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Abstract 

Background:  Accurate classification of sites of interest on prostate-specific membrane antigen (PSMA) positron 
emission tomography (PET) images is an important diagnostic requirement for the differentiation of prostate cancer 
(PCa) from foci of physiologic uptake. We developed a deep learning and radiomics framework to perform lesion-level 
and patient-level classification on PSMA PET images of patients with PCa.

Methods:  This was an IRB-approved, HIPAA-compliant, retrospective study. Lesions on [18F]DCFPyL PET/CT scans 
were assigned to PSMA reporting and data system (PSMA-RADS) categories and randomly partitioned into training, 
validation, and test sets. The framework extracted image features, radiomic features, and tissue type information from 
a cropped PET image slice containing a lesion and performed PSMA-RADS and PCa classification. Performance was 
evaluated by assessing the area under the receiver operating characteristic curve (AUROC). A t-distributed stochastic 
neighbor embedding (t-SNE) analysis was performed. Confidence and probability scores were measured. Statistical 
significance was determined using a two-tailed t test.

Results:  PSMA PET scans from 267 men with PCa had 3794 lesions assigned to PSMA-RADS categories. The frame-
work yielded AUROC values of 0.87 and 0.90 for lesion-level and patient-level PSMA-RADS classification, respectively, 
on the test set. The framework yielded AUROC values of 0.92 and 0.85 for lesion-level and patient-level PCa classifica-
tion, respectively, on the test set. A t-SNE analysis revealed learned relationships between the PSMA-RADS categories 
and disease findings. Mean confidence scores reflected the expected accuracy and were significantly higher for 
correct predictions than for incorrect predictions (P < 0.05). Measured probability scores reflected the likelihood of PCa 
consistent with the PSMA-RADS framework.

Conclusion:  The framework provided lesion-level and patient-level PSMA-RADS and PCa classification on PSMA PET 
images. The framework was interpretable and provided confidence and probability scores that may assist physicians 
in making more informed clinical decisions.
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Background
Prostate cancer (PCa) is one of the most common can-
cers and a leading cause of cancer-related death in men 
[1]. There has been an increasing interest in positron 
emission tomography (PET) agents targeting prostate-
specific membrane antigen (PSMA), a transmembrane 
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protein overexpressed on PCa cells, for imaging and 
directing therapy of PCa [2]. Radiotracer-avid and 
non-avid pitfalls have been described with PSMA PET 
imaging [3, 4]. Reliable classification of lesions with or 
without radiotracer uptake is an important clinical step 
in verifying the detection and determining the prog-
nosis of PCa [5]. We developed a PSMA reporting and 
data system (PSMA-RADS version 1.0) framework to 
classify PSMA PET scans and individual findings that 
reflect the probability of PCa, thereby guiding manage-
ment [5, 6]. We organized the PSMA-RADS framework 
around a 5-point scale where a higher score indicates a 
greater likelihood of PCa [5].

While medical images are typically visually evalu-
ated by trained radiologists, this process may be time-
consuming and subject to operator variability [7]. 
Radiomics is a rapidly advancing field that aims to 
perform high-throughput extraction of clinically rel-
evant features from radiologic data to build diagnostic 
and prognostic models [8, 9]. Unlike traditional radi-
omics workflows that utilize engineered handcrafted 
features, deep learning (DL) approaches can automati-
cally extract deep features to directly model medi-
cal endpoints from the input images [9]. Automated 
artificial intelligence and DL methods have significant 
advantages over manual evaluation, including more 
consistent extraction of radiomic features and reli-
able characterization of disease [7]. Several machine 
learning and DL applications have been developed for 
PSMA PET in patients with metastatic disease, includ-
ing radiomics-based risk stratification, attenuation map 
estimation for PSMA PET/magnetic resonance imag-
ing (MRI), and bone and lymph node lesion detection 
in PSMA PET/computed tomography (CT) images 
[10–13].

While DL methods can be conveniently treated as a 
black box, deep neural networks often suffer from a lack 
of interpretability [14]. Despite having improved levels 
of accuracy in recent years, modern neural networks are 
not well calibrated and tend to be overconfident in their 
predictions [15]. Reliable confidence estimates and likeli-
hood measures are important for the interpretability of 
DL methods and could assist physicians in facilitating 
clinical decisions [15].

