of scenario 2 is run five times to
cover the uncertainty arising from the diverse sequences of pos-
teriors that are drawn.

In the third scenario, the traditional particle filter method with
Sequential Importance Resampling (Fig. 1a) is applied, again with
the Canasat data. During the projection phase, the posterior dis-
tribution of the final year is used, pðzT joT Þ, because this posterior
contains information from the whole identification phase.
4. Results

4.1. Identification with synthetic data

For scenario 1, the means of the posterior distributions of the
weights, w1;k, converge to values around 0.25 (Fig. 4), as expected
since these were the values used to generate the synthetic dataset
(Table 3). The weight of distance to sugar cane mills, w1;2, is on
average 0.03 too low, 0.22, and the weight of potential yield,w1;3, is
on average 0.03 too high, 0.28. The other two are on average exactly
0.25. No significant trends are visible over time, which is confirmed
by the distribution comparison test (average a values all very high,
>0.85) and the Runs test (Table 4). The complete posterior distri-
butions of the weights and the posterior distributions of the pa-
rameters are given in Appendix A. The distributions of parameters
a1;2, a1;3, and a1;4 in all years, and the distributions of the param-
eters l1;1;w and f1;1 in all years but 2006 to 2009 remain broad,
indicating that the parameters are difficult to identify. The Runs test
concludes non-stationarity for four out of the five parameters, but
the distribution comparison test does not for any a below 0.2.
of distance tomillsw1;2, weight of potential yieldw1;3, and weight of slopew1;4) and
or the attraction/repulsion suitability factors a1;k for k ¼ 1, 2, 3) for scenario 1 (with
udorff et al., 2010)).For the distribution comparison test, the a (Equation (7)) is given
robability that the null hypothesis of stationarity is unjustly rejected. The p-value of
is random. Hence, for both tests: low values (red colors) indicate a high probability of
y.
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4.2. Identification with Canasat data

For scenario 2, the means of the posterior distributions of the
weights, w1;k, (Fig. 5) imply that all four selected suitability factors
are relevant in the land use system, because none of them receives a
zero weight. On average, distance to the mills appears to be the
most important suitability factor in determining where sugar cane
expands. Next most important are sugar cane in the neighbourhood
and slope, switching over time between second and third most
important. Least important, but still relevant with an average
weight of 0.1, is potential yield.

The mean weight of distance to sugar cane mills appears to be
stationary (Fig. 5). This is confirmed by the Runs test, using, for
example, a 5% significance level (Table 4). The distribution compari-
son test confirms this; it has the highest average a value and also the
most constant a value over time, indicating the highest probability of
stationarity. Themeanweightsof theother factors clearlychangeover
time (Fig. 5). In the period 2006 to 2008, the mean weight of sugar
cane in the neighbourhood is 54% higher than in the other years, and
the weight of potential yield is 24% lower. Slope has a 67% lower
weight that persists one year longer. This non-stationarity, indicating
systemic change, is confirmed for all three factors by the distribution
comparison test, with low a values in especially 2007 and 2008, and
the Runs test, and is strongest for potential yield (Table 4).

In the parameters, pn;k;t , the systemic change is visible as well
(Fig. 7), although the uncertainty in the parameter values is mostly
high. From 2006 to 2008 the mean window size of the neighbour-
hood, l1;1;w, is about 50% smaller than in the other years. The a
values are very low, 0.02 and 0.01 in 2007 and 2008 (Table 4),
indicating systemic change. The neighbourhood fill, f1;1, on the
contrary, ismore stable over time, around a value of 0.1, except in the
first two years, when it is about 0.2. For the parameters a1;k, for k¼ 1,
2, 3, the stability over time ismore difficult to observe because of the
large uncertainty. This can also be concluded from the distribution
comparison test, which gives few low a values, except for a1;2 in
2004e2006. For all weights (Fig. 6) and the parameters l1;1;w and f1;1
(Fig. 7) the posteriors in the period 2006 to 2009 are narrower than
in the other years.

The start of the systemic change, 2006, is a year with no iden-
tified societal changes (Fig. 5). The ‘recovery’ period of the system,
Fig. 5. Mean of the posterior distributions of the weights of the suitability factors, w1;k ,
obtained with Canasat observational data (Rudorff et al., 2010) (scenario 2). Occur-
rences of societal changes, discussed in Section 3.1, are indicated above the bar graph.
Minimum percentage of sugar cane area that should be harvested without pre-harvest
burning (phb) per year (average of the state and Green Ethanol Protocol requirements,
Fig. 2) is indicated below the bar graph, together with the percentage of sugar cane
area left unharvested.
2009 to 2010, coincides with the years of bad harvests, and a per-
centage of sugar cane fields left unharvested more than twice as
high as in previous years (Aguiar et al., 2010). In 2010, the average
area on which pre-harvest burning is forbidden increases from 30
to 50% for slopes below 12%. The potential connection between the
societal changes and the observed systemic change is considered in
the discussion section (5.2).

