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ABSTRACT 

Aminoindanes, piperazines, and pipradrol derivatives are novel psychoactive 

substances found in “Ecstasy” tablets as replacements for 3,4-

methylenedioxymethamphetamine (MDMA) or substances sold as “ivory wave.” The 

pharmacology of these MDMA- and methylphenidate-like substances is poorly 

known. We characterized the pharmacology of the aminoindanes 5,6-

methylenedioxy-2-aminoindane (MDAI), 5-iodoaminoindane (5-IAI), and 2-

aminoindane (2-AI), the piperazines meta-chlorophenylpiperazine (m-CPP), 

trifluoromethylphenylpiperazine (TFMPP), and 1-benzylpiperazine (BZP), and the 

pipradrol derivatives desoxypipradrol (2-diphenylmethylpiperidine [2-DPMP]), 

diphenylprolinol (diphenyl-2-pyrrolidinemethanol [D2PM]), and methylphenidate. 

We investigated norepinephrine (NE), dopamine (DA), and serotonin (5-

hydroxytryptamine [5-HT]) uptake inhibition using human embryonic kidney 293 

(HEK 293) cells that express the respective human monoamine transporters (NET, 

DAT, and SERT). We also evaluated the drug-induced efflux of NE, DA, and 5-HT 

from monoamine-preloaded cells and the binding affinity to monoamine transporters 

and receptors, including trace amine-associated receptor 1 (TAAR1). 5-IAI and MDAI 

preferentially inhibited the SERT and NET and released 5-HT. 2-AI interacted with 

the NET. BZP blocked the NET and released DA. m-CPP and TFMPP interacted with 

the SERT and serotonergic receptors. The pipradrol derivatives were potent and 

selective catecholamine transporter blockers without substrate releasing properties. 

BZP, D2PM, and 2-DPMP lacked serotonergic activity and TAAR1 binding, in 

contrast to the aminoindanes and phenylpiperazines. In summary, all of the substances 

were monoamine transporter inhibitors, but marked differences were found in their 
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DAT vs. SERT inhibition profiles, release properties, and receptor interactions. The 

pharmacological profiles of D2PM and 2-DPMP likely predict a high abuse liability.  

 

Keywords: Novel Psychoactive Substance, Monoamine, Transporter, Receptor 
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methylenedioxy-2-aminoindane; MDMA, 3,4-methylenedioxymethamphetamine; NE, 

norepinephrine; NET, norepinephrine transporter; 5-HT, 5-hydroxytryptamine 

(serotonin); SERT, serotonin transporter; TAAR, trace amine-associated receptor; 

TFMPP, trifluoromethylphenylpiperazine. 
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1. Introduction 

 New psychoactive substances [1] are constantly emerging on the illicit drug 

market. Many of these novel designer substances are amphetamine derivatives and 

typically marketed as “bath salts”, “research chemicals” or “legal highs” via the 

Internet [2]. Pharmacological information is typically not available for these newly 

emerging designer substances. Interactions with the norepinephrine (NE), dopamine 

(DA), and serotonin (5-hydroxytryptamine [5-HT]) transporters (NET, DAT, and 

SERT, respectively) to block or release monoamines can be expected based on the 

amphetamine-like core structure of many of these substances. In addition, chemical 

modifications typically alter absolute or relative potencies at the NET and DAT 

relative to the SERT or substrate release properties, thereby affecting stimulant-like 

and reinforcing properties [3, 4]. Additional interactions with the 5-HT2A receptor 

may result in hallucinogenic-like actions. Substances that predominantly act on the 

NET and DAT have stimulant-like properties similar to amphetamine, whereas 

substances that mostly act on the SERT may have more “empathogenic” properties 

similar to 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy) [4, 5]. Assessing 

the in vitro pharmacological profiles of novel substances is a relatively rapid approach 

for gaining a first impression of their potential clinical effects and toxicology, in 

addition to user reports. Accordingly, the pharmacology of many novel designer 

cathinones (“bath salts” and “research chemicals”) has recently been characterized in 

vitro [4, 6-10]. The aim of the present study was to describe the effects on monoamine 

uptake and release of novel psychoactive substances that are not cathinones, but have 

been introduced into the illicit drug market as “legal highs” to typically mimic the 

subjective effects of MDMA or amphetamine-type stimulants. Aminoindanes, such as 

5,6-methylenedioxy-2-aminoindane (MDAI) and 5-iodoaminoindane (5-IAI), became 
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increasingly available over the Internet starting in 2010 as legal and, in the case of 

