GENERALIZED DOUBLE BINOMIAL SUMS FAMILIES BY
GENERATING FUNCTIONS

EMRAH KILIC! AND HACENE BELBACHIR?2

ABSTRACT. We consider various double binomial sums related with
certain second, third and fourth order recursions. Moreover a new
binomial sums with complex coefficients related with a generalized
second order recursion is derived. The generating function methods
are used to prove them. Also some interesting examples are given.

1. INTRODUCTION, LINEAR RECURRENCE SEQUENCES AND GENERATING
FUNCTIONS

Let {U, (p,q)}, or briefly {U,}, be the second order linear recurrence
defined, for n > 1, by
U, =pUpn_1 + qUp_2, (11)
where Uy = 0 and U; = 1.
Let {V,, (p,q,7)}, or briefly {V,,}, be the third order recursion defined,
for n > 1, by
Vi=0Va1+qVh_o+1Vy_3, (1.2)
where V_1 =V =0and V5 = 1.
Let {W,, (p,q,r,s)}, or briefly {WW,,}, be the fourth order recursion de-
fined, for n > 1, by

Wy =pWh_1 +qWy_o +7W,_3 + sWy_4, (13)

where W_o =W_1 =Wy =0and Wy = 1.
The generating functions of these sequences are respectively

- 1

Upp12" = ——mm,
- 1

V, "t = )
7;] e 1—pr—qz? —rad

1991 Mathematics Subject Classification. 05A10, 05A15, 11B39, 11B65.
Key words and phrases. Generating functions, Double binomial sums, Recursions.
1



2 EMRAH KILIC! AND HACENE BELBACHIR?

= 1
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For some special cases of these number sequences, we recall the following
double binomial sums from [1]:
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where F, = U, (1,1), P, = Un(2,1),T,, = V,,(1,1,1) and £{*) stand
for the n-th Fibonacci, Pell, Tribonacci and generalized order-k Fibonacci
number defined by

Py,

k
IR =350 >k,
i=1
with initial conditions fék) =0, f;k) =27 1for1<j<k.

In this paper, we shall derive various new double binomial sums and a bi-
nomial sums with complex coefficients related with the sequences {U, }, {V,,}
and {W,,} . We use generating function methods to prove our results.

We can refer to [3, 4] for using generating functions in deriving and
proving certain combinatorial identities.

The main advantage of such an interpretation of binomial coefficients
is, for example, that one can omit the use of exact limits in sums like
>io (1) by simply writing 3, (%) instead. In the sequel, for the sake of
convenience, we exploit this kind of allowance. For example, for n and
s integers », ; ("57) (”_.Sj)7 the nonvanishing terms are those for which

K2

0<i<n,0<sj<nand 0<i+s5 <n.
We need the following Lemma.
Lemma 1. Let o and 8 be integers such that B > «. The following identity

holds 5
n+a\ , 2P
Z( 8 )Z D (14

n>0
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Proof.

> (n—ga>zn: T (”;ﬁ)z” = ﬂi[a;)o;—&-l'

n>0

2. DOUBLE BINOMIAL SUMS OF FIRST KIND

This section is devoted to some combinatorial identities related to double
sums of binomial coefficient with a given parameter. In the sequel, we
generalize most of the identities given by Kili¢ and Prodinger in [1].

Theorem 1. Let n and s be positive integers, and t and u any complex
numbers. The generating function of the sequence {Asf)} defined by
n

A=y (" ()
sJ i

: 1 (42
(1+1t)2)° —uzs (1 —tz)°

AE) =3 AY =

n>0
Proof. First, we replace i by n — i and get

AL —Z(sj)(isj 7

%,

Now, we compute the generating function using Lemma 1:

o 5 () D)

0<sj<i n>i
o 57 ) (1 — zt)itl—si
ofares \81/ ( )

B (z5u(1 — zt)*)’

B ; (1—(t+1)2)""

_ (1-(+8)2)""
1= (14t)2)° —uzs (1 —t2)

Corollary 1. Forn >0 and any complex numbers t, u,

Upsr (t+u+1,ut)2(n,i> (nij)tiuﬂ', (2.1)

g N
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where {U,} is defined by relation (1.1).

