
Multiple Comparison Test and Its Imitations 

We are not always interested in comparison of two groups 
per experiment. Sometimes (in practice, very often), we may 
have to determine whether differences exist among the means 
of three or more groups. The most common analytical method 
used for such determinations is analysis of variance (ANO-

VA).1) When the null hypothesis (H0) is rejected after ANOVA, 
that is, in the case of three groups, H0: μA = μB = μC, we do not 
know how one group differs from a certain group. The result of 
ANOVA does not provide detailed information regarding the 
differences among various combinations of groups. Therefore, 
researchers usually perform additional analysis to clarify the 
differences between particular pairs of experimental groups. If 
the null hypothesis (H0) is rejected in the ANOVA for the three 
groups, the following cases are considered:

μA ≠ μB ≠ μC or μA ≠ μB = μC or μA = μB ≠ μC or μA ≠ μC = μB 

In which of these cases is the null hypothesis rejected? The 
only way to answer this question is to apply the ‘multiple com-
parison test’ (MCT), which is sometimes also called a ‘post-hoc 
test.’

Statistical Round

Multiple comparisons tests (MCTs) are performed several times on the mean of experimental conditions. When the null 
hypothesis is rejected in a validation, MCTs are performed when certain experimental conditions have a statistically sig-
nificant mean difference or there is a specific aspect between the group means. A problem occurs if the error rate increas-
es while multiple hypothesis tests are performed simultaneously. Consequently, in an MCT, it is necessary to control the 
error rate to an appropriate level. In this paper, we discuss how to test multiple hypotheses simultaneously while limiting 
type I error rate, which is caused by α inflation. To choose the appropriate test, we must maintain the balance between 
statistical power and type I error rate. If the test is too conservative, a type I error is not likely to occur. However, concur-
rently, the test may have insufficient power resulted in increased probability of type II error occurrence. Most researchers 
may hope to find the best way of adjusting the type I error rate to discriminate the real differences between observed data 
without wasting too much statistical power. It is expected that this paper will help researchers understand the differences 
between MCTs and apply them appropriately.
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There are several methods for performing MCT, such as the 
Tukey method, Newman-Keuls method, Bonferroni method, 
Dunnett method, Scheffé’s test, and so on. In this paper, we 
discuss the best multiple comparison method for analyzing 
given data, clarify how to distinguish between these methods, 
and describe the method for adjusting the P value to prevent α 
inflation in general multiple comparison situations. Further, we 
describe the increase in type I error (α inflation), which should 
always be considered in multiple comparisons, and the method 
for controlling type I error that applied in each corresponding 
multiple comparison method.

Meaning of P value and ɑ Inflation

In a statistical hypothesis test, the significance probability, as-
ymptotic significance, or P value (probability value) denotes the 
probability that an extreme result will actually be observed if H0 
is true. The significance of an experiment is a random variable 
that is defined in the sample space of the experiment and has a 
value between 0 and 1.

Type I error occurs when H0 is statistically rejected even 
though it is actually true, whereas type II error refers to a false 
negative, H0 is statistically accepted but H0 is false (Table 1). In 
the situation of comparing the three groups, they may form the 
following three pairs: group 1 versus group 2, group 2 versus 
group 3, and group 1 versus group 3. A pair for this comparison 
is called ‘family.’ The type I error that occurs when each family 
is compared is called the ‘family-wise error’ (FWE). In other 
words, the method developed to appropriately adjust the FWE is 
a multiple comparison method. The α inflation can occur when 
the same (without adjustment) significant level is applied to the 
statistical analysis to one and other families simultaneously [2]. 
For example, if one performs a Student’s t-test between two giv-
en groups A and B under 5% α error and significantly indifferent 
statistical result, the probability of trueness of H0 (the hypothesis 
that groups A and B are same) is 95%. At this point, let us con-
sider another group called group C, which we want to compare 
it and groups A and B. If one performs another Student’s t-test 
between the groups A and B and its result is also nonsignificant, 
the real probability of a nonsignificant result between A and B, 
and B and C is 0.95 × 0.95 = 0.9025, 90.25% and, consequently, 

the testing α error is 1 − 0.9025 = 0.0975, not 0.05. At the same 
time, if the statistical analysis between groups A and C also has a 
nonsignificant result, the probability of nonsignificance of all the 
three pairs (families) is 0.95 × 0.95 × 0.95 = 0.857 and the actual 
testing α error is 1 − 0.857 = 0.143, which is more than 14%. 