We developed an interpretable framework that incor-
porates both DL and radiomics for automated PSMA-
RADS and PCa classification on PSMA PET images. The 
framework provided both lesion-level and patient-level 
predictions as well as calibrated confidence scores that 
reflected the level of certainty for those predictions and 
probability scores that reflected the likelihood of PCa. 
A t-distributed stochastic neighbor embedding (t-SNE) 
analysis provided insight into learned relationships 

between the PSMA-RADS categories and disease find-
ings on PSMA PET.

Materials and methods
PSMA PET/CT dataset
This was an IRB-approved, HIPAA-compliant, retrospec-
tive study. The data consisted of 267 [18F]DCFPyL PET/
CT scans acquired at 60  min post-injection across two 
different scanners (Table  1). Four trained nuclear medi-
cine physicians manually segmented 3794 lesions on a 
per-slice basis in the axial view. Each lesion was assigned 
to one of the nine PSMA-RADS categories, and specific 
anatomic locations were recorded [16]. While each lesion 
was annotated by a single physician, the PSMA-RADS 
framework has high inter-observer agreement across 
readers with varying experience levels [17, 18]. The 
observed PSMA-RADS categories were used as ground 
truth. The data were randomly partitioned into train-
ing, validation, and test datasets with 2302, 760, and 732 
lesions, respectively (Fig. 1a). Data from 53 patients were 
randomly partitioned into the patient-level test set. The 
remaining data were split into lesion-level training and 
validation sets. The framework was evaluated considering 
both in- and out-of-patient distributions [19]. The data-
set characteristics are described in Table 1 and Fig. 1b.

DL and radiomics framework
A framework was developed using DL and radiomics to 
perform PSMA-RADS and PCa classification of lesions 
on PSMA PET images (Fig.  2). A deep convolutional 
neural network (CNN) extracted image features from a 
cropped PET image slice containing a lesion to implicitly 
capture local contextual and global information. Image 
slices were cropped by a bounding box with a diagonal 
length of 7.5 times the lesion diameter (Additional file 1: 
Fig. S1). The lesion was placed at the center of the region 
of interest (ROI) to classify a single lesion while avoid-
ing confusion with other lesions. A U-net delineated the 
lesion ROI on the cropped image slice (Additional file 1: 
Figs. S2–S3 and Table  S1) [20–22]. Radiomic features 
explicitly captured intensity and morphology characteris-
tics from lesion ROIs. Since the PSMA-RADS framework 
incorporates tissue type information at the site of uptake, 
the lesion tissue type was extracted by a separate CNN 
(Additional file 1: Fig. S4 and Table S2). Tissue type infor-
mation was categorized into 4 broad categories, includ-
ing bone, prostate, soft tissue, and lymphadenopathy, and 
encoded into one-hot vectors [23]. The extracted features 
were passed into a fully connected network to yield soft-
max probabilities indicating the likelihood of belonging 
to one of the nine PSMA-RADS categories [24].

The framework was trained on the training set by mini-
mizing a class-weighted categorical cross-entropy loss 
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function via the adaptive moment estimation stochastic 
optimization algorithm [25]. The framework was trained 
on cropped image slices to augment the data with a batch 
size of 512 samples for 500 epochs. Hold-out cross-val-
idation during hyperparameter optimization and early 
stopping was applied to a randomly partitioned hold-out 
set consisting of 15% of the training dataset to prevent 
overfitting. See the Supplementary Information for data 
processing and network architecture details.

PSMA‑RADS classification
The framework performed per-lesion and per-patient 
PSMA-RADS classification. Softmax probabilities were 
averaged across slices for lesion-level predictions [26]. 
Patient-level predictions were performed by taking the 
highest PSMA-RADS score across all lesions on the scan 
following the recommended guidelines for PSMA-RADS 

interpretation [5]. Lesion-level performance was evalu-
ated on the validation and test sets. Patient-level per-
formance was evaluated on the test set. The receiver 
operating characteristic (ROC) curve, area under the 
ROC curve (AUROC), confusion matrix, overall accu-
racy, precision, recall, and F1 score were assessed. Accu-
racy metrics were class-weighted, and ROC curves were 
micro-averaged. The framework’s performance was 
evaluated when using both the physician-annotated and 
automatically extracted radiomic feature and tissue type 
information inputs. Performance was compared across 
different scanners.