Filtering with Canasat data (Rudorff et al., 2010) using the
traditional particle filter method (scenario 3) (Fig. 8) yields the
same order of importance of the suitability factors (distance to
mills, neighbourhood and slope, potential yield) as found in sce-
nario 2 (Fig. 5). However, the posterior distributions of the weights
in scenario 3 are narrower than the posterior distributions (per
year) in scenario 2 (Fig. 6). And, obviously, variation in the weights
over time cannot be detected in scenario 3, as only one posterior
distribution is obtained per weight (Fig. 8).
4.3. Projection

Because no trend is detected in the posteriors of theweights and
parameters in the identification phase that could be extrapolated,
in each projection year (2013e2022) a posterior is drawn randomly
from the posteriors of the identification years (2004e2012). The
projection phase of scenario 2 is run five times to cover the un-
certainty arising from the diverse potential sequences of drawn
posteriors. Scenario 3 is run once, because it always yields the same
result. The projection of the fraction of sugar cane per 25 � 25 km
block shows little difference between scenario 2 and 3 in the me-
dian expansion trend of the selected blocks (Fig. 9); the lines in the
upper and lower panel have similar courses and end up at similar
values in 2022. However, the 95% confidence interval in this trend
in scenario 2 is on average twice as large as in scenario 3.
5. Discussion

5.1. Identification with synthetic data

From the fact that in scenario 1 the weights of the suitability
factors converge to approximately the correct mean value of 0.25
(maximum error is 0.03), we conclude that the particle filter is
successful in inferring the weights. For the variation in this mean
over time, the Runs test gives high p-values (0.21e0.66), meaning
that there is no reason to reject the null hypothesis that this vari-
ation is caused by randomness: the weights are almost certainly
stationary, as expected.

The relatively weak convergence of the parameter values in
most years indicates that the parameters perform equally well (or
badly) over their complete prior distribution. So we conclude that
the sugar cane distribution data does not contain sufficient infor-
mation for inferring the parameters using the particle filter at this
resolution. This could be related to the spatial averaging of the
model results and observations to the 25 � 25 km blocks in the
particle filter. The parameters should be stationary over time, but
the Runs test denotes non-stationarity. However, this result is un-
reliable because of the large uncertainty in the parameters. The
distribution comparison test, that does take into account the full
posterior distributions, does not indicate systemic change, sup-
porting the conclusion that the low identifiability of the parameter
makes the Runs test unsuitable. In future research other types of
data may be used for inferring the parameters, or the parameters
may be fixed and only the weights calibrated. So, in this case study
the test for systemic change in model structure and/or parame-
terization should be focused on the model structure.



Fig. 6. Posterior distributions of the weights of the suitability factors sugar cane in neighbourhood (w1;1), distance to mills (w1;2), potential yield (w1;3), and slope (w1;4), obtained
with Canasat observational data (Rudorff et al., 2010) (scenario 2).

Fig. 7. Representation of the posterior distributions of the parameters of the suitability factors, obtained with Canasat observational data (Rudorff et al., 2010) (scenario 2): a,
window that determines whether or not a cell belongs to the neighbourhood (l21;1w), b, ‘preferred’ fraction of sugar cane neighbours (hatched area) within the window (f1;1), c,
suitability for distance to mills u1;2;t plotted against distance to mills x1;2;t , d, suitability for potential yield u1;3;t plotted against potential yield x1;3;t , and e, suitability for slope u1;4;t
plotted against slope x1;4;t . Black lines represent the median of the parameter value, grey areas are 95% confidence intervals.
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Fig. 8. Evolution of the weights for the four suitability factors, w1;k , using the traditional particle filter approach and the Canasat data (Rudorff et al., 2010) (scenario 3). In the main
panels the black horizontal lines represent the ensemble members. The smaller panels on the left and right give the full prior (2003) and posterior (2012) distributions.
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5.2. Identification with Canasat data

In scenario 2, non-stationarity is observed for three out of the
four weights of the suitability factors (Table 4), indicating a period
of systemic change. It concerns the weights of sugar cane in the
neighbourhood, potential yield, and slope, in the period 2006 to
2008/2009. The weight of the neighbourhood suitability factor
becomes higher, while the weights of slope and potential yield
become lower (Fig. 5). This implies that in determining where to
create a new sugar cane field, existing fields in the neighbourhood
become more important, and the slope of the land and potential
yield, and therefore the mechanization potential and expected
revenues, become less important. In addition, it appears that the
neighbourhood window that is used to look for existing sugar cane
fields in the vicinity becomes smaller (Fig. 7), i.e. expansion of sugar
cane occurs closer to existing fields. However, in the previous
section it was concluded that we should be careful in interpreting
Fig. 9. Projection of fraction of sugar cane in 4 random 25 � 25 km blocks out of the total o
times, to show how the results differ when other posteriors for the weights and paramet
confidence intervals (for scenario 2 calculated over all values of the five runs together).
the results for the parameters, because the scenario with synthetic
data implied that they cannot be fully trusted.