MDAI, allegedly less-neurotoxic alternatives to MDMA [11-13]. Piperazines have 

been used for more than a decade [14] and are commonly found in Ecstasy pills as 

substitutes for MDMA [15, 16]. Toxicity associated with the use of “ivory wave,” 

which contains the pipradrol derivative desoxypipradrol (2-diphenylmethylpiperidine 

[2-DPMP]) or diphenylprolinol (diphenyl-2-pyrrolidinemethanol [D2PM]) was 

increasingly reported starting in 2010 [17-19]. The present study investigated the 

aminoindanes 2-aminoindane (2-AI), 5-IAI, and MDAI, the piperazines 

meta-chlorophenylpiperazine (m-CPP), trifluoromethylphenylpiperazine (TFMPP), 

and 1-benzylpiperazine (BZP), and the pipradrol derivatives D2PM and 2-DPMP. 

Similar data on MDMA and other novel psychoactive substances have previously 

been published [4, 6]. We determined the potencies of the compounds to inhibit the 

human NET, DAT, and SERT. We tested whether the compounds induce the 

transporter-mediated release of NE, DA, and 5-HT and characterized the binding 

affinities of the compounds for monoamine transporters, 1 and 2 adrenergic 

receptors, dopamine D1-D3 receptors, 5-HT1A, 5-HT2A, and 5-HT2C receptors, the 

histamine H1 receptor, and trace amine-associated receptor 1 (TAAR1). Most of the 

substances examined herein were previously studied using rodent transporters, but 

only a few were also studied using human transporters and receptors [7]. However, 

more comprehensive analyses are needed at both human transporters and receptors 

Similar data on novel designer cathinones and classic stimulants, including 

amphetamine, methamphetamine, MDMA, and cocaine have previously been 

obtained using identical methods [4, 6].  

 

2. Methods 
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2.1. Chemicals 

 MDMA, methylphenidate, m-CPP, TFMPP, and BZP were supplied by 

Lipomed (Arlesheim, Switzerland), and 5-IAI, 2-AI, 2-DPMP, and D2PM were 

supplied by Cayman Chemicals (Ann Arbor, MI, USA) as racemic hydrochloride salts 

(purity > 98.5%). MDAI was synthesized as a racemic hydrochloride salt in our 

laboratory according to Nichols et al. [20]. Radiochemicals (
3
H-isotopes) were 

obtained from Anawa (Wangen, Switzerland) or Perkin Elmer (Schwerzenbach, 

Switzerland), with the exception of [
3
H]RO5166017, which was synthesized at Roche 

(Basel, Switzerland). 

 

2.2. Monoamine uptake transport inhibition 

 The inhibition of the NET, SERT, and DAT was assessed in human 

embryonic kidney 293 (HEK 293) cells that stably expressed the human NET, SERT, 

and DAT [21] as previously described in detail [22]. Cultured cells were detached and 

resuspended in uptake buffer. We incubated the cells with various concentrations of 

the test compounds and the vehicle control for 10 min and then added [
3
H]DA, 

[
3
H]NE, and [

3
H]5-HT (5 nM final concentrations) to initiate the uptake transport of 

the labeled monoamines at room temperature. Uptake was stopped after 10 min by 

separation of the cells from the buffer by rapid centrifugation at high speed through 

silicone oil [22]. The uptake times were based on kinetic evaluations showing that 

uptake is complete after 5 min [22]. The centrifugation tubes were frozen in liquid 

nitrogen and cut to separate the cell pellet from the silicone oil and assay buffer 

layers. The cell pellet was lysed. Scintillation fluid was added, and radioactivity was 

counted on a beta-counter. Nonspecific uptake was determined for each experiment in 

the presence of 10 M fluoxetine for SERT cells, 10 M nisoxetine for NET cells, 
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and 10 M mazindol for DAT cells and subtracted from the total counts to yield 

specific uptake (100%). Nonspecific uptake was < 15% of total uptake. The data were 

fit by non-linear regression to variable-slope sigmoidal dose-response curves, and 

IC50 values were calculated using Prism (GraphPad, San Diego, CA, USA). 

DAT/SERT ratios were calculated as 1/DAT IC50:1/SERT IC50. The DAT/SERT ratio 

is considered useful to predict the characteristics of the psychoactive effects of novel 

psychoactive substances [4, 23-25]. Higher relative potency at the DAT may indicate 

a higher abuse potential while relatively increased activity on the 5-HT system is 

linked to reduced abuse potential and more MDMA-like psychotropic effects [25]. 