Proof. 1t suffices to take s = 1. We obtain the generating function of the
sequence {Up41 (t +u+ 1, —ut)}. O

£ e

,J

(2) t=4andu=1

Z <TL — Z) <TL _J>4z — 271F2n+2‘
J 1

,J

We get for
(1) t=u=1

Corollary 2. Forn > 0 and any complex numbers t, u,
— - 25\ .
W’(21 ), u—(t 127—2t,t2): (T tiud,
W (2041, u—(t+1)7, —2ut,u ;Qj )t
where {W]} satisfies the relation (1.3) with the initials W} = 0,W] =
LWy =14+t W)= (t+1)>+u.
Proof. 1t suffices to take s = 2. We obtain the generating function
1—2z(t+1)
1-2(1+¢t)z+ ((t+1)2 —u) 22 + 2utz3 — ut?z*

of the sequence {W/, (2+2t, u—(t + 1), —2ut, ut?)} with the initial values W} =
0,W] =1, W) =1+t W= (t+1)°+u. O

When ¢t =u =1 and s = 2, we obtain
F2n+2+Fn+1_ Z n—1 n—2j
2 L 2j i )’
0<i,j<n

which was also given in [1].

Theorem 2. Letn and s be positive integers and t, u any complex numbers.
The generating function of the sequence {BT(LS)} defined by
n

§) n—14\[(n—7\, ;
w5 e

: -0+
(1—(1+1t)2)° —uzs (1 —tz)

B(z) := Z B,(f)z” =

n>0
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Proof. First, we replace ¢ by n — ¢ and get

(s) _ i n—7J n—i, j
e

i,
Now, we compute the generating function using Lemma 1:

Be= 3 (L) 3 (2 27) e

B (z5u(1 — zt))?
B 7; (1—(t+1)2)Y
(1-(1+1)2)°""
(1—(1+1t)2)°" —uzs (1 —tz)

Remark 1. For s =1, we obtain Corollary 1.

Corollary 3. Forn > 0 and any complex numbers t, u,
(24 2t,u — 1)%, —ut) = ne (1T iy

Va(2+ 2t u (u+),u);2j )
where {V'} satisfies the relation (1.2) with the initials Vg =0,V = 1,V4 =
1+t
Proof. Tt suffices to take s = 2. We obtain the generating function

1—2z(t+1)
1=2(1+8) 2+ ((E+1)7 — ) 22 + uts?

of the sequence {V//(2+ 2t,u— (u+ 1)*, —ut)} with the initial values V{ =

0,V{=1,Vy =1+t O
Corollary 4. Forn > 0 and any complex numbers t, u,
2 (ns_' Z) (n i J)ti“j =WIBA+1),-3E+1)",(t+1)° +u,—ut),
j i

,J
where {W)/} = satisfies the relation (1.3) with the initials Wy = 0, W' =
LWY =1+t, Wi =1+2t+¢2.
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Proof. Tt suffices to take s = 3. We obtain the generating function
1—2(t+1)z+ (t+1)° 22
1-3(1+t)z+3(t+1)222— ((t+1)3+u) 23 4 utzt

of the sequence {W,(3 (1 +1t),—3(t+1)%, (t +1)* +u, —ut)} with the ini-
tial values W{' = 0, W} = 1, Wy =1+t W§ = (t+1)°. O

Theorem 3. Letn and s be positive integers and t, u any complex numbers.
The generating function of the sequence {C,(LS)} defined by
n

G Z( 5 )(z‘—j)w

2]

8

TRV R (T e P

_ S tuzstl
= (I—=(14u)z)” —tuzs

Proof. First, we replace i by n — i and get

s) __ i TL—j n—igj
o =3 (o) ()
/L’J

We compute the generating function using Lemma 1:

Clz)=> (;j) Y <n Z— j) ()™

i n>j
(tuz)’ i=sj
S Y (s
J>0 9] >8] U,Z) 7
B Z (tuz)’ 2% - +u)t
(1—(14u)2)5+t (1 —(14+u)2)’ — tuzstl’

J>0
]

Corollary 5. Let n and s be positive integers and t, u any compler num-
bers. The generating function of the sequence {5’,(15)} defined by
n

~(s) . n—i I\ i,
o5 (e

2]

8

G(x) =Y Gan = =4 2!