The systemic change is gradual and reaches its maximum in
2007 (Table 4). Looking at the societal changes in the studied period
that we considered of possible influence (Section 3.1), there are two
policy changes: the adoption of one of the schemes for the phasing
out of pre-harvest burning (Aguiar et al., 2011; Gallardo and Bond,
2011) and the implementation of the agro-environmental zoning
(Lucon and Goldemberg, 2010). Yet, these two policies are expected
to increase the importance of the suitability factor slope, while in
the identified systemic change period the weight decreases. The
economic crisis in 2008 is also an unlikely candidate for the cause of
the change, because the systemic change clearly starts already in
2006, when the crisis was not yet foreseen. In conclusion, given our
shortlist of potential causes for systemic changes, no cause can be
found for the onset of systemic change. Nevertheless, the low
weight of the suitability factor potential yield in 2008 and 2009
f 473 blocks in the study area for, a, scenario 2, and, b, scenario 3. Scenario 2 is run five
ers are used. Black lines represent the median of the block value, grey areas are 95%
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confirms the conclusion of journalists that the crisis forced, by a
discontinuation of investments, sugar cane production at older, less
productive sites (G�omez, 2013). A potential explanation of the re-
covery of the system in 2009, to its functioning before 2006, are the
bad harvests from 2009 to 2011 and the consequential larger share
of fields left unharvested. The changed system in which the
importance of potential yield was low, was possibly not maintain-
able anymore, because bad weather usually has a relatively large
influence on already low yielding soils.

Remarkable is the relation between the demand increase (Fig. 3)
and the systemic change. The years 2006e2009 have a demand
increase above average, the exact same period as the systemic
change, with maxima in 2007 and 2008. This implies an indirect
systemic change: an action has an effect on the input ‘demand’, in
such a way that the transition rules and/or parameters have to
change as well (Filatova and Polhill, 2012). A possible reasoning
behind the connection between fast demand increase and an in-
crease in theweight of the neighbourhood suitability factor is that a
sudden upsurge in demand increase is difficult to predict for
farmers. New farmers, searching new locations, may not have time
to respond to the upsurge, but existing farmers, already having the
machines and infrastructure, can expand their existing fields in
response to the upsurge. This results in the fact that expansion is
more guided by existing sugar cane cultivation than by optimal
conditions (slope and potential yield) for new fields. The existing
fields are already close to mills, so this suitability factor remains of
equal importance. However, other explanations might be possible
as well.

The fact thatmost of the societal changes cannot be traced in our
results does not mean that they have no effect at all on the sugar
cane expansion system in S~ao Paulo; it only means that they have
no effect on the sugar cane expansion system in S~ao Paulo given our
model setup, observational data and resolution. Optimal model
structure, and consequently stationarity, is thus different at
different resolutions, as also noted by Pontius and Spencer (2005).
For example, one would expect that the adoption of a new scheme
for the phasing out of pre-harvest burning (Fig. 2) results in an
increase of the weight of the suitability factor slope, but this was
not observed in this study. At a different resolution, considering a
longer time period (there might be a time lag), considering
different suitability factors, or using a different implementation of
the currently used suitability factors the effects can possibly be
observed. In this case we studied the systemic changes using block
averages of sugar cane coverage asmodel outputs and observations.
If systemic changes are studied based on spatial patterns, like
number of patches, or landscape shape index (Pijanowski et al.,
2002) the conclusion can be different. However, the advantage of
using areal averages of land use is that this measure cannot be
derived only from land use maps, but also from agricultural sta-
tistics databases. Where time series of land use maps of sufficient
length are not always available, time series of agricultural statistics
usually are, showing the large applicability of the shown approach.
But, to be able to draw a conclusion on the impact of societal
changes, or more specific the effectiveness of policies, the meth-
odology should be applied with various model setups, with
different spatial patterns in the observational data, at various res-
olutions. This was, however, not the aim of our study. Also, the
single land use type is an oversimplification. Applying the particle
filter on a land use model with multiple land use types, using an
agricultural statistics database as observations, is the next stage of
our research.