Stimulant amphetamines such as methamphetamine exhibit a DAT/SERT ratio >10, 

while MDMA and other substances with MDMA-like psychotropic effects exhibit a 

DAT/SERT ratio close to 0.1 [4, 26].   

2.3. Transporter-mediated monoamine release 

 We studied the effects of 100 µM of the test compounds on transporter-

mediated NE, 5-HT, and DA efflux in HEK 293 cells that overexpressed the 

respective human monoamine transporter as previously reported in detail [4]. Briefly, 

we preloaded the cells by incubating SERT cells with 10 nM [
3
H]5-HT, DAT cells 

with 10 nM [
3
H]DA and 1 µM unlabeled DA, and NET cells with 10 nM [

3
H]NE and 

10 µM unlabeled NE for 20 min. The cells were then washed twice, and release was 

induced by adding 1000 µl of release buffer that contained the test compounds at 

concentrations of 100 µM. We incubated the SERT and DAT cells for 15 min and 

NET cells for 45 min at 37°C by shaking at 300 rotations per minute on a rotary 

shaker. The release times were based on kinetic evaluation of the release-over-time 

curves for MDMA. After 15 min for [
3
H]5-HT and [

3
H]DA and 45 min for [

3
H]NE, a 

sufficient amount of radioactivity was released to allow for comparisons with the 
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control conditions. We then stopped release by removing the buffer and gently 

washing the cells twice with cold buffer. We quantified the radioactivity that 

remained in the cells. Nonspecific “pseudo-efflux,” which arises from substrate that 

diffuses out of the cells and reuptake inhibition [27, 28], was assessed for each 

experiment using the transporter inhibitors nisoxetine (NET cells), citalopram (SERT 

cells), and mazindol (DAT cells) at 10 µM as negative control conditions. We then 

used analysis of variance followed by Dunnett’s test to compare test drug-induced 

monoamine release with nisoxetine, citalopram, and mazindol (negative controls). 

Compounds that induced significantly higher maximal monoamine efflux compared 

with the respective transporter inhibitors, which induced slight nonspecific release, 

were considered monoamine releasers. MDMA was used as a positive control 

condition in each experiment. Previously published data on cathinones [6] were 

obtained from the same experiments and tested along-side with the drugs described 

here. Therefore the data on MDMA are the same as previously published [6] and data 

on cathinones [6] can be compared with those obtained with the data shown here. All 

of the conditions were normalized to radioactive counts of the assay buffer control 

condition. The assays allowed qualitative classification of a drug as a releaser or non-

releaser at 100 µM, but not quantitative comparisons between transporters. 

 

2.4. Radioligand binding assays 

 The radioligand binding assays were performed as described previously [4, 22, 

29]. Briefly, membrane preparations of HEK 293 cells (Invitrogen, Zug, Switzerland) 

that overexpress the respective transporters [21] or receptors (human genes, with the 

exception of TAAR1 receptors that were rat/mouse; [29]) were incubated with the 

radiolabeled selective ligands at concentrations equal to Kd, and ligand displacement 
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by the compounds was measured. Specific binding of the radioligand to the target 

receptor was defined as the difference between the total binding and nonspecific 

binding determined in the presence of selected competitors in excess. The following 

radioligands and competitors, respectively, were used: N-methyl-[
3
H]-nisoxetine and 

indatraline (NET), [
3
H]citalopram and indatraline (SERT), [

3
H]WIN35,428 and 

indatraline (DAT), [
3
H]8-hydroxy-2-(di-n-propylamino)tetralin and indatraline (5-

HT1A receptor), [
3
H]ketanserin and spiperone (5-HT2A receptor), [

3
H]mesulergine and 

mianserin (5-HT2C receptor), [
3
H]prazosin and risperidone (1 adrenergic receptor), 

[
3
H]rauwolscine and phentolamine (2 adrenergic receptor), [

3
H]SCH 23390 and 

butaclamol (DA D1 receptor), [
3
H]spiperone and spiperone (DA D2 and D3 receptors), 

[
3
H]pyrilamine and clozapine (histaminergic H1 receptor), and [

3
H]RO5166017 and 

RO5166017 (TAAR1). IC50 values were determined by calculating nonlinear 

regression curves for a one-site model using three to five independent 10-point 

concentration-response curves for each compound. Ki (affinity) values, which 

correspond to the dissociation constants, were determined using the Cheng-Prusoff 

equation. Similarly obtained data on MDMA has previously been published [4, 6]. 