PCa classification
The framework provided a broad PCa classification, for-
mulated as a binary classification task, based on the like-
lihood of benign versus disease findings according to 

Table 1  Dataset characteristics

a GE Healthcare, Waukesha, WI, USA
b Siemens Healthineers, Erlangen, Germany

Lesion-level distribution

Training set Validation set Test set Total

Number of lesions 2302 760 732 3794

GE Discovery RXa 673 221 129 1023

Siemens Biograph mCTb 1629 539 603 2771

PSMA-RADS-1A 149 36 109 294

PSMA-RADS-1B 382 129 126 637

PSMA-RADS-2 442 165 228 835

PSMA-RADS-3A 225 57 63 345

PSMA-RADS-3B 81 32 34 147

PSMA-RADS-3C 19 5 7 31

PSMA-RADS-3D 15 6 22 43

PSMA-RADS-4 446 139 34 619

PSMA-RADS-5 543 191 109 843

Patient-level distribution

Training + Validation sets Test set Total

Number of patients 214 53 267

GE Discovery RXa 79 19 98

Siemens Biograph mCTb 135 34 169

PSMA-RADS-1A 3 – 3

PSMA-RADS-1B 2 3 5

PSMA-RADS-2 21 6 27

PSMA-RADS-3A 15 5 20

PSMA-RADS-3B 12 2 14

PSMA-RADS-3C 6 – 6

PSMA-RADS-3D – 1 1

PSMA-RADS-4 33 5 38

PSMA-RADS-5 122 31 153



Page 4 of 15Leung et al. EJNMMI Research           (2022) 12:76 

the PSMA-RADS framework [5]. PSMA-RADS-1 and 
-2 lesions were categorized as likely benign findings, 
and PSMA-RADS-3, 4, and 5 lesions were categorized 
as likely disease [5]. The predicted softmax probabili-
ties were summed across the respective PSMA-RADS 
categories. Lesion-level and patient-level performance 
was evaluated on the validation and test sets when using 
manually and automatically extracted inputs and com-
pared across different scanners.

t‑SNE analysis
The framework’s predictions were visualized using 
t-SNE to provide an understanding of how the frame-
work clusters its predictions. t-SNE is an unsupervised 

dimensionality reduction technique used to visualize the 
local structure and global geometry of high-dimensional 
data [27]. The framework’s predictions were visualized 
in two dimensions via t-SNE with principal components 
analysis initialization.

A confidence score for PSMA‑RADS classification
The framework provided confidence scores reflect-
ing the expected level of accuracy. Temperature scal-
ing, a single-parameter variant of Platt scaling, was 
performed to calibrate the framework’s outputs before 
the softmax activation [15]. The optimal temperature, 
T, for temperature scaling calibration was found on 
the validation set and applied on the test set to yield 

PSMA PET/CT Dataset:
267 Patients / 3,794 Lesions

214 Patients Patient-level Test set:
53 Patients

80% 20%

Training set:
2,302 Lesions

Lesion-level Validation set:
760 Lesions

75% 25%
Lesion level split

Patient-level split

a

b

Lesion-level Test set:
732 Lesions

Fig. 1  Flowchart of data partitioning (a) and a histogram of dataset characteristics (b), including the distribution of PSMA-RADS categories and 
tissue type information
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well-calibrated softmax probabilities. Confidence 
scores were defined as the calibrated softmax prob-
ability corresponding to the predicted PSMA-RADS 
category. Confidence histograms were observed, and 
confidence scores of accurate and inaccurate predic-
tions were compared. Confidence scores were visual-
ized on t-SNE space.

A probability score for PCa
The framework provided a probability score that 
reflected the likelihood of PCa. The probability scores 
were derived by summing the calibrated softmax prob-
abilities across the respective PSMA-RADS categories 
corresponding to disease findings. The distribution of 
probability scores for the test set predictions was com-
pared on boxplots according to their PSMA-RADS cat-
egories and visualized on a t-SNE scatter plot.

Feature importance
Feature importance experiments were performed to 
evaluate the robustness of the framework. Different 
input combinations, including the cropped PET image 
(I), the extracted radiomic features (F), and the tissue 
type of the lesion (L), were used to train the frame-
work (Additional file  1: Table  S3). The framework was 
evaluated on the validation set for lesion-level predic-
tion using the manually extracted inputs for each input 
combination. Feature ablation experiments were also 
performed to further assess the importance of the radi-
omic features where individual radiomic features were 
removed from the inputs during prediction. The rela-
tive performance reductions in overall accuracy due to 
feature ablation compared to the model predictions 
without feature ablation were assessed on the valida-
tion set for lesion-level prediction using the manually 
extracted inputs.