Inflated α = 1 − (1 − α)N, N = number of hypotheses tested 
(equation 1)

The inflation of probability of type I error increases with 
the increase in the number of comparisons (Fig. 1, equation 1). 
Table 2 shows the increases in the probability of rejecting H0 ac-
cording to the number of comparisons.

Unfortunately, the result of controlling the significance level 
for MCT will probably increase the number of false negative 
cases which are not detected as being statistically significant, but 
they are really different (Table 1). False negatives (type II errors) 
can lead to an increase in cost. Therefore, if this is the case, we 
may not even want to attempt to control the significance level 
for MCT. Clearly, such deliberate avoidance increases the possi-
bility of occurrence of false positive findings.

Classification (or Type) of Multiple Comparison: 
Single-step versus Stepwise Procedures

As mentioned earlier, repeated testing with given groups 
results in the serious problem known as α inflation. Therefore, 
numerous MCT methods have been developed in statistics over 
the years.2) Most of the researchers in the field are interested in 
understanding the differences between relevant groups. These 
groups could be all pairs in the experiments, or one control and 

Table 1. Types of Erroneous Conclusions in Statistical Hypothesis 
Testing

Error types
Actual fact

H0 true H0 false

Statistical inference H0 true Correct Type II error (β)
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Fig. 1. Depiction of the increasing error rate of multiple comparisons. 
The X-axis represents the number of simultaneously tested hypotheses, 
and the Y-axis represents the probability of rejecting at least on true null 
hypothesis. The curved line follows the function value of 1 − (1 − α)N 
and N is the number of hypotheses tested.
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other groups, or more than two groups (one subgroup) and an-
other experiment groups (another subgroup). Irrespective of the 
type of pairs to be compared, all post hoc subgroup comparing 
methods should be applied under the significance of complete 
ANOVA result.3)  

Usually, MCTs are categorized into two classes, single-step 
and stepwise procedures. Stepwise procedures are further di-
vided into step-up and step-down methods. This classification 
depends on the method used to handle type I error. As indicated 
by its name, single-step procedure assumes one hypothetical 
type I error rate. Under this assumption, almost all pairwise 
comparisons (multiple hypotheses) are performed (tested using 
one critical value). In other words, every comparison is inde-
pendent. A typical example is Fisher’s least significant differ-
ence (LSD) test. Other examples are Bonferroni, Sidak, Scheffé, 
Tukey, Tukey-Kramer, Hochberg’s GF2, Gabriel, and Dunnett 
tests.

The stepwise procedure handles type I error according to 
previously selected comparison results, that is, it processes 
pairwise comparisons in a predetermined order, and each com-
parison is performed only when the previous comparison result 
is statistically significant. In general, this method improves the 
statistical power of the process while preserving the type I error 
rate throughout. Among the comparison test statistics, the most 
significant test (for step-down procedures) or least significant 
test (for step-up procedures) is identified, and comparisons 
are successively performed when the previous test result is 
significant. If one comparison test during the process fails to 
reject a null hypothesis, all the remaining tests are rejected. This 
method does not determine the same level of significance as sin-
gle-step methods; rather, it classifies all relevant groups into the 
statistically similar subgroups. The stepwise methods include 
Ryan-Einot-Gabriel-Welsch Q (REGWQ), Ryan-Einot-Gabri-
el-Welsch F (REGWF), Student-Newman-Keuls (SNK), and 
Duncan tests. These methods have different uses, for example, 
the SNK test is started to compare the two groups with the larg-
est differences; the other two groups with the second largest dif-
ferences are compared only if there is a significant difference in 

prior comparison. Therefore, this method is called as step-down 
methods because the extents of the differences are reduced as 
comparisons proceed. It is noted that the critical value for com-
parison varies for each pair. That is, it depends on the range 
of mean differences between groups. The smaller the range of 
comparison, the smaller the critical value for the range; hence, 
although the power increases, the probability of type I error in-
creases.

All the aforementioned methods can be used only in the situ-
ation of equal variance assumption. If equal variance assumption 
is violent during the ANOVA process, pairwise comparisons 
should be based on the statistics of Tamhane’s T2, Dunnett’s T3, 
Games-Howell, and Dunnett’s C tests.