The lower standard deviations in the period 2006 to 2009
compared to the other years can be explained by the information
content of the observations. In the given period the demand in-
crease is relatively large, as mentioned before. This implies
allocation of a relatively high number of sugar cane cells in those
years. With this greater amount of change, the particle filter can
better detect the optimal relative importance and parameterization
of the suitability factors, so the convergence of the probability
distributions will be stronger. As a reference: when there is no
demand increase or decrease at all, the particle filter can never
identify the optimal model structure, because the observations
contain no information (no change). It is important to note here
that the information content of the observations is not the reason
for the detected systemic change, because in scenario 1 (synthetic
data) the same demand time series was applied, and the model
structure was stationary.
5.3. Projection

The 95% confidence interval for the projected fraction of sugar
cane per block is twice as large for scenario 2 compared to sce-
nario 3 (Fig. 9), indicating that the use of a different posterior in
each year results in a higher uncertainty regarding the dynamics
of fraction of sugar cane in a block. Still, caution should be taken in
generalizing this quantitatively. If it is true that the systemic
change in the identification period is related to changes in de-
mand increase, the model structure used in the projection period
should depend on projected demand. Nonetheless, if one assumes
that different system structures that have existed in the past are
valid, in any order, in the future, uncertainty in the projection of
land use change becomes considerably higher. Although it was not
analysed in this study, it is even possible that the uncertainty
arising from the potential systemic changes in the future is so
large that variation in the results of different storylines completely
disappears. This is something that should be kept in mind when
conducting land use change projections, especially over long time
intervals.

Instead of representing changes in the model structure by a
random approach, as is done here, it would be preferable to extend
themodel by including processes representing the systemic change
itself. This would enable better forecasting of future changes as
variation in the model structure becomes a function of the state or
inputs of the modelled system itself. For example, one can connect
the land use change model to a transportation model to account for
changes in accessibility (e.g., Aljoufie et al., 2013), or to an erosion
model to represent changing landscape features (e.g., Claessens
et al., 2009). However, in our study the causes for the systemic
changewere not clearly identified, so dealing with systemic change
by including the societal changes causing themwas not achievable.
We foresee that this will also be unachievable in many other land
use changemodelling studies, as often the knowledge of the system
and the data availability are insufficient to fully understand and
model the systemic changes.
6. Conclusion

Our first aim in this paper was to develop a general methodol-
ogy, applicable to any type of model, to test for systemic change. In
the methodology observations of the real system are assimilated
into the model, using a particle filter (van Leeuwen, 2009). The
particle filter was used to update the prior knowledge about the
model structure, in the case of our land use change model the se-
lection and relative importance of suitability factors, and parame-
ters during model runtime at years for which observations of real
land use were available (2004e2012) (see also Verstegen et al.,
2014). Using the particle filter separately for each point in time
for which a land use map was available, we have obtained optimal
model structures for these different points in time.
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One limitation of our methodology is the strong assumption
about the uncertainty in the observations. Also, the land use change
model that was used to test the methodology was relatively simple,
with only one active land use type. Another problem is that the two
statistical tests used to provide evidence for the systemic changes,
did not always give high significance levels. Therefore, we hope that
this study serves as an eye opener to the potential presence of
systemic change, in land use systems as well as in other modelling
domains, and as a first step towards a sound methodology to test
for systemic changes.

Given these limitations, we still believe that some conclusions
can be drawn about systemic change in our case study of sugar cane
expansion in the S~ao Paulo state in Brazil. Here, the assumption of a
constant model structure was not an adequate representation of
the land use system given a time series of observations of past land
use. A visual inspection and an analysis of the quantity of variation
in the distinctive posterior distributions of the suitability factor
weights and parameters, as well as the outcome of two statistical
tests on these distributions have provided a strong indication of
non-stationarity in the model structure and parameters, i.e. sys-
temic change.

The systemic change appeared to be indirect: something has an
effect on the input demand for sugar cane, in such a way that the
transition rules and parameters have to change as well (Filatova
and Polhill, 2012). But, although an inventory was made of socie-
tal changes in the study area during the studied period, none of
these could be related to the onset of the observed systemic
change in the land use system in 2006. The recovery of the system,
in 2008 or 2009, might be related to a few years of bad harvests,
forcing farmers to focus more on potential yield when selecting a
new field.

Because no clear reason was detected for the model structure
and parameter changes in the identification period, we assumed
that a future land use system could be any of the land use sys-
tems found in the identification period. Applying this resulted in
an increase of the 95% confidence interval of the projected
fraction of sugar cane by a factor of two compared to the
assumption that the future land use system is a combination of
all land use systems found in the identification period, in a sta-
tionary way.