 

3. Results 

3.1. Monoamine uptake transporter inhibition 

 The effects of the test compounds on monoamine transporter function are 

presented in Fig. 2. The corresponding IC50 values for monoamine transport inhibition 

and DAT/SERT inhibition ratios are shown in Table 1. With the exception of m-CPP 

and TFMPP, all of the tested compounds inhibited NET with IC50 values of 0.1 - 1 

µM. For comparison, clinically used NET inhibitors such as reboxetine, indatraline, 
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or duloxetine are slightly more potent and inhibited NET with IC50 values of 0.036, 

0.43 and 0.126 µM in the same or similar assays [22].  

DAT and SERT inhibition potencies varied considerably, resulting in a wide range of 

DAT/SERT inhibition ratios. Both ring-substituted aminoindanes, 5-IAI and MDAI, 

and both phenyl-piperazines, m-CPP and TFMPP, preferentially inhibited the SERT 

over the DAT, similar to MDMA [4, 6]. The pipradrol derivatives D2PM, 2-DPMP, 

and methylphenidate were all considerably more potent DAT vs. SERT inhibitors. 2-

AI and BZP showed only low potency as DAT or SERT inhibitors (IC50 values > 10 

µM). 

 

3.2. Transporter-mediated monoamine release 

 The effects of the test compounds on the transporter-mediated release of NE, 

DA, and 5-HT from transmitter-preloaded cells are depicted in Fig. 3. As expected, 

MDMA induced significant efflux of NE, DA, and 5-HT compared with the 

nonspecific “release” observed with the pure uptake inhibitors nisoxetine, mazindol, 

and citalopram, respectively. The aminoindanes were releasers of at least one 

monoamine. 5-IAI released 5-HT and DA. MDAI released 5-HT and NE. 2-AI 

released NE and DA. Among the piperazines, BZP released DA, m-CPP released 5-

HT, and TFMPP did not induce the efflux of any monoamine. None of the pipradrol 

derivatives or methylphenidate was a substrate releaser. 

 

3.3. Binding affinities 

 Table 2 shows the binding profiles of the test compounds expressed as the 

potencies of the compounds (Ki) to inhibit radioligand binding to the NET, DAT, and 

SERT and different monoamine receptors. Among the aminoindanes, the binding 
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profile of MDAI was similar to MDMA [4, 6], whereas 5-IAI exhibited 

submicromolar affinities (< 1 M) for the 5-HT1A, 5-HT2A, α2A, and D3 receptors. In 

contrast to MDMA [4, 6], the phenylpiperazines m-CPP and TFMPP showed 

submicromolar (< 1 M) binding to many monoamine receptors, including the 5-

HT1A, 5-HT2A, 5-HT2C, α2A, and D1-3 receptors. The pipradrol derivatives and 

methylphenidate potently bound to the DAT, but not to any other sites. The 

aminoindanes, and the phenylpiperazines showed affinity for the rat and mouse 

TAAR1, similar to MDMA [4, 6]. Binding potencies at the monoamine transporters 

were typically weak, except for the high-affinity (< 100 nM) binding of the pipradrol 

derivatives at the DAT. 

 

4. Discussion 

 All of the novel substances characterized in the present study interacted with 

the monoamine transporters. High potency of a compound to inhibit the 

catecholamine transporter NET and DAT in vitro is associated with greater 

psychostimulant potency in humans [4]. These compounds typically exhibit a 

DAT/SERT ratio > 1 and a high abuse potential [4]. Predominant drug activity at the 

SERT [22] and a DAT/SERT inhibition ratio of typically 0.01 - 0.1 are expected to 

result in subjective drug effects similar to those of MDMA or other empathogens [4, 

6]. These serotonergic compounds produce subjective well-being and enhanced 

empathy and sociability in humans without marked psychostimulation [5, 30]. 

Additionally, compounds which predominantly act on SERT and NET [6] have been 

associated with 5-HT syndrome, hyperthermia and resulting organ failure. 

Furthermore, compounds which act as monoamine releasers (i.e., MDMA or 

methamphetamine [4, 6]) enter the intracellular space via the transporter. In contrast 
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to pure transporter blockers (i.e., cocaine), monoamine releasers are expected to have 

more subsequent intracellular pharmacological and neurotoxic consequences [31, 32].    

The in vitro pharmacological profiles of the compounds studied herein may be 

useful to predict the clinical effects according to the associations noted above. The 

profiles can also be compared with those of cocaine and a series of recreationally used 

amphetamine and cathinone derivatives previously characterized using the same in 

vitro assays [4, 6].  