PSMA PET 
Image

Fully connected layer

Confidence Score

PSMA-RADS 
Categorization

Image 
Features

Radiomic 
Features

Tissue Type 
Information

CNN CNN

conv block (64)  

conv block (128) 

conv block (256) 

conv block (512) 

global average pooling

CNN Features

ba

Fully connected layer

U-net

3x3 conv (32, stride 2) 

encoder block (64)

decoder block (256)

decoder block (128)

decoder block (64)

decoder block (32)

3x3 conv (1)

encoder block (128)

encoder block (256)

Input Imagec

Probability Score

Benign vs Disease 
Prediction

Output ROI

Temperature Scaling Softmax

Input Image

3x3 conv 

3x3 conv

max pooling 

conv block

…
…

Fig. 2  Deep learning and radiomics framework (a). CNN architecture (b). U-net architecture where curved arrows represent residual connections 
(c). Values in parentheses refer to the feature map depth
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Statistical analysis
Statistical significance was determined using a two-
tailed t test where a P < 0.05 was used to infer a signifi-
cant difference. ROC curve 95% confidence and tolerance 
intervals were computed with 1000 bootstrap samples. 
Statistical analysis and data processing were imple-
mented in Python 3.8.8 and MATLAB 2022b. The frame-
work was implemented in TensorFlow 2.4.1 and Keras 
2.4.3 on NVIDIA Quadro P5000 and NVIDIA A6000 
GPUs with Linux CentOS 7.6 and Windows 10 operating 
systems.

Results
Characterizing the PSMA PET data
A histogram of the PSMA-RADS categories and tissue 
types across all lesions is shown in Fig.  1b. Lesion-level 
and patient-level distributions of the PSMA-RADS cat-
egories and scanner types are shown in Table  1. There 
were 898, 1873, 127, and 896 lesions with a tissue type 
of bone, lymphadenopathy, prostate, and soft tissue, 
respectively.

PSMA‑RADS classification
Accuracy metrics, ROC curves, and confusion matrices 
on the framework’s performance on the PSMA-RADS 
classification task are given in Table  2 and Fig.  3a, b. 
When using automatically extracted inputs, the frame-
work yielded AUROC values of 0.93 and 0.87 (Fig.  3a) 
and overall accuracies of 0.67 and 0.52 on the validation 
and test sets, respectively, for lesion-level prediction. 

ROC curves and AUROC values on the validation and 
test sets for lesions with a tissue type of bone, lymphade-
nopathy, prostate, and soft tissue, respectively, are shown 
in Additional file  1: Fig. S5 for lesion-level prediction 
when using manually extracted inputs. For patient-level 
prediction, the framework yielded AUROC values of 0.91 
and 0.90 and overall accuracies of 0.77 and 0.77 on the 
test set with the manually and automatically extracted 
inputs, respectively (Table  2, Fig.  3a). The framework’s 
lesion-level and patient-level overall accuracy was not 
significantly different across different scanners (P > 0.05).

PCa classification
Accuracy metrics, ROC curves, and confusion matrices 
on the framework’s performance for PCa classification 
are given in Table 3 and Fig. 3c, d. The framework yielded 
AUROC values of 0.98 and 0.96 and overall accuracies of 
0.94 and 0.89 on the validation and test sets, respectively, 
for lesion-level prediction using manually extracted 
inputs (Table  3). When using automatically extracted 
inputs, the framework yielded AUROC values of 0.95 and 
0.92 and overall accuracies of 0.89 and 0.85 on the valida-
tion and test sets, respectively (Fig. 3c). For patient-level 
prediction, the framework yielded overall accuracies of 
0.92 and 0.89 and AUROC values of 0.84 and 0.85, when 
using the manually and automatically extracted inputs, 
respectively, on the test set. The framework’s lesion-level 
and patient-level overall accuracy was not significantly 
different across scanners (P > 0.05).