>0 (u—(1+u)2)° —tu?szstt’



GENERALIZED DOUBLE BINOMIAL SUMS FAMILIES 7

Proof. Tt suffices to observe that C(t%) (z) = C(t1/%) (uz) and permute i
and j. O

Corollary 6. Forn >0 and any complex numbers t, u,
=)o
i J !
where {U,} is defined by relation (1.1).
(1) Whent =u=1and s =1, then {U,4+1(2,1)} is the Pell sequence,
given in [1].
(2) When ¢t = —u = —1/2 and s = 1, then {U,11(—1/2,1/2)} is
reduced to {Fy,/2"}.

Corollary 7. Forn > 0 and any complex numbers t, u,

VIR, —1+02u) =S (") ()i

M), — 0t ) = 3 () (5 )
where {V!} satisfies the relation (1.2) with the initials Vj = 0,V{ =1,Vy =
14¢.
Proof. Tt suffices to take s = 2. We obtain the generating function
1—(t+1)z
1—=2(1+1t)z+ (1+1)%22 — ut?223

of the sequence {V/(2(1+1t),— (1 +t)*,ut?)} with the initial values V] =
0,V{=1,Vy =1+t O

Theorem 4. Letn and s be positive integers and t, u any complex numbers.
The generating function of the sequence {DT(LS)} defined by
n

D) = " ! tiu?
" Z(Hj)(sy’ !

’ (-1t
(1= (1418)2)° —uts (1 —z)" " zstt’

D (z) := Z D =

n>0
Proof. We compute the generating function using Lemma 1:
7 P n s
D(z) = LI P
-2 (e 3 (1)

y
g N n>iti

0<sj<i
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L () £ (0

>0 i>sj

1 utsz5tt J
1(1+t)zz<(1—(1+t)z)3(1—z))

=0

(1-2)(1-(1+t)2)°""
(1—2)(1—(1+1t)2)" —utszstl’

O
Corollary 8. Forn >0 and any complex numbers t, u,
Y = U (14t ut),
O
i,J
where {Uy} is defined by relation (1.1).
Proof. 1t suffices to take s = 1. We obtain the generating function
1 B 1
1—2)1—-(1+t)2) —tuz?  1—(2+1t)z— (1+t—ut) 2>
of the sequence {U,1(2+t,1 4+t — ut)}. O

Corollary 9. Forn > 0 and any complex numbers t, u,

n 7 . 9

o Nt =W (21 +1t),— (14167, ut?, —ut?),
izj(w)(%) 1241+ )
where {W]} satisfies the relation (1.3) with the initials W) = 0, W] =
LWy =14+t Wj=(t+1)>

When ¢t = u and s = 1, the terms
e ()0
0<igen NP HI/N

are in the sequence A094441 "Triangular array T'(n,u) = (Z) Fr_yi1" of
OEIS.
For t =1, {U,+1 (3,—1)} is the odd Fibonacci sequence {Fap41} -

Theorem 5. Letn and s be positive integers and t, u any complex numbers.
The generating function of the sequence {E,(Ls)} defined by
n

(S).f n—1 Z*S‘] i
s =3 (1) ()

2%
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18
1
1— 2z —t22 —utstlzst2’

E(2):= Z E,(Ls)z” =

n>0
Proof. We compute the generating function using Lemma 1:

B(2) = Z (Z—.Sj)tizm‘—sjuj Z (Zﬁ_—sz>zn—2i+sj

0<s5<i J n>2i—sj

j (1—2)

1 (tz)5j+j (uz)J i—sj (tzQ)ifsjfj
=T Gy ( ' )(1z)ism

j>0 125547 J

1
T 1z t22 st

Corollary 10. Forn > 0 and any complex numbers t, u,
n—i\ (i—3\ .,
Vi (Lt ut?) = ( )( . )t’uf,
1+ ( ) ZZ]: i— j
where {V,,} is defined by relation (1.2).