Tukey method

This test uses pairwise post-hoc testing to determine wheth-
er there is a difference between the mean of all possible pairs 
using a studentized range distribution. This method tests every 
possible pair of all groups. Initially, the Tukey test was called 
the ‘Honestly significant difference’ test, or simply the ‘T test,’4)  
because this method was based on the t-distribution. It is noted 
that the Tukey test is based on the same sample counts between 
groups (balanced data) as ANOVA. Subsequently, Kramer 
modified this method to apply it on unbalanced data, and it 
became known as the Tukey-Kramer test. This method uses the 
harmonic mean of the cell size of the two comparisons. The sta-
tistical assumptions of ANOVA should be applied to the Tukey 
method, as well.5)  

Fig. 2 depicts the example results of one-way ANOVA and 

2)There are four criteria for evaluating and comparing the methods of post-
hoc multiple comparisons: ‘Conservativeness,’ ‘optimality,’ ‘convenience,’ 
and ‘robustness.’ Conservativeness involves making a strict statistical 
inference throughout an analysis. In other words, the statistical result 
of a multiple comparison method has significance only with a certain 
controlled type I error, that is, this method could produce a reckless result 
when there are small differences between groups. The second criterion 
is optimality. The optimal statistic is statistically the smallest CI among 
conservative statistics. In other words, the standard error is the smallest 
statistic among conservative statistics. Conservatism is more important 
than optimality because the former is a characteristic evaluated under 
conservative. The third criterion convenience is literally considered easy 
to calculate. Most statistical computer programs will handle this; however, 
extensive mathematics is required to understand its nature, which 
means that the criterion is less convenient to use if it is too complicated. 
The fourth criterion is ‘insensitivity to assumption violence,’ which 
is commonly referred to as robustness. In other words, in the case of 
violation of the assumption of equal variance in ANOVA, some methods 
presented below are less insensitive. Therefore, in this context, it is 
appropriate to use methods like Tamhane’s T2, Games-Howell, Dunnett’s 
T2, and Dunnett’s C, which are available in some statistical applications [3].

3)This is true only if conducted by the post-hoc test of ANOVA.
4)It is different from and should not be confused with Student’s t-test.

Table 2. Inflation of Significance Level according to the Number of 
Multiple Comparisons

Number of comparisons Significance level*

1 0.05
2 0.098
3 0.143
4 0.185
5 0.226
6 0.265

*Significance level (α) = 1 − (1 − α)N, where N = number of hypothesis 
test (Adapted from Kim TK. Korean J Anesthesiol 2017; 70: 22-6).
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Tukey test for multiple comparisons. According to this figure, 
the Tukey test is performed with one critical level, as described 
earlier, and the results of all pairwise comparisons are presented 
in one table under the section ‘post-hoc test.’ The results con-
clude that groups A and B are different, whereas groups A and 

C are not different and groups B and C are also not different. 
These odd results are continued in the last table named ‘Homo-
geneous subsets.’ Groups A and C are similar and groups B and 
C are also similar; however, groups A and B are different. An 
inference of this type is different with the syllogistic reasoning. 
In mathematics, if A = B and B = C, then A = C. However, in 
statistics, when A = B and B = C, A is not the same as C because 
all these results are probable outcomes based on statistics. Such 
contradictory results can originate from inadequate statistical 
power, that is, a small sample size. The Tukey test is a generous 

Oneway

Between groups
Within groups
Total

Sum of
squares df Mean square F Sig.

85.929
83.000

168.929

2
11
13

42.964
7.545

5.694 .020

Value
ANOVA

Post hoc tests

Mean difference
(I-J) Std. error Sig.

Dependent variable: value
Tukey HSD

Multiple comparisons

Lower bound Upper bound

95% confidence interval
(I) Group (J) Group

A 5.70000*
1.10000

1.84268
1.84268

.026

.825
B
C

10.6768
6.0768

.7232
3.8768

B 5.70000*
4.60000

1.84268
1.73729

.026

.055
A
C

.7232

.0922
10.6768
9.2922

C 1.10000
4.60000

1.84268
1.73729

.825

.055
A
B

3.8768
9.2922

6.0768
.0922

*The mean difference is significant at the 0.05 level.

Homogeneous subsets

Group

Tukey HSD
a, b

Value

N
Subset for alpha = 0.05

1 2

A
C
B

Sig.

4
5
5

4.5000
5.6000

.819

5.6000
10.2000

.065

Means for groups in homogeneous subsets are displayed.
a. Uses harmonic mean sample size = 4.615
b. The group sizes are unequal.