Table 2  Performance on PSMA-RADS classification

Data in parenthesis correspond to 95% confidence intervals. Manual refers to using the radiomic features extracted from manual segmentations and the manually 
annotated tissue types as inputs. Predicted refers to using the automatically extracted radiomic features and the automatically predicted tissue types as inputs. 
AUROC = area under the receiver operating characteristic. RF = radiomic features. TT = tissue types

Inputs AUROC Accuracy Precision Recall F1 score

Validation set: Lesion-level performance

 Manual 0.95 (0.95, 0.95) 0.71 (0.68, 0.74) 0.71 0.71 0.71

 Predicted RF 0.95 (0.95, 0.95) 0.70 (0.67, 0.73) 0.71 0.70 0.70

 Predicted TT 0.93 (0.93, 0.93) 0.68 (0.64, 0.71) 0.67 0.68 0.67

 Predicted RF + TT 0.93 (0.93, 0.93) 0.67 (0.64, 0.70) 0.67 0.67 0.67

Test set: Lesion-level performance

 Manual 0.91 (0.91, 0.91) 0.61 (0.58, 0.65) 0.62 0.61 0.61

 Predicted RF 0.90 (0.90, 0.90) 0.56 (0.53, 0.60) 0.58 0.56 0.57

 Predicted TT 0.88 (0.88, 0.88) 0.55 (0.52, 0.59) 0.56 0.55 0.55

 Predicted RF + TT 0.87 (0.87, 0.88) 0.52 (0.48, 0.56) 0.53 0.52 0.52

Test set: Patient-level performance

 Manual 0.91 (0.90, 0.91) 0.77 (0.66, 0.89) 0.79 0.77 0.76

 Predicted RF 0.87 (0.87, 0.88) 0.68 (0.55, 0.80) 0.69 0.68 0.68

 Predicted TT 0.92 (0.92, 0.92) 0.81 (0.71, 0.92) 0.85 0.81 0.82

 Predicted RF + TT 0.90 (0.90, 0.90) 0.77 (0.66, 0.89) 0.78 0.77 0.77
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Fig. 3  ROC curves and confusion matrices for the PSMA-RADS classification task (a, b) and the broad prostate cancer classification task (c, d) when 
using the automatically extracted inputs. The shaded blue and gray areas correspond to the 95% confidence intervals and the 95% tolerance 
intervals on the ROC curves, respectively
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t‑SNE analysis
The t-SNE scatter plots of the framework’s predic-
tions are shown in Fig.  4. The framework formed well-
defined clusters of the predicted PSMA-RADS categories 
(Fig.  4a). These clusters were preserved when labeled 
according to the physician annotations (Fig.  4b). The 
framework learned the global relationship between 
benign, equivocal, and disease findings (Fig.  4c, d). 
PSMA-RADS-1A, -1B, and -2 predictions were clustered 
together in the upper right of the t-SNE space forming 
a global cluster of benign findings. PSMA-RADS-4 and 
-5 predictions, findings that were highly likely PCa, were 
closely clustered in the lower left of the t-SNE space. 
Equivocal findings corresponding to PSMA-RADS-3A, 
-3B, and -3D predictions were closely clustered near 
the PSMA-RADS-4 and -5 predictions at the center of 
the t-SNE space between the global benign and disease 
clusters (Fig.  4a). This reflects the uncertainty of those 
equivocal findings on their compatibility with PCa. Inter-
estingly, PSMA-RADS-3C predictions were clustered 
near PSMA-RADS-1B and -2 predictions (Fig.  4a). This 
may be because PSMA-RADS-3C findings are atypical 
for PCa and likely to be other non-prostate malignancies 
or benign tumors [5].

A confidence score for PSMA‑RADS classification
The optimal temperature for temperature scaling was 
T = 4.26. Confidence histograms before and after per-
forming temperature scaling calibration are shown in 

Fig.  5a, b. Before calibration, the framework’s average 
confidence was 0.90 on the test set. After calibration, the 
average confidence was 0.63 reflecting the framework’s 
overall accuracy of 0.61. A confidence histogram compar-
ing correct and incorrect predictions is shown in Fig. 5c. 
The mean confidence scores were significantly higher 
(P < 0.05) for correct predictions (0.68) than for incor-
rect predictions (0.55). The distribution of confidence 
scores on t-SNE space is shown in Fig. 5d. The framework 
was less confident of predictions near the boundaries 
between individual PSMA-RADS subcategory clusters 
and more confident of predictions farther away from 
those boundaries.

