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Summary 

Neutrophils are indispensable antagonists of microbial infection and facilitators of wound 

healing. In the cancer setting, a newfound appreciation for neutrophils has come into view. 

The traditionally held belief that neutrophils are inert bystanders is being challenged by 

recent literature. Emerging evidence indicates that tumors manipulate neutrophils, 

sometimes early in their differentiation process, to create diverse phenotypic and functional 

polarization states able to alter tumor behavior. In this Review, we discuss the involvement of 

neutrophils in cancer initiation and progression, and their potential as clinical biomarkers and 

therapeutic targets. 
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The name neutrophil – given to polymorphonuclear, granulocytic cells by Paul Ehrlich in the 

late 19th century – is based on the inability of these cells to retain acidic or basic dyes and 

for their preferential uptake of pH neutral dyes1. Although their neutral staining led to the 

identification of these cells, neutrophils in the cancer setting are anything but neutral. 

Neutrophils in tumor-bearing hosts can oppose or potentiate cancer progression. These two 

types of behavior are controlled by signals emanating from cancer cells or stromal cells 

within the tumor microenvironment, which educate neutrophils to execute the demise of the 

tumor or facilitate support networks that lead to its expansive spread. These functions can 

occur locally in or around the tumor microenvironment, as well as systemically in distant 

organs.  

Until the past few years, other immune cells such as macrophages have 

overshadowed the role of neutrophils in cancer. But recent studies and the development of 

new genetic tools have provided the cancer community with new insights into the profound 

influence of these dynamic cells by uncovering distinct capabilities for neutrophils throughout 

each step of carcinogenesis: from tumor initiation to primary tumor growth to metastasis. 

During these processes, neutrophils take on different phenotypes and sometimes opposing 

functions. Emerging evidence also indicates that these cells are highly influential, and are 

able to change the behavior of other tumor-associated cell types – primarily other immune 

cells. In this Review, we focus on how tumors manipulate the generation and release of 

neutrophils from the bone marrow. We discuss the mechanisms identified in animal models 

by which neutrophils participate in tumor initiation, growth and metastasis. Finally, we 

highlight the potential of these cells as clinical biomarkers and therapeutic targets. 

 

Neutrophil origins and life cycle: homeostasis versus cancer [Au: subheading too 

long, please shorten to <39 characters; possibly ‘Homeostasis versus cancer’ would 

work?] 

In humans, neutrophils are the most abundant immune cell population, representing 50-70% 

of all leukocytes. Over 1011 neutrophils may be produced per day2, and tumors can increase 

this number by even more. Indeed, patients with various cancer types, including but not 

limited to breast, lung and colorectal cancer, often exhibit increased numbers of circulating 

neutrophils3,4. Recent studies have identified key pathways that tumors exploit to disrupt 

normal neutrophil homeostasis and these are discussed below. 

 

Granulopoiesis 

To accommodate for the notably high production and turnover of neutrophils, the bone 

marrow devotes about two-thirds of its space to the formation of neutrophils and monocytes 

Comment [SC1]: I don’t like 
“Homeostasis versus cancer” The 
reader has no idea what we are 
referring to until they read the 
subheading “Granulopoiesis.” What 
about “Neutrophil origins and life 
cycle”? 
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in steady-state conditions5. During granulopoiesis, neutrophils arise from lymphoid/myeloid-

primed progenitors (LMPPs)6, which are derived from hematopoietic stem cells (Figure 1). 

LMPPs further differentiate into granulocyte/monocyte myeloid progenitors (GMPs) and 

many transcription factors required for this process have been identified (reviewed in 5,7,8). 

Neutrophil maturation then begins, as GMPs differentiate through the following sequence: 

myeloblast, promyelocyte, myelocyte, metamyelocyte, banded neutrophil and, finally, a 

segmented neutrophil (reviewed in 5,9-11). The transition from myeloblast to promyelocyte is 

marked by the first appearance of primary granules. Secondary and tertiary granules form 

sequentially during the myelocyte to metamyelocyte and band cell to segmented cell stage, 

respectively5,12. These granules compartmentalize an arsenal of defensive factors and 

enzymes, such as myeloperoxidase, elastase, defensins, cathelicidins and matrix 

metalloproteinases (MMPs), that protect against opportunistic infections and mediate the 

resolution of inflammation (reviewed in 12,13). If large numbers of neutrophils are used up 

during infection or cancer, a process called emergency granulopoiesis overtakes steady 

state granulopoiesis to rapidly increase neutrophil formation11. In tumor-bearing mice and 

humans with pancreatic or colon cancer (and most likely other tumor types), the spleen is an 

alternative source of neutrophil production14. 