The harmonic mean of the group sizes is used.
Type I error levels are not guaranteed.

Fig. 2. An example of a one-way analysis of variance (ANOVA) result with Tukey test for multiple comparison performed using IBMⓇ SPSSⓇ 
Statistics (ver 23.0, IBMⓇ Co., USA). Groups A, B, and C are compared. The Tukey honestly significant difference (HSD) test was performed under 
the significant result of ANOVA. Multiple comparison results presented statistical differences between groups A and B, but not between groups A and 
C and between groups B and C. However, in the last table ‘Homogenous subsets’, there is a contradictory result: the differences between groups A and 
C and groups B and C are not significant, although a significant difference existed between groups A and B. This inconsistent interpretation could 
have originated from insufficient evidence.

5)Independent variables must be independent of each other (independence), 
dependent variables must satisfy the normal distribution (normality), 
and the variance of the dependent variable distribution by independent 
variables should be the same for each group (equivalence of variance).
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method to detect the difference during pairwise comparison (less 
conservative); to avoid this illogical result, an adequate sample 
size should be guaranteed, which gives rise to smaller standard 
errors and increases the probability of rejecting the null hypoth-
esis.

Bonferroni method: ɑ splitting (Dunn’s method)

The Bonferroni method can be used to compare different 
groups at the baseline, study the relationship between variables, 
or examine one or more endpoints in clinical trials. It is applied 
as a post-hoc test in many statistical procedures such as ANOVA 
and its variants, including analysis of covariance (ANCOVA) 
and multivariate ANOVA (MANOVA); multiple t-tests; and 
Pearson’s correlation analysis. It is also used in several nonpara-
metric tests, including the Mann-Whitney U test, Wilcoxon 
signed rank test, and Kruskal-Wallis test by ranks [4], and as a 
test for categorical data, such as Chi-squared test. When used 
as a post hoc test after ANOVA, the Bonferroni method uses 
thresholds based on the t-distribution; the Bonferroni method is 
more rigorous than the Tukey test, which tolerates type I errors, 
and more generous than the very conservative Scheffé’s method.

However, it has disadvantages, as well, since it is unneces-
sarily conservative (with weak statistical power). The adjusted 
α is often smaller than required, particularly if there are many 
tests and/or the test statistics are positively correlated. Therefore, 
this method often fails to detect real differences. If the proposed 
study requires that type II error should be avoided and possi-
ble effects should not be missed, we should not use Bonferroni 
correction. Rather, we should use a more liberal method like 
Fisher’s LSD, which does not control the family-wise error rate 
(FWER).6) Another alternative to the Bonferroni correction to 
yield overly conservative results is to use the stepwise (sequential) 
method, for which the Bonferroni-Holm and Hochberg meth-
ods are suitable, which are less conservative than the Bonferroni 
test [5].

Dunnett method

This is a particularly useful method to analyze studies having 
control groups, based on modified t-test statistics (Dunnett’s 
t-distribution). It is a powerful statistic and, therefore, can dis-
cover relatively small but significant differences among groups 
or combinations of groups. The Dunnett test is used by re-
searchers interested in testing two or more experimental groups 
against a single control group. However, the Dunnett test has the 
disadvantage that it does not compare the groups other than the 
control group among themselves at all. 

As an example, suppose there are three experimental groups 
A, B, and C, in which an experimental drug is used, and a 

control group in a study. In the Dunnett test, a comparison of 
control group with A, B, C, or their combinations is performed; 
however, no comparison is made between the experimental 
groups A, B, and C. Therefore, the power of the test is higher 
because the number of tests is reduced compared to the ‘all pair-
wise comparison.’

On the other hand, the Dunnett method is capable of ‘two-
tailed’ or ‘one-tailed’ testing, which makes it different from other 
pairwise comparison methods. For example, if the effect of a 
new drug is not known at all, the two-tailed test should be used 
to confirm whether the effect of the new drug is better or worse 
than that of a conventional control. Subsequently, a one-sided 
test is required to compare the new drug and control. Since the 
two-sided or single-sided test can be performed according to the 
situation, the Dunnett method can be used without any restric-
tions.