Proof. Tt suffices to take s = 1. We obtain the generating function of the
sequence {Vn+1 (1,t, ut2)} . O

Whent =u =1and s = 1, we get the Tribonacci sequence {V,, 41 (1,—1,1)}
(see [1]).

Corollary 11. Forn > 0 and any complex numbers t, u,

3y n—i\(1—=27\, ;
Wit (1,t,0,ut)_;(i_2j)< ; >tu,
where {W,,} is defined by relation (1.3).

Proof. 1t suffices to take s = 2. We obtain the generating function

1
1—2—tz2 —utdz4

of the sequence {W,41 (1,,0,ut?)}. O
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Theorem 6. Letn and s be positive integers and t, u any complex numbers.

The generating function of the sequence {G%S)}

()

sz: i—7/)\sj Y
8 )
(1—z—tz2)s_

(]_ — oy — tZQ)S — utsy2s—1 + utsz2s’

G(z):= z Gsf)z” =

n>0

Proof. We use the same approach as used in Theorem 5. g

Corollary 12. Forn > 0 and any complex numbers t,u
Unsr (14 tu,t —tu) = (7_1 B ?) <Z_>tiuj
i t=J/\J
where {U,} defined by the relation (1.1).

Corollary 13. Forn > 0 and any complex numbers t, u,
9 n—1\[ %\, ;
W,y (2,142t —t (2 —tu), —t* (u+1)) = ; (z _j) <2j>t W,
where {W/} satisfies the relation (1.3) with the initials W) = 0, W] =
LW, =1, W, =t+1.

Proof. Tt suffices to take s = 2 , we obtain the generating function
1—2z—t22
1-2z24+(1-20)22+¢t(2—tu) 23 +t2 (u+1)2*
of the sequence {I/V,’Z (2, —142t,—t (2 —tu), —t? (u + 1))} , with the ini-
tials Wi =0,W{ =1, W) =1, W, =¢t+ 1. O

3. DOUBLE BINOMIAL SUMS OF THE SECOND KIND (OF BINOMIAL
COEFFICIENT)

Theorem 7. Letn and s be positive integers and t, u any complex numbers.
The generating function of the sequence {Hff)} defined by
n

() .— =t
H ._Z(i_sj>tu
0.
8
1 1
1—z—t221—utszs’

H(z):= ZHT(LS)ZTL =
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Proof. We compute the generating function using Lemma 1:

Z 41,2183y, Z (”_Z)Zn2i+sj

< —~  \%—8j
0<s5<1t n>2i—sj

H (2)

1 oo (tzz)i_Sj
= tz)% ! —_—
1 1
1—2—t221—utszs’

Corollary 14. Forn > 0 and any complex numbers t, u,
N n—1\,, j
Vgt (ut + 1,6 (1 —u), —ut®) = Z (ij)t u’,
0<i,y<n
where {V, } is defined by relation (1.2).
Proof. Tt suffices to take s = 1. We obtain the generating function

1
1—(1+ut)z—t(1 —u)2?+ut?z3

of the sequence {Vn+1 (ut +1,t(1—wu), —ut2)} . O

When ¢ = u =1 and s = 1, the sequence {V,,41 (2,0, —1)} is the sequence
{F, — 1}, where F}, stands for the n-th Fibonacci number.