A probability score for PCa
Boxplots of probability scores reflecting the likelihood 
of PCa are shown in Fig. 6a–c. Higher probability scores 
were assigned to lesions with higher PSMA-RADS 
scores (Fig.  6b). PSMA-RADS-1 and -2 lesions had a 
mean probability score of 0.19 corresponding to benign 
findings (Fig.  6c). PSMA-RADS-4 and -5 lesions had a 
mean probability score of 0.86, reflecting the high like-
lihood of PCa. PSMA-RADS-3 lesions had an interme-
diate mean probability score of 0.75 corresponding to 
equivocal findings. However, PSMA-RADS-3C lesions 
had a significantly lower mean probability score of 
0.57 (P < 0.05) when compared to PSMA-RADS-3A, 
-3B, and -3D lesions (Fig. 6a). This reflects the PSMA-
RADS categorization scheme since PSMA-RADS-3C 
lesions are atypical for PCa [5]. The distribution of 

Table 3  Performance on PCa classification

Data in parentheses correspond to 95% confidence intervals. Manual refers to using the radiomic features extracted from manual segmentations and the manually 
annotated tissue types as inputs. Predicted refers to using the automatically extracted radiomic features and the automatically predicted tissue types as inputs. 
AUROC = area under the receiver operating characteristic. RF = radiomic features. TT = tissue types

Inputs AUROC Accuracy Precision Recall F1 score

Validation set: Lesion-level performance

 Manual 0.98 (0.98, 0.98) 0.94 (0.92, 0.95) 0.95 0.94 0.94

 Predicted RF 0.98 (0.98, 0.98) 0.93 (0.91, 0.95) 0.94 0.93 0.94

 Predicted TT 0.95 (0.95, 0.95) 0.89 (0.87, 0.91) 0.91 0.89 0.90

 Predicted RF + TT 0.95 (0.95, 0.95) 0.89 (0.86, 0.91) 0.91 0.88 0.90

Test set: Lesion-level performance

 Manual 0.96 (0.96, 0.96) 0.89 (0.87, 0.92) 0.81 0.94 0.87

 Predicted RF 0.96 (0.96, 0.96) 0.89 (0.87, 0.91) 0.80 0.93 0.86

 Predicted TT 0.92 (0.92, 0.92) 0.85 (0.83, 0.88) 0.79 0.81 0.80

 Predicted RF + TT 0.92 (0.92, 0.92) 0.85 (0.82, 0.87) 0.79 0.80 0.80

Test set: Patient-level performance

 Manual 0.84 (0.84, 0.85) 0.92 (0.85, 1.00) 0.93 0.98 0.96

 Predicted RF 0.88 (0.87, 0.88) 0.92 (0.85, 1.00) 0.93 0.98 0.96

 Predicted TT 0.84 (0.84, 0.85) 0.89 (0.80, 0.97) 0.93 0.93 0.93

 Predicted RF + TT 0.85 (0.84, 0.86) 0.89 (0.80, 0.97) 0.93 0.93 0.93
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probability scores on t-SNE space (Fig.  6d) showed an 
increased likelihood of PCa from the benign to the dis-
ease clusters.

Feature importance
The network trained on all input features had the highest 
performance across all evaluation metrics for lesion-level 
prediction (Fig. 7a, b and Additional file 1: Table S4) and 
had a significantly higher overall accuracy than all other 
networks (P < 0.05). The network trained on both the 
image and radiomic features outperformed the networks 
trained only on either the image or radiomic features, 
highlighting the synergy in combining the radiomic and 
CNN-extracted features. The networks trained on both 
the image and tissue type information and both the radi-
omic features and tissue type information outperformed 
the networks trained only on either the image or tissue 

type information, respectively, highlighting the impor-
tance of the tissue type information.

The relative reductions in performance due to radi-
omic feature ablation are shown in Fig. 7c, d. Ablation 
of the lesion-to-background ratio and the mean stand-
ardized uptake value (SUVmean) of the lesion resulted 
in the highest and second highest reductions in per-
formance, respectively, for the network given both the 
image and radiomic features and the network given 
only radiomic features, highlighting the importance of 
those features. Circularity and maximum standardized 
uptake value (SUVmax) of the lesion were the third and 
fourth most important features in both cases, respec-
tively, followed by lesion volume as the fifth or sixth 
most important feature. This emphasizes the impor-
tance of accurate lesion delineation for reliable extrac-
tion of radiomic features reflecting such intensity and 
shape characteristics.