Scheffé’s method: exploratory post-hoc method 

Scheffé’s method is not a simple pairwise comparison test. 
Based on F-distribution, it is a method for performing simul-
taneous, joint pairwise comparisons for all possible pairwise 
combinations of each group mean [6]. It controls FWER after 
considering every possible pairwise combination, whereas the 
Tukey test controls the FWER when only all pairwise compari-
sons are made.7) This is why the Scheffé’s method is very conser-
vative than other methods and has small power to detect the dif-
ferences. Since Scheffé’s method generates hypotheses based on 
all possible comparisons to confirm significance, this method is 
preferred when theoretical background for differences between 
groups is unavailable or previous studies have not been com-
pletely implemented (exploratory data analysis). The hypotheses 
generated in this manner should be tested by subsequent studies 
that are specifically designed to test new hypotheses. This is im-
portant in exploratory data analysis or the theoretic testing pro-
cess (e.g., if a type I error is likely to occur in this type of study 
and the differences should be identified in subsequent studies). 
Follow-up studies testing specific subgroup contrasts discovered 
through the application of Scheffé’s method should use. Bonfer-
roni methods that are appropriate for theoretical test studies. It is 
further noted that Bonferroni methods are less sensitive to type 

6)In this paper, we do not discuss Fisher’s LSD, Duncan’s multiple range 
test, and Student-Newman-Keul’s procedure. Since these methods do not 
control FWER, they do not suit the purpose of this paper.

7)Basically, a multiple pairwise comparison should be designed according 
to the planned contrasts. A classical deductive multiple comparison is 
performed using predetermined contrasts, which are decided early in 
the study design step. By assigning a contrast to each group, pairing can 
be varied from some or all pairs of two selected groups to subgroups, 
including several groups that are independent or partially dependent on 
each other.
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I errors than Scheffé’s method. Finally, Scheffé’s method enables 
simple or complex averaging comparisons in both balanced and 
unbalanced data.

Violation of the assumption of equivalence of 
variance

One-way ANOVA is performed only in cases where the 
assumption of equivalence of variance holds. However, it is 
a robust statistic that can be used even when there is a de-
viation from the equivalence assumption. In such cases, the 
Games-Howell, Tamhane’s T2, Dunnett’s T3, and Dunnett’s C 
tests can be applied.

The Games-Howell method is an improved version of the 
Tukey-Kramer method and is applicable in cases where the 
equivalence of variance assumption is violated. It is a t-test 
using Welch’s degree of freedom. This method uses a strategy 
for controlling the type I error for the entire comparison and is 
known to maintain the preset significance level even when the 
size of the sample is different. However, the smaller the number 
of samples in each group, the it is more tolerant the type I error 
control. Thus, this method can be applied when the number of 
samples is six or more. 

Tamhane’s T2 method gives a test statistic using the t-dis-
tribution by applying the concept of ‘multiplicative inequality’ 
introduced by Sidak. Sidak’s multiplicative inequality theorem 
implies that the probability of occurrence of intersection of each 
event is more than or equal to the probability of occurrence of 
each event. Compared to the Games-Howell method, Sidak’s 
theorem provides a more rigorous multiple comparison method 
by adjusting the significance level. In other words, it is more 
conservative than type I error control. Contrarily, Dunnett’s T3 
method does not use the t-distribution but uses a quasi-normal-
ized maximum-magnitude distribution (studentized maximum 
modulus distribution), which always provides a narrower CI 
than T2. The degrees of freedom are calculated using the Welch 
methods, such as Games-Howell or T2. This Dunnett’s T3 test 
is understood to be more appropriate than the Games-How-
ell test when the number of samples in the each group is less 
than 50. It is noted that Dunnett’s C test uses studentized range 
distribution, which generates a slightly narrower CI than the 
Games-Howell test for a sample size of 50 or more in the exper-
imental group; however, the power of Dunnett’s C test is better 
than that of the Games-Howell test.

Methods for Adjusting P value

Many research designs use numerous sources of multiple 
comparison, such as multiple outcomes, multiple predictors, 
subgroup analyses, multiple definitions for exposures and 

outcomes, multiple time points for outcomes (repeated mea-
sures), and multiple looks at the data during sequential interim 
monitoring. Therefore, multiple comparisons performed in a 
previous situation are accompanied by increased type I error 
problem, and it is necessary to adjust the P value accordingly. 
Various methods are used to adjust the P value. However, there 
is no universally accepted single method to control multiple test 
problems. Therefore, we introduce two representative methods 
for multiple test adjustment: FWER and false discovery rate 
(FDR).

