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ON KUREPA’'S HYPOTHESIS FOR THE LEFT FACTORIAL

Aleksandar Petojevié

Abstract. In this paper sequences of integer numbers are defined and their
properties are examined. The equivalent of Kurepa's hypothesis for the left
factorial is given using the sequence {dn}. It is shown that the sequence
{dn} the base of papers of [5](G. V. Milovanovi¢) and [8], [9] (Z. Sami). In
view of the generalization of Wilson’s theorem given in [1] (V. Kirin) it is
shown that some results of papers [8] and [9] can be obtained by elementary
methods. The prablem which is more general then the problem of Kurepa's
hypothesis is considered.

1. Introduction

In [2] (P. Kurepa), it is defined left factorial In with n = 0! + 1! 4 2! +
<o+ (n—2)! 4+ (n— 1)! Also, the hypothesis, which is called latter Kurepa’s
hypothesis for left factorial (K H), is formulated

(1) (lnn!y=2, neN,n>1,

where (In n!) is the greatest common divisor for !n and nl.
In [2], it is proved that the equivalent assertion for (1) is the assertion that
for any prime numbers p, p > 2 it applies:

(2) Ip £ 0 (mod p).

The left factorial in complex domain is defined by
[} 2 1

(3) !zzfe_mm_ dz
0

where z is a complex number, (Re z > 0).
It is proved that

(z+1) =T(z+1)+lz,
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where I'(z) is a gamma function given by
[sa]
I(z) = /e_mscz_lda:.
0

Using the function

—I

|
|
e
7. Sami defined in [8] and [9] the sequence y,,: ‘
|
yn = F™(0), ‘
iLe. 1
(4) Un = 2”:(—1)”"“ V)R
k=0 ¥

The terms of sequence y, are yo =1, y1 =0, p2 =1, ys =2, Y41 = 9, ys = ‘
4, i

In view of properties of sequence y,, it is proved that for any prime number
the following hold:

(5) [(p > 1)!: + 1 =lp (mod p)
[%'] = —1 (modp),
[@;1)!: + [(p—eZ)!] = 0 (modp)

wher [#] is a finction defined by [z] € Z and [z] < z < [z] + 1.
The sequence u.,(z), m € Z:

T t1 tm-1
e® [dt; [dta--- [ fltm)dtym, m >0
un(ay = & Ff [ Tltn)
e f=™)(z), m <0

is defined.
By the sequence u,(z) the sequence u, m, n,m € N:

”n,m(m) == ua{-r?) (0),
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is defined, and it is proved that following statements

(3k)(k > pAug 2 # 1 (modp)), for all primes p > 3,
Up-1,2 Z 0 (modp), for all primesp > 3,
Up—2,2 # 0 (modp), for all primes p > 3,
Upy1,2 Zp+ 1 (modp?®), for all primesp >3

are equivalent to K. H.
The sequence

(8) St—tiz 1)% (i>o0), ie.

(9) St o= tSt_l + (—].)t ,fO‘T'Sﬂ =1
is defined by G. V. Milovanovi¢ in [5]. The terms of sequence S5; are Sy =

1,8 =0,8=1,8 =2,58,=19,5; = 44, ... In view of the sequence S;
the function

0 =5 (7 ) 5

is defined and its properties are examined.
Wilson’s Theorem: The necessary and the sufficient condition for a
number p > 2 to be a prime number is for

(11) (p—1)! +1 = 0(modp)

to hold.
V. Kirin, [1], give the generalization of Wilson’s Theorem:

Theorem 1. The necessary and the sufficient condition for a numbern > 2
to be prime is that for every m € N the following holds

(12) (m — 1)l(n — m)! + (=1)™"! = 0 (mod n)

Two proves of this Theorem are given in [6].
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2. Application of generalization of Wilson’s Theorem

The statement (5) can be proved using the Theorem 1. Let p be a prime
number and 'p = ¢ (mod p)

Spp-1)+@E-2)!+ -+ 2411 + 0! = ¢ (modp) |
Sp@-N+@E-D+---+214+11 4+ 0 =t (modp) /2!
e 2p-3)"+1+2((p—4"+ - -+ 21411 +0!) — 1 = 21 (mod)

1
22—+ + 241401 — (F} = 2lt (modp) /3
S3p—-4"'-1+3({—-5"+--214+11+0") — 3+ 1 = 3% (modp)