 

4.1. Aminoindanes 

 The aminoindanes 5-IAI and MDAI preferentially inhibited the NET and 

SERT and less potently inhibited the DAT, similar to MDMA [4, 6], but with 

approximately two-fold lower potency. 5-IAI and MDAI released 5-HT through the 

SERT, similar to MDMA. MDAI also shared the NE-releasing property and receptor 

binding profile of MDMA [4, 6]. Similar inhibitory effects of 5-IAI and MDAI on 

human monoamine transporters have recently been shown [7], but no comparable data 

on monoamine release are available. In contrast to the human transporter studies, both 

MDAI and 5-IAI were relatively more potent SERT and DAT vs. NET inhibitors in 

rat brain synaptosomes [33]. Similar to our data, MDAI released 5-HT, but not DA, 

and 5-IAI released both 5-HT and DA from rat brain synaptosomes [33]. 5-IAI and 

MDAI substituted for MDMA in drug discrimination studies [20, 34], but were 

considered less neurotoxic than MDMA [20, 34, 35]. This profile may increase the 

popularity of these aminoindanes [13]. The comparable monoamine transporter 

inhibition and release profile to MDMA [4, 6] would predict that MDAI has very 

similar subjective effects to MDMA, and this is supported by user reports [12, 36]. 

Rare severe complications include serotonin syndrome and hyperthermia [36], also 
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similar to MDMA. In contrast to MDAI and MDMA [4, 6], 5-IAI exhibited relevant 

binding to 5-HT receptors, including the 5-HT2A receptor that is implicated in the 

action of hallucinogens [37]. 5-IAI is also considered a less potent MDMA substitute, 

but dysphoria, anxiety, and hallucinations have also been reported [13]. In contrast to 

the substituted aminoindanes, 2-AI selectively inhibited the NET, but not the DAT or 

SERT. This profile is relatively similar to BZP in the present study, but most other 

amphetamines also typically more potently inhibit the DAT [4, 6]. 2-AI also released 

NE and DA. No comparable data on the pharmacology of 2-AI have been reported. 

Based on the profile in the present study, 2-AI likely has only mild psychostimulant 

effects in humans. 

 

4.2. Piperazines 

 Although piperazines have been widely used since the 1990s, and their 

pharmacology and toxicology have been reviewed [14, 38-41], only few and 

conflicting original data are available on their pharmacological mechanism. In the 

present study, BZP inhibited the NET and released DA. Early studies in rats found 

that BZP inhibits the uptake of not only NE and DA, but also 5-HT [42], which is 

very inconsistent with our data obtained with human transporters and recent rat 

studies [43]. Similar to the present study, BZP produced the transporter-mediated 

release of DA, but not 5-HT from rat synaptosomes in vitro [43]. BZP enhanced 

electrically induced NE release from rabbit arteries [44], likely reflecting its NET-

inhibiting properties. BZP also induced a robust increase in extracellular DA in vivo, 

but only weakly increased 5-HT dialysate levels at higher doses [43]. Speculations 

that BZP may act as an α2-adrenergic antagonist [44] in humans seem unlikely, given 

the lack of binding to this and other monoamine receptors in the present study. We 
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also did not confirm the results of an early rat study that reported the 5-HT 

antagonistic properties of BZP [45]. Thus, our data indicate that BZP is an indirect 

DA and NE agonist without serotonergic properties. In animals, BZP induced place 

preference in rats [46] and was self-administered in monkeys, and it substituted for 

amphetamine in discrimination studies [47]. In humans, 100 mg BZP produced 

subjective and cardiostimulant effects similar to 7.5-10 mg amphetamine [48, 49], 

consistent with the five- to 10-fold lower potency of BZP at the NET and DAT 

compared with amphetamine [4]. In healthy women, a dose of 200 mg BZP produced 

cardiostimulant and subjective effects that were considered similar to those generally 

seen with stimulants [50], but a direct comparison with other compounds is lacking. 

The clinical toxicity of BZP mainly includes hallucinations, agitation, seizures, and 

hyperthermia [40]. Drug users associated more unpleasant effects and hallucinations 

with BZP than with MDMA [51]. The phenylpiperazines TFMPP and m-CPP 

preferentially inhibited the SERT as previously reported [52, 53]. TFMPP did not act 

as a 5-HT releaser, and m-CPP only weakly released 5-HT in the present study. 