Controlling the family-wise error rate: Bonferroni 
adjustment

The classic approach for solving a multiple comparison prob-
lem involves controlling FWER. A threshold value of α less than 
0.05, which is conventionally used, can be set. If the H0 is true 
for all tests, the probability of obtaining a significant result from 
this new, lower critical value is 0.05. In other words, if all the null 
hypotheses, H0, are true, the probability that the family of tests 
includes one or more false positives due to chance is 0.05. Usu-
ally, these methods are used when it is important not to make 
any type I errors at all. The methods belonging to this category 
are Bonferroni, Holm, Hochberg, Hommel adjustment, and so 
on. The Bonferroni method is one of the most commonly used 
methods to control FWER. With an increase in the number of 
hypotheses tested, type I error increases. Therefore, the signif-
icance level is divided into numbers of hypotheses tests. In this 
manner, type I error can be lowered. In other words, the higher 
the number of hypotheses to be tested, the more stringent the 
criterion, the lesser the probability of production of type I errors, 
and the lower the power.

For example, for performing 50 t-tests, one would set each 
t-test to 0.05 / 50 = 0.001. Therefore, one should consider the 
test as significant only for P < 0.001, not P < 0.05 (equation 2).

Adjusted alpha (α) = α / k (number of hypothesis tested) 
(equation 2)

The advantage of this method is that the calculation is 
straightforward and intuitive. However, it is too conservative, 
since when the number of comparisons increases, the level of 
significance becomes very small and the power of the system de-
creases [7]. The Bonferroni correction is strongly recommended 
for testing a single universal null hypothesis (H0) that all tests 
are not significant. This is true for the following situations, 
as well: to avoid type I error or perform many tests without a 
preplanned hypothesis for the purpose of obtaining significant 
results [8].

The Bonferroni correction is suitable when one false positive 
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in a series of tests are an issue. It is usually useful when there are 
numerous multiple comparisons and one is looking for one or 
two important ones. However, if one requires many compari-
sons and items that are considered important, Bonferroni modi-
fications can have a high false negative rate [9].

Controlling the false discovery rate: Benjamini-
Hochberg adjustment

An alternative to controlling the FWER is to control the 
FDR using the Benjamini-Hochberg and Benjamini & Yekutieli 
adjustments. The FDR controls the expected rate of the null 
hypothesis that is incorrectly rejected (type I error) in the re-
jected hypothesis list. It is less conservative. By performing the 
comparison procedure with a greater power compared to FWER 
control, the probability that a type I error will occur can be in-
creased [10]. 

Although FDR limits the number of false discoveries, some 
will still be obtained; hence, these procedures may be used if 
some type I errors are acceptable. In other words, it is a method 
to filter the hypotheses that have errors in the test from the hy-
potheses that are judged important, rather than testing all the 
hypotheses like FWER.

The Benjamini-Hochberg adjustment is very popular due to 
its simplicity. Rearrange all the P values in order from the small-
est to largest value. The smallest P value has a rank of i = 1, the 
next smallest has i = 2, and so on. 

p(1) ≤ p(2) ≤ p(3) ≤…≤ p(i) ≤ p(N)

Compare each individual P value to its Benjamini-Hochberg 
critical value (equation 3). 

Benjamini-Hochberg critical value = (i / m)∙Q      (equation 3)
(i, rank; m, total number of tests; Q, chosen FDR)
The largest P value for which P < (i / m)∙Q is significant, and 

all the P values smaller than the largest value are also significant, 
even the ones that are not less than their Benjamini-Hochberg 
critical value.

When you perform this correcting procedure with an FDR 
≧ 0.05, it is possible for individual tests to be significant, even 
though their P ≧ 0.05. Finally, only the hypothesis smaller than 
the individual P value among the listed rejected regions adjusted 
by FDR will be rejected.

One should be careful while choosing FDR. If we decide to 
proceed with more experiments on interesting individual re-
sults and if the additional cost of the experiments is low and the 
cost of false positives (missing potentially important findings) 
is high, then we should use a high FDR, such as 0.10 or 0.20, 
to ensure that important things are not missed. Moreover, it is 
noted that both Bonferroni correction and Benjamini-Hochberg 
procedure assume the individual tests to be independent. 