In view of the above, we recommend land use change modellers
to check, if permitted by data availability, whether or not the sys-
temwas stationary in the past and if potential causes can be found
for detected non-stationarity. The methodology proposed in this
paper can be used for such an analysis although it certainly needs
further evaluation given the limitations of this study described
above. Non-stationarity in land use change projections is chal-
lenging to model, because it is difficult to determine when the
system will change and how. We cannot expect land use change
modellers to incorporate systemic changes in their models. None-
theless, we believe that they should be more aware, and commu-
nicate more clearly, that what they try to project is at the limits, and
perhaps beyond the limits, of what is still projectable, because
systemic changes seem to occur in reality.
Acknowledgements

This work was carried out within the BE-Basic R&D Program,
which was granted a FES subsidy from the Dutch Ministry of Eco-
nomic affairs, agriculture and innovation (EL&I). We thank the
Brazilian National Institute for Space Research (INPE), and espe-
cially Bernardo Rudorff, for providing the Canasat maps that were
used as observational data. Six anonymous reviewers and the
special issue editors are thanked for their contributions.
Appendix A. Supplementary data

Supplementary data related to this article can be found at http://
dx.doi.org/10.1016/j.envsoft.2015.02.013.
References

Adami, M., Mello, M.P., Aguiar, D.A., Rudorff, B.F.T., de Souza, A.F., 2012a. A web
platform development to perform thematic accuracy assessment of sugarcane
mapping in South-Central Brazil. Remote Sens. 4, 3201e3214.

Adami, M., Rudorff, B.F.T., Freitas, R., Aguiar, D.A., Sugawara, L.M., Mello, M.P., 2012b.
Remote sensing time series to evaluate direct land use change of recent
expanded sugarcane crop in Brazil. Sustainability 4, 574e585.

Aerts, J.C.J.H., Goodchild, M.F., Heuvelink, G.B.M., 2003. Accounting for spatial un-
certainty in optimization with spatial decision support systems. Trans. GIS 7,
211e230.

Aguiar, D.A., Personal communication, July 17th 2014.
Aguiar, D.A., da Silva, W.F., Rudorff, B.F.T., Adami, M., 2010. Canasat project: moni-

toring the sugarcane harvest type in the state of S~ao Paulo, Brazil. In:
Wagner, W., Sz�ekely, B. (Eds.), Procedeedings of the International Archives of
the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS)
TC VII Symposium e 100 Years, July 5e7, 2010 ed. ISPRS, Vienna, Austria,
pp. 10e15.

Aguiar, D.A., Rudorff, B.F.T., Silva, W.F., Adami, M., Mello, M.P., 2011. Remote sensing
images in support of environmental protocol: monitoring the sugarcane harvest
in S~ao Paulo State, Brazil. Remote Sens. 3, 2682e2703.

Aljoufie, M., Zuidgeest, M., Brussel, M., van Vliet, J., van Maarseveen, M., 2013.
A cellular automata-based land use and transport interaction model applied to
Jeddah, Saudi Arabia. Landsc. Urban Plan. 112, 89e99.

Aspinall, R., 2004. Modelling land use change with generalized linear models e a
multi-model analysis of change between 1860 and 2000 in Gallatin Valley,
Montana. J. Environ. Manag. 72, 91e103.

Bakker, M., Veldkamp, A., 2012. Changing relationships between land use and
environmental characteristics and their consequences for spatially explicit
land-use change prediction. J. Land Use Sci. 7, 407e424.

Bakker, M.M., Hatna, E., Kuhlman, T., Mücher, C.A., 2011. Changing environmental
characteristics of European cropland. Agric. Syst. 104, 522e532.

Brown, D.G., Robinson, D.T., An, L., Nassauer, J.I., Zellner, M., Rand, W., Riolo, R.,
Page, S.E., Low, B., Wang, Z., 2008. Exurbia from the bottom-up: confronting
empirical challenges to characterizing a complex system. Geoforum 39,
805e818.

Carlson, K.M., Curran, L.M., Ratnasari, D., Pittman, A.M., Soares-Filho, B.S.,
Asner, G.P., Trigg, S.N., Gaveau, D.A., Lawrence, D., Rodrigues, H.O., 2012.
Committed carbon emissions, deforestation, and community land conversion
from oil palm plantation expansion in West Kalimantan, Indonesia. Proc. Natl.
Acad. Sci. U. S. A. 109, 7559e7564.

Claessens, L., Schoorl, J.M., Verburg, P.H., Geraedts, L., Veldkamp, A., 2009. Modelling
interactions and feedback mechanisms between land use change and landscape
processes. Agric. Ecosyst. Environ. 129, 157e170.