SERT-mediated 5-HT release from rat brain synaptosomes or slices has previously 

been documented for both TFMPP [43, 54] and m-CPP [54-56]. Further studies are 

needed to determine whether the phenylpiperazines differentially interact with the 

human and rat SERT and whether additional proteins present in the synaptosomal 

preparations, but not in transfected HEK-293 cells may explain this discrepancy. Also 

needing clarification is the extent to which the in vivo serotonergic action of m-CPP is 

linked to 5-HT release vs. uptake inhibition. In fact, m-CPP has been shown to bind 

more potently to the SERT than the 5-HT releaser fenfluramine and not to induce 

long-term 5-HT depletion [53], which are both characteristics of SERT inhibitors 

rather than 5-HT releasers. m-CPP did not release DA or NE from synaptosomes [56], 
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consistent with our data. Furthermore, we confirmed the previously documented 

binding of TFMPP and m-CPP to rat 5-HT receptors [52] for the human 5-HT1A, 5-

HT2A, and 5-HT2C receptors. In rhesus monkeys, TFMPP has no reinforcing 

properties and does not maintain responding for amphetamine [47]. Additionally, 

TFMPP reduced the self-administration of BZP and responding for cocaine [47]. 

Altogether, the preclinical data indicate that both m-CPP and TFMPP are both 

indirect and direct serotonergic agonists without relevant dopaminergic activity. 

However, their precise interaction with the human SERT and the nature of their 

serotonergic action in vivo require further investigations. m-CPP is frequently found 

in Ecstasy pills as a replacement for MDMA [57, 58]. Recreational users consider m-

CPP to have less desirable psychotropic effects and more adverse effects, including 

nausea, compared with MDMA [51, 58]. In experimental studies in humans, m-CPP 

produced mostly dysphoria, weakness, dizziness, anxiety, and nausea [59-61] and 

less, if any, positive subjective effects, drug liking, and cardiovascular stimulation in 

direct comparisons with MDMA [62]. The lower clinical potency and efficacy of m-

CPP compared with MDMA may be explained by its lower potency as a DAT and 

NET inhibitor compared with MDMA [4, 6] or by its lower efficacy to induce the 

release of 5-HT. The effects of TFMPP have not been directly compared with other 

psychoactive substances in humans. TFMPP alone produced moderate dysphoria and 

amphetamine-type stimulation [63], but not the usual increases in euphoria seen after 

MDMA administration [64] using the same psychometric scale. Unsurprisingly, 

therefore, the use of TFMPP alone does not appear to be common [51]. In contrast, 

BZP in combination with either m-CPP or TFMPP is sometimes sold as Ecstasy [16, 

41]. Because BZP releases DA, and m-CPP and TFMPP are direct and indirect 

serotonergic agonists, their combination would be expected to mimic the psychoactive 
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profile of MDMA. In rats, the combination of BZP and TFMPP elevated brain DA 

and 5-HT levels similarly to MDMA [43]. In humans, the combination of BZP and 

TFMPP produced stimulation and “good” drug effects, but no euphoria [65]. The 

BZP-TFMPP combination was not well tolerated at higher doses and frequently 

produced agitation, anxiety, hallucinations, and vomiting [66], whereas these adverse 

effects were infrequently observed after MDMA administration in a similar laboratory 

study [67]. As noted above, the BZP-TFMPP combination has reduced reinforcing 

properties compared with BZP alone [47], consistent with the abuse-lowering effects 

of 5-HT. 

 

4.3. Pipradrol derivatives 

 D2PM and 2-DPMP were selective catecholamine transporter inhibitors 

without transporter-mediated substrate-releasing properties, similar to 

methylphenidate. 2-DPMP was a DAT/NET inhibitor that was equally potent to 

methylphenidate, whereas D2PM was less potent. Consistent with our findings, 2-

DPMP has been previously shown to inhibit the human NET and DAT, but not SERT 

[7], and block the uptake of DA and NE into synaptic rat brain vesicles [68, 69]. 2-

DPMP also blocked NE uptake into rabbit aortic strips, but did not induce NE release 

[70], also consistent with our results. Compared with classic stimulants, 2-DPMP was 

a 10-fold more potent DAT blocker than cocaine [4]. Consistent with the greater 

DAT-inhibiting potency, 2-DPMP also more potently increased electrically evoked 

DA release in rat brain slices compared with cocaine [71]. We found no other data on 

the monoamine uptake and releasing properties of D2PM. The pharmacological 

profile of the pipradrol derivatives was very similar to the pyrovalerone cathinones 