 Granulocyte-colony stimulating factor (G-CSF) is the master regulator of neutrophil 

generation and differentiation15-17. G-CSF acts at the level of myeloid progenitors to induce 

their proliferation and differentiation. Its receptor, G-CSFR, is expressed throughout the 

myeloid lineage from early stem and progenitor cells to fully differentiated neutrophils18,19, 

and G-CSFR-STAT3 (signal transducer and activator of transcription 3) signaling governs 

neutrophil formation20. The transcription factor RAR-related orphan receptor γ1 (RORC1) is a 

recently identified regulator of myelopoiesis in tumor-bearing mice and its expression may be 

induced by G-CSF21. However, G-CSF is not absolutely required for granulopoiesis, as other 

molecules – such as granulocyte-macrophage-colony stimulating factor (GM-CSF), 

interleukin 6 (IL-6) and KIT ligand (KITL) – can play a redundant, but lesser role22-24. Tumors 

in many mouse models of cancer upregulate these cytokines, causing overactive 

granulopoiesis and neutrophilia25-31.  

 

Neutrophil retention and release from bone marrow 

One feature of granulocytes that sets them apart from every other immune cell is their 

release from the bone marrow as terminally differentiated, mature cells. Circulating mature 

neutrophils account for only 1-2% of all neutrophils throughout the body under homeostatic 

conditions32. Mature cells are retained in the bone morrow by an interplay between two C-X-

C chemokine receptors, CXCR4 and CXCR2. Constitutive CXCL12 expression by 
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osteoblasts and other bone marrow stromal cells tether CXCR4+ neutrophils in the bone 

marrow, whereas secretion of CXCL1 and CXCL2 by endothelial cells and megakaryocytes 

encourage the release of neutrophils into the circulation via CXCR2 signaling33-38 (Figure 1). 

Several adhesion molecules, such as integrin subunit α4 (ITGA4) and vascular cell adhesion 

molecule 1 (VCAM1), as well as some proteases are also important in neutrophil retention39-

41. In addition to its positive influence on granulopoiesis, G-CSF is a well-known disruptor of 

neutrophil retention42. G-CSF pressures the bone marrow to release neutrophils through 

thrombopoietin (TPO)-induced upregulation of CXCR2 ligands on megakaryocytes38, 

reduction of CXCL12 expression by bone marrow stromal cells43,44 and downregulation of 

CXCR4 on neutrophils themselves45.  

Outside the bone marrow, a cascade of other cell types and cytokines, involving IL-

23-expressing phagocytes and IL-17-producing lymphocytes, tightly regulates the production 

of G-CSF so that neutrophil numbers are maintained in the circulation. In this feedback 

mechanism, macrophages and dendritic cells phagocytose apoptotic neutrophils47-49, curbing 

the secretion of IL-2346 – a cytokine that controls IL-17 expression by αβ T cells, γδ T cells, 

innate lymphoid cells and other lymphocytes50,51. Because IL-17 is upstream of G-CSF52,53, 

lower levels of IL-17 equate to reduced expression of G-CSF and steady-state release of 

neutrophils from the bone marrow46. Commensal bacteria and enterocyte-derived CXCL5 in 

the gut also play a role in neutrophil homeostasis by increasing or inhibiting IL-17 production, 

respectively54,55. IL-1β that is released from dying cells or upregulated in response to 

inflammatory stimuli is another potent inducer of the IL-17-G-CSF axis56,57. 

Many of the molecules that control neutrophil release from the bone marrow are 

frequently upregulated in tumors or systemically as a result of a tumor25-28,58. These factors 

override retention signals in the bone marrow, facilitating neutrophil egress and elevated 

numbers of circulating neutrophils (Figure 2). Cancer cells themselves produce these 

cytokines27,28,58, but stromal and immune cells can also contribute to their elevated 

expression in tumor-bearing mice. For example, tumor-associated macrophages are a well-

known source of IL-1β59. Recently, we showed that neutrophils expand in mammary tumor-

bearing K14-Cre;Cdh1F/F;Trp53F/F mice because of increased macrophage-derived IL-1β 

stimulation of the IL-17-G-CSF axis26. Ectopic overexpression of IL-1β in tumors derived from 

cancer cell lines or a genetically engineered gastric cancer model also increases the number 

of circulating neutrophils60-63. As such, aberrant production of cytokines by tumors or stromal 

cells can offset the balance of neutrophil retention and release from the bone marrow. 