Clarke, K.C., Hoppen, S., Gaydos, L.J., 1997. A self-modifying cellular automaton
model of historical urbanization in the San Francisco Bay area. Environ. Plan. B
Plan. Des. 24, 247e261.

Costa, P.A.L., Gray, K., 2011. Brazilian Senate Approves New Forest Code e New Law
Guarantees Preservation of 80% of the Amazon Rainforest.

de Souza Soler, L., Verburg, P.H., 2010. Combining remote sensing and household
level data for regional scale analysis of land cover change in the Brazilian
Amazon. Reg. Environ. Change 10, 371e386.

Efron, B., Tibshirani, R.J., 2003. An Introduction to the Bootstrap. CRC Press LLC, Boca
Raton, Florida.

Farr, T.G., Rosen, P.A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M.,
Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J.,
Werner, M., Oskin, M., Burbank, D., Alsdorf, D., 2007. The shuttle radar topog-
raphy mission. Rev. Geophys. 45.

Filatova, T., Polhill, J.G., 2012. Shocks in coupled socio-ecological systems: what are
they and how can we model them? In: Seppelt, R., Voinov, A.A., Lange, S.,
Bankamp, D. (Eds.), International Environmental Modelling and Software So-
ciety (iEMSs), 2012 International Congress on Environmental Modelling and
Software, Managing Resources of a Limited Planet: Pathways and Visions under
Uncertainty, Sixth Biennial Meeting, Leipzig, Germany July 1e5, 2012,
pp. 2619e2630.

Gallardo, A.L.C.F., Bond, A., 2011. Capturing the implications of land use change in
Brazil through environmental assessment: time for a strategic approach? En-
viron. Impact Assess. Rev. 31, 261e270.

G�omez Jr., C., 2013. Rise of Ethanol in Brazil? SciTechDaily.
Grazzini, J., 2012. Analysis of the Emergent properties: stationarity and Ergodicity.

J. Artif. Soc. Soc. Simul. 15. March 12 2013.
ICONE, 2012. ICONE e Institute for International Trade Negotiations, Brief

Description for the Brazilian Land Use Model e BLUM. 2012.
Karssenberg, D., Schmitz, O., Salamon, P., de Jong, K., Bierkens, M.F.P., 2010.

A software framework for construction of process-based stochastic spatio-
temporal models and data assimilation. Environ. Model. Softw. 25, 489e502.

http://dx.doi.org/10.1016/j.envsoft.2015.02.013
http://dx.doi.org/10.1016/j.envsoft.2015.02.013
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref1
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref1
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref1
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref1
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref2
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref2
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref2
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref2
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref3
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref3
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref3
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref3
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref4
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref4
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref4
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref4
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref4
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref4
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref4
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref4
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref4
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref4
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref4
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref5
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref5
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref5
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref5
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref5
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref6
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref6
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref6
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref6
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref7
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref7
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref7
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref7
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref7
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref8
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref8
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref8
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref8
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref9
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref9
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref9
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref10
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref10
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref10
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref10
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref10
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref11
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref11
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref11
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref11
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref11
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref11
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref12
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref12
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref12
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref12
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref13
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref13
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref13
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref13
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref14
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref14
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref14
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref15
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref15
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref15
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref15
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref16
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref16
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref17
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref17
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref17
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref17
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref18
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref18
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref18
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref18
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref18
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref18
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref18
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref18
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref18
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref19
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref19
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref19
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref19
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref20
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref20
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref21
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref21
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref22
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref22
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref22
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref22
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref23
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref23
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref23
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref23


J.A. Verstegen et al. / Environmental Modelling & Software 75 (2016) 424e438438
Lanzante, J.R., 1996. Resistant, robust and non-parametric techniques for the anal-
ysis of climate data: theory and examples, including applications to historical
radiosonde station data. Int. J. Climatol. 16, 1197e1226.

Lapola, D.M., Schaldach, R., Alcamo, J., Bondeau, A., Koch, J., Koelking, C., Priess, J.A.,
2010. Indirect land-use changes can overcome carbon savings from biofuels in
Brazil. Proc. Natl. Acad. Sci. U. S. A. 107, 3388e3393.

Cerqueira Leite, R.C.d., Verde Leal, M.R.L., Barbosa Cortez, L.A., Griffin, W.M., Gaya
Scandiffio, M.I., 2009. Can Brazil replace 5% of the 2025 gasoline world demand
with ethanol? Energy 34, 655e661.