MDPV and naphyrone that were characterized in the same assays [4], although 
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naphyrone also inhibits the SERT. MDPV and naphyrone rather than 2-DPMP have 

been found in some samples of “ivory wave” [72]. Similar to MDPV [4] and 

naphyrone [73], 2-DPMP and D2PM are highly lipophilic. Compared with 

methylphenidate, 2-DPMP lacks polar groups that are typically targeted by metabolic 

enzymes, resulting in a longer half-life [74, 75]. The clinical toxicity of 2-DPMP and 

D2PM is long-lasting (24-72 h) and involves sympathomimetic stimulation and 

predominantly psychiatric symptoms, including agitation, hallucinations, and 

insomnia [17, 18]. Altogether, the pipradrol derivatives are potent and selective 

catecholamine uptake inhibitors, consistent with their potent and prolonged 

psychostimulant actions. The pharmacological profile is also likely associated with 

high abuse liability and an increased risk of psychiatric complications. 

 

4.4. TAAR1 binding 

The aminoindanes and phenylpiperazines, but not BZP or pipradrol derivatives, 

exhibited potent TAAR1 binding affinity comparable to MDMA [4, 6]. In the present 

series, all of the serotonergic compounds also bound TAAR1, whereas the affinity for 

TAAR1 has previously been documented for amphetamine and methamphetamine [4], 

which only weakly interact with the SERT. Drug activity at the SERT and TAAR1 are 

both considered to counteract the abuse liability associated with dopaminergic drug 

properties. Higher serotonergic vs. dopaminergic activity has been associated with a 

lower abuse potential of a drug [4, 23-25]. Amphetamines such as MDMA and 

methamphetamine have been shown to inhibit their own neurochemical and 

locomotor stimulant effects via TAAR1 activation [76]. The lack of serotonergic 

activity and lack of TAAR1-mediated “auto-inhibition” in particular with the 

pipradrol derivatives may contribute to the more stimulant-like and addictive 



 

 18 

properties of this class of designer compounds compared with classic amphetamines, 

including MDMA [4]. 

 

4.5. Limitations 

Knowing the mechanism of action of novel compounds in vitro helps to predict 

potential clinical effects and abuse potential. However, many additional factors also 

play a role such as brain tissue penetration and pharmacokinetics which need to be 

further assessed in vivo.  

 

Conclusion 

In summary, the aminoindanes, 5-IAI and MDAI inhibited the SERT and 

released 5-HT, similar to MDMA [4]. Among the piperazines, BZP interacted with 

the DAT and NET, and m-CPP and TFMPP interacted with the SERT and 

serotonergic receptors. The pipradrol derivatives were all potent and selective 

catecholamine transporter blockers without substrate-releasing properties. The 

predominant actions of D2PM and 2-DPMP on DAT likely predict a high abuse 

liability. Further studies are needed to determine potential differences between data 

obtained with human or rodent transporter studies and to further validate predictions 

of clinical effects based on such data.  
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Figure Legends 

 

Figure 1. Structures of novel psychoactive substances that mimic the effects of 3,4-

methylenedioxymethamphetamine (MDMA) or methylphenidate. 2-Aminoindane (2-

AI), 5-iodo-2-aminoindane (5-IAI), and 5,6-methylenedioxy-2-aminoindane (MDAI) 

are recreationally used aminoindanes. Meta-chlorophenylpiparazine (m-CPP), 

trifluoromethylphenylpiperazine (TFMPP), and benzylpiperazine (BZP) are 

piperazines commonly found in pills sold as Ecstasy. Diphenylprolinol (diphenyl-2-

pyrrolidinemethanol [D2PM]) and desoxypipradrol (2-diphenylmethylpiperidine [2-

DPMP]) are pipradrol derivatives sold as “legal highs” (“ivory wave”) and 

structurally similar to methylphenidate. 
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Figure 2. Monoamine uptake inhibition presented as dose-response curves for the 

inhibition of [
3
H]NE, [

3
H]DA, and [

3
H]5-HT into NET-, DAT-, and SERT-

transfected HEK 293 cells, respectively. The data are expressed as the mean ± SEM 

of 3-4 independent experiments. The data were fit by nonlinear regression. The 

corresponding IC50 values are shown in Table 2. 
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Figure 3. Monoamine release induced by 100 µM of test compound. HEK 293 cells 

that expressed NET, DAT, and SERT were loaded with [
3
H]NE, [

3
H]DA, and [

3
H]5-

HT, respectively, washed, and incubated with a high concentration of the compounds 