Fig. 4  t-SNE scatter plots of predictions on test set labeled according to their predicted PSMA-RADS categories (a, b) and to their predicted 
PSMA-RADS categories corresponding to benign, equivocal, and disease findings (c, d)
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Discussion
PSMA PET imaging has shown superior performance 
in the detection and staging of primary and metastatic 
PCa compared to conventional imaging modalities such 
as CT, MRI, and bone scan [3, 28, 29]. Our framework 
incorporated DL and radiomics to classify findings on 
[18F]DCFPyL PET scans. The framework classified find-
ings on the test set into appropriate PSMA-RADS cat-
egories and yielded AUROC values of 0.87 and 0.90 for 
lesion-level and patient-level predictions, respectively. 
The framework provided broad PCa classification with 
AUROC values of 0.92 and 0.85 on the test set for lesion-
level and patient-level predictions, respectively. A t-SNE 
analysis showed prediction clusters consistent with the 
PSMA-RADS categorization scheme. The framework 
provided confidence and probability scores reflecting the 
uncertainty and likelihood of PCa, respectively.

Lesion-level PSMA-RADS classification performance 
was comparable across the test and validation sets, 
except for PSMA-RADS-3D lesions which were largely 

misclassified as PSMA-RADS-3A lesions on the test set. 
Such cases of inaccuracy would not affect the recommen-
dation suggested by the PSMA-RADS framework since 
further work-up or follow-up imaging would be required 
for PSMA-RADS-3A and -3D lesions [5]. Three out of six 
lesions incorrectly classified as PSMA-RADS-3D lesions 
on the test set were PSMA-RADS-1A lesions (Fig.  3b), 
likely because PSMA-RADS-3D lesions lack uptake on 
PSMA PET imaging despite representing potential malig-
nancy on anatomic imaging [5]. Similarly, 8/9 lesions 
incorrectly classified as PSMA-RADS-3C lesions on the 
test set were PSMA-RADS-1B and -2 lesions (Fig.  3b). 
These observations reflect the complexity of the PSMA-
RADS-3 designation.

The framework maintained an overall accuracy of 0.77 
(41/53) on the test with both automatically and manu-
ally extracted inputs for the patient-level PSMA-RADS 
classification (Table  2), highlighting the robustness of 
the framework. Similarly, the framework yielded overall 
accuracies of 0.85 (621/732) and 0.89 (47/53) on the test 

Fig. 5  Confidence histograms comparing the average confidence to expected accuracy (a, b). Stacked confidence histogram for correct and 
incorrect predictions (c). Confidence scores were depicted on a t-SNE scatter plot (d)
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set with automatically extracted inputs for lesion-level 
and patient-level broad PCa classification, respectively 
(Fig. 3d, Table 3).

A t-SNE analysis revealed learned local and global 
relationships between the PSMA-RADS categories and 
benign, equivocal, and disease findings (Fig.  4). The 
framework provided confidence and probability scores, 
which may help radiologists interpret the predicted out-
puts to make a more informed clinical diagnosis (Figs. 5, 
6). A high level of uncertainty could serve as a flag for 
physicians to put less weight on the predicted output or 
to take a second look when determining diagnosis [30]. 
The confidence and probability scores may assist in bet-
ter defining how patients should be treated when they 
appear to have limited volume recurrent or metastatic 
disease and are being considered for metastasis-directed 
therapy [31].

PSMA PET radiotracers have been observed to have 
physiologic uptake patterns and uptake in various benign 

bone pathologies, which may result in false-positive find-
ings [3]. Benign findings were accounted for in our data-
set where PSMA-RADS-1 and PSMA-RADS-2 findings 
corresponded to certainly or almost certainly benign 
regions of uptake [5]. For example, of the 898 regions 
of uptake in the bone, 33 (3.67%) were PSMA-RADS-
1A findings, 15 (1.67%) were PSMA-RADS-1B, and 53 
(5.90%) were PSMA-RADS-2 (Fig.  1b). Our framework 
was trained to differentiate regions of uptake correspond-
ing to PCa and benign findings.

The tissue type information was found to be especially 
important in improving overall performance (Fig.  7a, b 
and Additional file  1: Tables S3–S4). Incorporating CT 
or MRI imaging may provide further anatomic infor-
mation, especially for lesions with low uptake on the 
PET image [13]. For example, incorporating dynamic 
contrast-enhanced MRI may help improve the detection 
and characterization of skeletal metastases in patients 
with PCa [32, 33]. While performing textural analysis 

Fig. 6  Notched boxplots of probability scores according to each of the PSMA-RADS sub-categories (a), the main PSMA-RADS categories (b), and 
the broad disease categories (c) where the green triangles correspond to the mean and the horizontal lines correspond to the median. Probability 
scores that reflect the likelihood of PCa were depicted on a t-SNE scatter plot (d)



Page 12 of 15Leung et al. EJNMMI Research           (2022) 12:76 

is challenging on PET due to limited spatial resolution, 
incorporating higher-order radiomic features, such as 
gray-level co-occurrence matrix, gray-level run-length 
matrix, and gray-level size zone matrix, from CT or MRI 
imaging, may help further improve performance [34].