Lillesand, T.M., Kiefer, R.W., Chipman, J.W., 2003. Remote Sensing and Image
Interpretation, fifth ed. Wiley.

Lucon, O., Goldemberg, J., 2010. S~ao Paulo e the “other” Brazil: different pathways
on climate change for state and federal governments. J. Environ. Dev. 19,
335e357.

Macedo, I.C., 2007. Sugar Cane's Energy e Twelve Studies on Brasilian Sugar Cane
Agribusiness and its Sustainability.

Macedo, I.C., Seabra, J.E.A., 2008. Mitigation of GHG emissions using sugarcane
bioethanol (Chapter 4). In: Zuurbier, P., van de Vooren, J. (Eds.), Sugarcane
Ethanol: Contributions to Climate Change Mitigation and the Environment.
Wageningen Academic Publishers, Wageningen, The Netherlands, pp. 95e110.

Manson, S.M., 2007. Challenges in evaluating models of geographic complexity.
Environ. Plan. B Plan. Des. 34, 245e260.

Merz, R., Parajka, J., Bl€oschl, G., 2011. Time stability of catchment model parameters:
implications for climate impact analyses. Water Resour. Res. 47.

Nassar, A.M., Rudorff, B.F.T., Antoniazzi, L.B., Aguiar, D.A., Bacchi, M.R.P.,
Adami, M., 2008. Prospects of the sugarcane expansion in Brazil: impacts on
direct and indirect land use changes (Chapter 3). In: Zuurbier, P., van de
Vooren, J. (Eds.), Sugarcane Ethanol: Contributions to Climate Change Miti-
gation and the Environment. Wageningen Academic Publishers, Wageningen,
pp. 63e112.

Padua Junior, A.L., Costa Pasini, A.C., Comatsu, C.E., Casarin, D.C.P., Michelino, G.G.,
von Glhen, H.C., da Silva, I.X., de Moreas, J.F.L., de Carvalho, J.P., Sandoval, M.,
Valeriano, M., Araujo, N., Brunini, O., Vedovelo, R., Viegas, R., Campaign, R.C.F.,
Adami, S.F., 2012. Agro-environmental Zoning e Green Ethanol e Environ-
mental System for S~ao Paulo e Government of S~ao Paulo. 2012.

Parker, D.C., Hessl, A., Davis, S.C., 2008. Complexity, land-use modeling, and the
human dimension: fundamental challenges for mapping unknown outcome
spaces. Geoforum 39, 789e804.

Picoli, M., 2013. Brazilian Sugarcane Mills Map e 2013.
Pijanowski, B.C., Brown, D.G., Shellito, B.A., Manik, G.A., 2002. Using neural net-

works and GIS to forecast land use changes: a Land Transformation Model.
Comput. Environ. Urban Syst. 26, 553e575.

Pontius Jr., R.G., Neeti, N., 2010. Uncertainty in the difference between maps of
future land change scenarios. Sustain. Sci. 5, 39e50.

Pontius Jr., R.G., Spencer, J., 2005. Uncertainty in extrapolations of predictive land-
change models. Environ. Plan. B Plan. Des. 32, 211e230.
Rudorff, B.F.T., Aguiar, D.A., Silva, W.F., Sugawara, L.M., Adami, M., Moreira, M.A.,
2010. Studies on the rapid expansion of sugarcane for ethanol production in S~ao
Paulo State (Brazil) using Landsat Data. Remote Sens. 2, 1057e1076.

Schaldach, R., Alcamo, J., Koch, J., K€olking, C., Lapola, D.M., Schüngel, J., Priess, J.A.,
2011. An integrated approach to modelling land-use change on continental and
global scales. Environ. Model. Softw. 26, 1041e1051.

Sparovek,G., Berndes,G., Egeskog,A., de Freitas, F.L.M., Gustafsson, S.,Hansson, J., 2007.
Sugarcane ethanol production in Brazil: an expansion model sensitive to socio-
economic and environmental concerns. Biofuels. Bioprod. Biorefin. 1, 270e282.

Sparovek, G., Barretto, A.G.d.O.P., Berndes, G., Martins, S., Maule, R., 2009. Envi-
ronmental, land-use and economic implications of Brazilian sugarcane expan-
sion 1996e2006. Mitig. Adapt. Strategies Glob. Change 14, 285e298.

Sparovek, G., Berndes, G., Klug, I.L.F., Barretto, A.G.d.O.P., 2010. Brazilian agriculture
and environmental legislation: status and future challenges. Environ. Sci.
Technol. 44, 6046e6053.

Sparovek, G., Berndes, G., Barretto, A.G.d.O.P., Klug, I.L.F., 2012. The revision of the
Brazilian Forest Act: increased deforestation or a historic step towards
balancing agricultural development and nature conservation? Environ. Sci.
Policy 16, 65e72.