Corollary 15. Forn >0 and any complex numbers t, u,

Wi (Lt (1+ut), —ut?,ut®) = Y (i”__QZ,)tiuj,

,J
where {W,,} is defined by relation (1.3).
Proof. Tt suffices to take s = 2. We obtain the generating function

1
1—z+ (—ut? —t) 22 4+ t2uzd + 3uz?

of the sequence {W,41 (1,¢ (1 +ut), —ut?,ut®)}. O

Theorem 8. Let n and s be positive integers and t, u any complex numbers
such that ut® # 1. The generating function of the sequence {IT(LS)} defined
n

by
e AV,
=5 (""" tid
" ( i—si )"

2%
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18
I(z2):= HEZO I’r(L 2" = 1—z—t2? (1 _ (tz + (tz)Q)S U) .

Proof. First we replace ¢ by n — ¢ and get

©=% (Z M Sj)t”iuf.
n

]

Then using generating function approach we obtain

I(Z) _ Z Z (Z —;Sj>tn+sjuj2"+i+sj — Z tsjujzsj-‘,-i (1 + tz)i-‘rsj

i,j>0n>0 i,7>0
= ) > (L + 1) 2 )
i>0 j>0
1 1

1—z—t22 (1 - (ter (tz)Z)su).

Corollary 16. Forn > 0 and any complex numbers t, u
_ n—1+7\, ;
Wi (1,1) —Z]:( g )tu :
where {Wn+1 (1 +ut, t — ut + ut?, —2ut?, —ut3)} is defined by relation (1.3).

Theorem 9. Let n be positive integer and t, u any complex numbers. The
generating function of the sequence {J,} defined by

2n—i—j\ .
I = t'u’
>
i,J
is the third order sequence defined by
Jn= @t +ut+1)Jp1 — (ut +* (14 2w)) Jo_2 + (ut?) Jo_3
with initials J_1 =0,Jo =1 and J1 =1+t + ut.
Proof. First, we replace ¢ by n — ¢ and get
n+i—7j
Jn = .
(50
i,
Now we compute the generating function

CED DD DI (A R

n>00<,5<n
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B Z 2t (ztu)’ B 11—tz
ijz0 (1= 2)7 T (L —utz) (1= (2t + 1) 2 + 222)
which is the generating function of the sequence {.J,,}. O

(1) When k = t = 1, the sequence {J,} is reduced to the Fibonacci
sequence {Fo,12}.

(2) When t = —k = 1, the sequence {J,,} is reduced to the sequence of
powers of the Fibonacci numbers, {FZ ,} .

4. A BINOMIAL SUM

In the webpage of R. RAM [2], one can find the following formula for

the Fibonacci numbers:
" 2n — k n—k =

k-1
k=1

In this section, motivated by the above result, we generalize the formula
and then derive new binomial sums with complex coefficients for the terms
of a general second order recursion:

Theorem 10. For n > 0 and any complex numbers p, q,

k=0
where {Uy} is defined by relation (1.1).

Proof. Consider

an (iv)* (p—2iy/g)" " (2n —kk - 1>

k=0

n . k
= (29" Y <\/C7(‘p_2\/‘7)> (2n _kk - 1>

p®+4q
which, by writing n — k instead of k, becomes

valp—2va)\"
<p+4q> )

" (i (ip—2\7) k-1
sz_o< P? +4q ) <n—k>

_ (iv2)" & pfnt+k-—1
B (p—2i\/§)zt<2k—1)

k=0
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. n n n

(1\/6) Ztk+1<n+k>Z(i\/a)n_lztk(n+k),
(p — 2i/q) P 2k +1 — \2k+1

where ¢t = — (2\/§ + ip) /+/@- We need to compute the sum on right hand

side of the equation above. Now we compute its generating function;

- n+k z
Nk "= = "Up (t+2,—-1),
Z’Z g::o <2k+1>z 1—2z(24+t)z+22 Zz (t+ )

n>0 n>0

where U, (a,b) and t are defined as before. Thus our sum takes the form:

e () = v (),

which, by using the Binet formula of {U,,}, gives

(iv)" ' Un (—W, —1> =U, (p,q) ,

as claimed. O

When p=¢=1, and when p=2, ¢ =1,

F,=Y (2” _kk - 1>i’“ (1— 21"+t
and

k=0
where F,, and P, are the n'" Fibonacci and Pell numbers, respectively.
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