J
3Mp-5)'+---+21+11 40 - (g:) + (2_:) = 3!t (modp) /4 ‘

< dp—5)+1+4l((p—6)! +-+21+11 40— (4')4-(::) (i:) 41t (mod p)

S 4l((p—6)! + - + 21411 +01) — (;i:) + (f;_:) (i:) = 4t (mod p)

——

(13) B ((p—k—20 +---+00) — (Z:) 4o (=1)FHT (g) = k't (modp)

if in expression (13) we take k = p — 2 we get:

\
\
after k steps we get
\

(p—Z)!(l—%—}-:}l ..._(p_13)!+(p_12)!)E(p—z)!t(modp) |
& (p-2) (1—%+§1—!—---—(p_13)!+(p12)!)E(p—2)!t—t+t(modp) |
@(p—Z)!(l—%+%—---—(p_lg)!+(p_12)!)Et(modp)
1) -2 (1= gt g ot g ) =0 (med ) |
From expansion of the function e~! into series we have

(15) 1—i+1 e it =1l-et+ :

2! @=-3" (-2 -1
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where is e* < 1.
If we substitute expression (15) in (14) we have:

(14) & (p—2)! (1 —e (pi—aUT) =lp (mod p)

Sp—-2) =1+ (p—2)! (—e_l + (pe_ 1)!) + 1 =Ip (modp)

< (p—2)! ((p—e_aly - e_l) +1=lp (modp) / — (p—1)
& —(p—1)! ((p e—"‘l)! - e_l) —p+1=-Ip(p—1) (modp)

(p_iiﬁ +(—1)! e +1=lp (modp)

& —(p-1)!-

—1)
s e =Ip (mod)
e

The Theorem has been proved.

Remark. The majority of results gi{fen in [8] and [9] can be proved using the
above method.

3. The sequence {d,}

Definition 1. The sequence of integers {dn} is defined by the following

recurrent formula:
d; = =T

dy = —(ﬂ- + I)dﬂ,_l -1,
for every natural number n.
The terms of sequence {d,} are d; = —1, dy = 2, d3 = —9,dy =44, ds =
—265, ... Sequence {d, } is the union of two disjuctive sub-sequences, a sub-

sequence whose terms are negative numbers {d} and a sub-sequence whose
terms are positive numbers {d;}}.

In view of (4) and (8) we get that
Yn =5, n=0,1,2,..
The Definition 1 inplies that

Unt1=Sn41 =dpforn=2k, k=1,23,..
Unt1 = Spp1=—dforn=2k—-1, k=1,2,3,...
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Definition 2. dj € {d;{} — (dJ € {dn} /\dj < 0) .
Definition 3. d; € {d}} <= (d; € {da} Ad; >0).

Consequence 1. Seguence {d, } is given by the following recurrent formula:

d; =-1,
d- = (2n—1)(2nd,_; +1},

kL

for every natural number n.

Consequence 2. Sequence {d}} is given by the following recurrent for-

mula:
di =2,

df =2n((2n+1)di_; +1),
for any natural number n.

Theorem 2. For every term of sequence {d,}, it applies:
a) dp+1=0(mod n—1)
b) dn, =0 (mod n)
¢) dn+1=0(mod n+1)

Cosequence 3. For every term of sequence {d;}, it applies:
a) d; +1=0 (mod 2n—2)
b) d; =0 (mod 2n—1)
¢) d; +1=0 (mod 2n)
Theorem 3. For every term of sequence {d,} it applies:
. dit I
& dyel = <|dild+1d2i+1|) =2
by d;<0 = ——(!di|-;?;1[25+1|) =—(i+2)

Consequence 4. For every term of sequence {dn} it applies:

d'i+2 =0 (mod ldzl + ]d@,+1l) v

4. Equivalent to KH

Theorem 4. Let p be a prime number. Then:

!p = fdp—Q (mOdp) ’
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where d,_o € {d,}.
Proof.