Torquato, S.A., 2006. Cana-de-açúcar para indústria: o quanto vai precisar crescer.
An�alises Indic. Agroneg�ocio 1.

T�oth, G., Kozlowski, B., Prieler, S., Wiberg, D., 2012. Global Agro-ecological Zones
(GAEZ v3.0).

van der Hilst, F., Verstegen, J.A., Karssenberg, D., Faaij, A.P.C., 2012. Spatio-temporal
land use modelling to assess land availability for energy crops e illustrated for
Mozambique. Glob. Change Biol. Bioenergy 4, 859e874.

van Leeuwen, P.J., 2009. Particle filtering in geophysical systems. Mon. Weather Rev.
137, 4089e4114.

Verburg, P.H., 2006. Simulating feedbacks in land use and land cover change
models. Landsc. Ecol. 21, 1171e1183.

Verburg, P.H., Soepboer, W., Veldkamp, A., Limpiada, R., Espaldon, V., Mastura, S.S.A.,
2002. Modeling the spatial dynamics of regional land use: the CLUE-S model.
Environ. Manag. 30, 391e405.

Verstegen, J.A., Karssenberg, D., van der Hilst, F., Faaij, A.P.C., 2012. Spatio-temporal
uncertainty in spatial decision support systems: a case study of changing land
availability for Bioenergy crops in Mozambique. Computers. Environ. Urban
Syst. 36, 30e42.

Verstegen, J.A., Karssenberg, D., van der Hilst, F., Faaij, A.P.C., 2014. Identifying a land
use change cellular automaton by Bayesian data assimilation. Environ. Model.
Softw. 53, 121e136.

Wald, A., Wolfowitz, J., 1940. On a test whether two samples are from the same
population. Ann. Math. Statistics 11, 147e162.

Walter, A., Dolzan, P., Quilodr�an, O., De Oliveira, J.G., Da Silva, C., Piacente, F.,
Segerstedt, A., 2011. Sustainability assessment of bio-ethanol production in
Brazil considering land use change, GHG emissions and socio-economic aspects.
Energy Policy 39, 5703e5716.

http://refhub.elsevier.com/S1364-8152(15)00062-6/sref24
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref24
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref24
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref24
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref25
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref25
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref25
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref25
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref26
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref26
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref26
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref26
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref27
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref27
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref28
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref28
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref28
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref28
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref28
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref28
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref29
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref29
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref29
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref30
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref30
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref30
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref30
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref30
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref31
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref31
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref31
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref32
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref32
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref32
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref33
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref33
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref33
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref33
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref33
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref33
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref33
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref34
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref34
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref34
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref34
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref34
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref34
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref34
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref34
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref34
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref34
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref35
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref35
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref35
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref35
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref36
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref36
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref37
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref37
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref37
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref37
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref38
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref38
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref38
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref39
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref39
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref39
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref40
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref40
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref40
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref40
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref40
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref41
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref41
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref41
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref41
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref41
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref42
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref42
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref42
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref42
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref43
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref43
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref43
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref43
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref43
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref44
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref44
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref44
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref44
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref45
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref45
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref45
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref45
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref45
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref46
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref46
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref46
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref46
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref47
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref47
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref47
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref48
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref48
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref48
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref48
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref48
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref49
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref49
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref49
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref50
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref50
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref50
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref51
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref51
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref51
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref51
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref52
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref52
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref52
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref52
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref52
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref53
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref53
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref53
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref53
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref54
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref54
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref54
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref55
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref55
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref55
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref55
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref55
http://refhub.elsevier.com/S1364-8152(15)00062-6/sref55

	Detecting systemic change in a land use system by Bayesian data assimilation
	1. Introduction
	2. Methods
	2.1. Systemic change
	2.2. Land use change model
	2.3. Particle filter
	2.4. Stationarity analysis

	3. Case study
	3.1. Background
	3.2. Model setup
	3.3. Particle filter setup
	3.4. Stationarity analysis setup
	3.5. Scenarios

	4. Results
	4.1. Identification with synthetic data
	4.2. Identification with Canasat data
	4.3. Projection

	5. Discussion
	5.1. Identification with synthetic data
	5.2. Identification with Canasat data
	5.3. Projection

	6. Conclusion
	Acknowledgements
	Appendix A. Supplementary data
	References