The four most important radiomic features were 
lesion-to-background ratio, lesion SUVmean, circular-
ity, and lesion SUVmax in feature ablation experiments 
(Fig.  7c, d). The variance of the background SUV was 
relatively important for the network given only radiomic 
features resulting in a 20.50% reduction in performance 

after ablation (Fig.  7d). However, the background SUV 
variance was the least important feature for the network 
that was given both the image and radiomic features with 
less than 1% reduction in performance (Fig. 7c), indicat-
ing that the CNN extracted important characteristics 
about the overall context of the lesion from the surround-
ing background in the input image. Interestingly, the 
network that was given both the image and the radiomic 
features was generally less sensitive to feature ablations 
and had smaller reductions in relative performance when 
compared to the network that was not given the image 

Fig. 7  Accuracy metrics (a) and ROC curves (b) for different input feature combinations and the relative reduction in overall accuracy due to 
radiomic feature ablation (c, d). Error bars correspond to 95% confidence intervals (a)
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(Fig. 7c, d). This suggests that deep features extracted by 
the CNN are complementary to the radiomic features 
and can help compensate for the loss of information in 
ablated features.

While the highest PSMA-RADS score was used to 
determine the overall scan category, we also considered 
the impact of using the lower PSMA-RADS scores on 
patient-level performance which may be relevant in the 
case of less experienced readers. This was done by taking 
the median PSMA-RADS score predicted for individual 
lesions on the scan as the overall score compared to the 
maximum PSMA-RADS score. ROC curves and AUROC 
values for patient-level prediction when using manually 
extracted inputs are shown in Additional file  1: Fig. S6. 
As expected, using the maximum PSMA-RADS score 
yielded more reliable patient-level predictions than when 
using the median PSMA-RADS score, which yielded a 
lower AUROC value of 0.62 (Additional file 1: Fig. S6).

The framework’s performance was affected by the 
class imbalance present in the dataset (Fig.  1b). The 
PSMA-RADS-3C and -3D categories had the lowest 
performance and the fewest lesions in the entire data-
set. Most scans had an overall PSMA-RADS score of 
either PSMA-RADS-4 or -5 further contributing to the 
patient-level class imbalance (Table  1). To combat class 
imbalances, generative adversarial networks could be 
leveraged to generate a large amount of simulated data 
to train the framework [35–37]. Training the framework 
using ensemble learning may also improve performance 
as such meta-learning approaches have had success for 
classification and prognostic tasks [38, 39].

Related work by Johnsson et al. introduced aPROMISE, 
a software platform for lesion detection in PSMA PET/
CT [13]. In aPROMISE, U-net-based anatomical segmen-
tations of bones and organs on the CT image are fused 
to the PET image, and lesion detection and segmenta-
tion are performed by blob detection and fast march-
ing method, respectively [13]. In contrast, our approach 
performs deep learning-based lesion classification and 
segmentation using only the PET image. Another key dif-
ference is that aPROMISE is based on the PROMISE cri-
teria, whereas our approach is based on PSMA-RADS [5, 
13].

Our study had limitations. First, the framework was val-
idated with physician-annotated PSMA-RADS categories 
subject to inter-operator variability. While the PSMA-
RADS categorization scheme has been shown to have a 
high inter-observer agreement rate, further validation of 
the framework by histopathology or a multiple-reader 
consensus study is important for clinical translation [17, 
18, 40]. Second, the framework was trained on a per-slice 
basis. Incorporating the whole imaged volume may help 
provide anatomic context by considering the presence 

of other lesions, for example, in the chest or abdomen 
regions [41, 42]. Third, while the framework incorporates 
lesion classification and segmentation tasks, the frame-
work does not perform lesion detection. Incorporating 
the automated detection task could help identify regions 
of uptake that might be missed [43, 44].

Conclusion
In conclusion, a DL- and radiomics-based framework 
was developed and performed lesion-level and patient-
level PSMA-RADS and PCa classification on PSMA 
PET images. A t-SNE analysis revealed learned rela-
tionships between the PSMA-RADS categories and dis-
ease findings on PSMA PET scans. The framework was 
interpretable and provided well-calibrated confidence 
and probability scores for each prediction.
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