Conclusions and Implications

The purpose of the multiple comparison methods mentioned 
in this paper is to control the ‘overall significance level’ of the 
set of inferences performed as a post-test after ANOVA or as a 
pairwise comparison performed in various assays. The overall 
significance level is the probability that all the tested null hy-
potheses are conditional, at least one is denied, or one or more 
CIs do not contain a true value.

In general, the common statistical errors found in medical 
research papers arise from problems with multiple comparisons 
[11]. This is because researchers attempt to test multiple hy-
potheses concurrently in a single experiment, the authors of this 

Test statistics

Procedures

Sample distribution

Conservativeness

Dunnett Newman-Keuls Tukey HSD Bonferroni
(Dunn)

Scheffe'

Range test

Pairwise multiple
comparison test

Pairwise multiple comparison test

Range test

With control group

Stepwise

Single-step

t-distribution t-distribution

F-distribution

Range distribution based on error rate

Reckless Strict

Fig. 3. Comparative chart of multiple 
comparison tests (MCTs). Five repre
sentative methods are listed along 
the X-axis, and the parameters to be 
compared among these methods are 
listed along the Y-axis. Some methods 
use the range test and pairwise MCT 
concomitantly. The Dunnett and New
man-Keuls methods are comparable 
with respect to conservativeness. The 
Dunnett method uses one significance 
level, and the Newman-Keuls method 
compares pairs using the stepwise 
procedure based on the changes in range 
test statistics during the procedure. 
According to the range between the 
groups, the significance level is changed 
in the Newman-Keuls method. HSD: 
honestly significant difference.
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paper have already pointed out this issue.
Since biomedical papers emphasize the importance of mul-

tiple comparisons, a growing number of journals have started 
including a process of separately ascertaining whether multiple 
comparisons are appropriately used during the submission 
and review process. According to the results of a study on the 
appropriateness of multiple comparisons of articles published 
in three medical journals for 10 years, 33% (47/142) of papers 
did not use multiple comparison correction. Comparatively, in 
61% (86/142) of papers, correction without rationale was ap-
plied. Only 6.3% (9/142) of the examined papers used suitable 
correction methods [8]. The Bonferroni method was used in 
35.9% of papers. Most (71%) of the papers provided little or no 
discussion, whereas only 29% showed some rationale for and/
or discussion on the method [8]. The implications of these re-
sults are very significant. Some authors make the decision to not 
use adjusted P values or compare the results of corrected and 
uncorrected P values, which results in a potentially complicated 
interpretation of the results. This decision reduces the reliability 
of the results of published studies.

In a study, many situations occur that may affect the choice 
of MCTs. For example, a group might have different sample siz-
es. A several multiple comparison analysis tests was specifically 
developed to handle nonidentical groups. In the study, power 
can be a problem, and some tests have more power than others. 
Whereas all comparative tests are important in some studies, 
only predetermined combinations of experimental groups or 
comparators should be tested in others. When a special situation 
affects a particular pairwise analysis, the selection of multiple 
comparative analysis tests should be controlled by the ability 
of specific statistics to address the questions of interest and 
the types of data to be analyzed. Therefore, it is important that 

researchers select the tests that best suit their data, the types of 
information on group comparisons, and the power required for 
analysis (Fig. 3).

In general, most of the pairwise MCTs are based on balanced 
data. Therefore, when there are large differences in the number 
of samples, care should be taken when selecting multiple com-
parison procedures. LSD, Sidak, Bonferroni, and Dunnett using 
the t-statistic do not pose any problems, since there is no as-
sumption that the number of samples in each group is the same. 
The Tukey test using the studentized range distribution can be 
problematic since there is a premise that all sample sizes are the 
same in the null hypothesis. Therefore, the Tukey-Kramer test, 
which uses the harmonic mean of sample numbers, can be used 
when the sample numbers are different. Finally, we must check 
whether the equilibrium of variance assumption is satisfied. The 
methods of multiple comparisons that have been mentioned 
previously are all assumed to be equally distributed. Tamhane’s 
T2, Dunnett’s T3, Games-Howell, and Dunnett’s C are multiple 
comparison tests that do not assume equilibrium.

Although the Korean Journal of Anesthesiology has not for-
mally examined this view, it is expected that the journal’s view 
on this subject is not significantly different from the view ex-
pressed by this paper [8]. Therefore, it is important that all au-
thors are aware of the problems posed by multiple comparisons, 
and further research is required to spread awareness regarding 
these problems and their solutions.
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