+=2+(p-3)+ - +21 411+ 0! =lp (modp)
T+ =4+ +2‘+1'+0‘—'p(modp)/@ 2) =-2
=2 -9+ +(-2)1 + (p — 2)0! =lp (—2!) (modp)

4i>(10“2)?+(p—2)(1¢J*3)(1?—5)!+---+(13—2)(10‘3)1!+(p—2)(10—3)01
= 3+1p(3!) (mod p)
Sp-20p-3)E—5++{@-2)(p—-3)1!+(p—2)(p—3)0!
= 2+!p(3!) (modp)/(p—4) = -4

S@=2)p-(p-4)2'+ (-2 -@E-4U+(P-2)---(p— (p—
=dys+lp ((p—4)) (modp)/( —(-3)=-(p-3)

S(p—2)! + @‘22)! + 22)' = —(p — 3)dp_s+!p (= (p — 3)!)(mod p)

SO DL BB 5, s Lt (— (o 3)) (modp)

=(p—2)' = —(p—3)dp—s — 1+!p (—(p — 3)!) (modp)
Sdy_stlp(—(p—3)1) = (p — 2)! (modyp)
©dyq —1=lp(p—3)! (modp)/ — (p—2)
Sdp—3 — 1 =lp(~(p - 2)!) (modp)/ — (p—1)
Sdy_s =lp(p— 1)! (modp)
< —dp_z =lp (mod p) .
Definition 4. The sequence of integers {d,} is defined by the following

recurrent formula:
] = 0

On+1 = _(n + 2)0'71 —dp,
for every natural number n and d,, € {d,}.
The terms of sequence {an} are a; = 0,a3 = 1,43 = —6,a4 = 39, ....

Theorem 5. For any term of sequence {dn} if applies:

dj-2 =t (mod j) = djrp = (=1)%5(k+ 1)1 (t + 1) + jag + di (mod j2)

|

1

i

p—4)+-- (p 2)11 + (p —2)0! = —1+!p (—2!) (modp)/(p — 3) =

-3

4))0!
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for any integer t and any natural number k, j > 2.

Proof. Let d;_s =t (modj) [ —J

Sdj_=-—jt—1 (mod3j?) | — (5 +1)

& —(j+1)dj_1 — 1= (=it — )(=( +1)) = 1 (mod 3?)

& d;=(jt+1)(G+1) =1 (modj?)

& dj=j(t+1) (modj®) /—(j+2)

= —(j +2)d; — 1= j(t +1)(—(j +2)) — 1 (mod j°) w
= djp1 = —205(t +1) + 0j + (=1) (modj?) /- (G +3) |
= —(j +3)dj41 — 1= (j +3)20j(t +1) + j + 3 — 1 (mod 5°)
= djyp =31t +1) +1j + 2 (modj?) /—(G+4)

= djr3 = 415t +1) + (—6)j + (—9) (mod5?) / — (5 +5) ‘
= djyq = 515(t + 1) + 395 + 44 (modj*) [ —(j +6)

@—jdj_gflf—jt—l (modjz)
|
\
|
|

= djye = (=1)*5(k + DIt + 1) + jog, + di (mod ).

Consequence 5. For any term of sequence {d,} and natural number r,j >
245 :
djﬁg — d.,-j_g (modj)

Proof. Based on Definition 4 and Theorem 5 taking for £k = j — 1, k
27 —1,..,k = (r — 1) — 1, it is obtained in sequence d;_o = da;—2
dgj_g =0 e BT d-r-j_Q (modj)

(I

5. The generalization of problem

Let p be a prime number. We denote
Ne(p)=(p-2)'+@—-4)!+(p—6!+---+31+1!

Palp)=p—-N+@-3)+p@p-5)+ - +4+2140!
In view of the definition of the left factoriel the equality

'p = Ne(p) + Pa(p) .
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If Ne(p) = 0 (modp) and Pa(p) = 0(modp), then !p = 0(modp). Does
the coverse statement hold ? i.e. if Ip = 0 (modp), does equalities Ne(p) =
0 (modp) and Pa(p) = 0 (modp) hold ?

Let us define two sequences {f,} and {g,}. The sequence {f,} is given

by the following recurrent formula:

fi=-1
frt1 = (20— 1)2nf, —

The terms of sequence {f,} are fi = —1, fa = =3, fa = =37, fu = —1111, ...
The sequence {g,} is given by the following recurrent formula:

=1
On+1 = (2‘]’1 -+ 1)2ngn -

The terms of sequence {gn} are g1 =1, g2 = 7, g3 = 141, g4 = 5923, ...

In the same way as it done to prove (5), we derive

Theorem 6.  For all a prime number p is

G252 = Ne(p) (modp) A fes = —Pa(p) (modp).
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