(100 µM). Monoamine release is expressed as the percent reduction of monoamine 

cell content compared with vehicle (0% = no release). 100% release would indicate 

that all of the monoamine was released from the cells. In such a batch assay, non-

releasing monoamine transporter blockers induce nonspecific “pseudo-efflux” 

(dashed line, open bars), which arises from substrate that diffuses out of the cells and 

reuptake inhibition. Only compounds that produced significantly more monoamine 

efflux (*p < 0.05, ***p < 0.001) compared with the non-releasing uptake inhibitors 
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(negative controls, open bars) nisoxetine (HEK-NET cells), mazindol (HEK-DAT 

cells), and citalopram (HEK-SERT cells) were considered monoamine releasers. The 

known monoamine releaser MDMA served as a positive control condition for each 

experiment. The data are expressed as the mean ± SEM of 3-4 independent 

experiments (with negative and positive controls added in each experiment). 
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Table 1 Monoamine uptake transport inhibition

NET DAT SERT DAT/SERT ratio

IC50 [µM] (95% CI) IC50 [µM] (95% CI) IC50 [µM] (95% CI) Ratio (95% CI)

Aminoindans

5-IAI 0.76 (0.60-0.98) 23 (15-35) 2.5 (1.9-3.4) 0.11

MDAI 0.65 (0.50-0.84) 31 (23 - 41) 8.3 (3.2-22) 0.2

2-AI 0.54 (0.42-0.69) 58 (4-905) > 100 > 1

Piparazines

m-CPP 1.67 (1.2-2.4) 31 (25-38) 1.2 (0.9-1.6) 0.04

TFMPP 17.5 (8-39) > 100 5.2 (3.8-7.0) < 0.05

BZP 0.41 (0.33-0.53) 17 (15-19) 57 (40-81) 3.39

Pipradrol derivatives

D2PM 0.41 (0.34-0.50) 0.86 (0.74-1.0) 38 (4.7-307) 44.36

2-DPMP 0.14 (0.11-0.18) 0.07 (0.06-0.08) > 10 > 100

Methylphenidate 0.13 (0.10-0.16) 0.12 (0.09-0.16) > 100 > 100

Values are means of three to four independent experiments and 95% confidence intervals (CI). 

DAT/SERT ratio = 1/DAT IC50 : 1/SERT IC50.
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Table 2. Monoamine transporter and receptor binding affinities 

NET DAT SERT 5-HT1A 5-HT2A 5-HT2C a1A a2A D1 D2 D3 H1 TAAR1rat TAAR1mouse

Aminoindanes

5-IAI 6.3±1.4 5.6±1.5 34±16 0.28±0.08 0.73±0.14 1.2±0.6 >6 0.87±0.33 >12 1.2±0.6 0.68±0.09 7.4±1.3 0.03±0.01 1.1±0.3

MDAI 18±2 12±4 22±12 >17 >12 >12 >6 1.36±0.51 >12 >10 14±2 >13 0.57±0.19 1.8±0.1

2-AI 20±7 21±5 >30 4.0±0.8 >12 >12 >6 0.45±0.10 >12 >10 7.6±2.9 >13 0.31±0.09 2.1±0.4

Piperazines

m-CPP 3.0±0.4 5.8±1.4 0.63±0.1 0.14±0.01 0.06±0.02 0.13±0.02 0.52±0.01 0.26±0.02 4.0±0.1 2.2±0.8 2.4±0.6 1.5±0.2 0.05±0.01 6.6±1.1

TFMPP 13±2 >25 1.7±0.04 0.17±0.02 0.06±0.01 0.13±0.01 >6 0.73±0.2 >12 1.4±1.0 0.54±0.05 3.3±0.7 0.38±0.06 2.3±0.6

BZP 8.1±0.7 11±4 24±8 > 17 >12 >12 >6 16±5 >12 >10 >16 >13 >10 >10

Pipradrol derivatives

D2PM 8.2±2.8 0.07±0.03 8.4±1.3 >17 >12 >12 >6 >30 >12 >10 >16 >13 >10 >10

2-DPMP 38±11 0.007±0.001 >30 >17 >12 5.5±0.1 >6 27±9 >12 >10 >16 >13 >10 >10

Methylphenidate 3.3±3.6 0.06±0.01 21±9 NA >12 NA >6 20±9 NA >10 NA NA >10 >10

NA, not assessed

Values are Ki  given as mM (mean ± SD) 

 