 The pressure on the bone marrow to release neutrophils can often be so intense in 

tumor-bearing hosts that undifferentiated cells are set free prematurely. Nuclear staining of 

circulating neutrophils from mammary and lung tumor models has revealed the existence of 
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ring-like, banded and segmented nuclei26,64-66. We and others recently reported that a 

proportion of these cells express KIT26,31, a marker of lymphoid, myeloid and neutrophil 

progenitor cells25,67, suggesting that these KIT-expressing cells are most likely meta-

myelocytes and/or banded neutrophils67. Circulating neutrophils from breast, lung and 

colorectal cancer patients also show a similar mix of differently shaped nuclei64,68. However, 

the consequence of immature neutrophils in the bloodstream of tumor-bearing hosts is not 

entirely understood. Interestingly, immature neutrophils and neutrophil progenitor cells – 

some of which express KIT – are found in mouse models and patients with inflammation69-73. 

These KIT+ cells differentiate into fully mature neutrophils in situ at sites of Staphylococcus 

aureus infection70,74. Thus, it is tempting to speculate that differentiation at inflammatory sites 

or tumors primes immature neutrophils for functions they would not ordinarily perform.  

The ectopic appearance of immature neutrophils in the circulation may have profound 

consequences on tumor progression. An example of this was shown in mice with chemically 

induced cancer crossed with histamine-deficient mice, where the lack of histamine stalled 

differentiation of immature neutrophils and increased tumor incidence and growth75. These 

data suggest that immature cells have independent functions from mature neutrophils. 

Indeed, the phenotype and behavior of mature, aged neutrophils is not the same as young, 

newly released circulating neutrophils, even in tumor-free mice76. One explanation for the 

difference between immature and mature neutrophil function may be their distinctive 

composition of granules, because granules are synthesized at specific stages of neutrophil 

development12 (Figure 1). Recent studies using density gradient purification methods have 

shown that distinct populations of neutrophils with different ex vivo properties can circulate 

within the same tumor-bearing mouse and individual cancer patients64. Whether these 

populations are truly committed to divergent cell fates or represent cells at assorted stages of 

maturation remains undetermined. 

 

Neutrophil lifespan 

One reason neutrophils have received less attention than other immune cells in the cancer 

arena is the commonly held belief that neutrophil lifespan is too short to influence cancer 

progression. The current paradigm is that circulating neutrophils have a half-life of around 7 

hours in healthy humans2,77 and 8-10 hours in mice78. However, there are an equal number 

of reports challenging these kinetics as too short or too long (reviewed in 79). The 

discrepancy between these studies lies mainly in limits of the methodology and neutrophil 

labeling techniques currently available, and therefore the lifespan of neutrophils in tumor-

bearing hosts is unclear. Animal experiments in calves and mice have shown that a small 

pool of non-circulating neutrophils can survive in tissue for several days80,81. Neutrophils are 
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also retained longer in tumors than in the spleen82, suggesting that the tumor 

microenvironment encourages their survival both locally and systemically. Indeed, pioneering 

work from Mantovani and his colleagues in the 1990s showed that many tumor-associated 

cytokines prolong neutrophil survival in culture83. In line with this, there is evidence that the 

half-life of circulating neutrophils is extended in cancer patients to 17 hours84, which may be 

the result of pro-survival signaling by G-CSF20. A longer life may give neutrophils more time 

to synthesize new molecules and perform additional effector functions during tumor 

progression. 

 

Tumor-induced neutrophil polarization and activation 

One major theme that has emerged from the cancer field is that not all neutrophils are equal. 

Neutrophil polarization leads to divergent phenotypes, depending on specific tumor-derived 

factors. Transforming growth factor β (TGFβ), G-CSF and interferon β (IFNβ) are the most 

well-studied molecules in this process. TGFβ and G-CSF activate a tumor- and metastasis-

promoting program25,27,65,85-88, by regulating the transcription factors inhibitor of DNA 1 (ID1), 

retinoblastoma 1 (RB1) and interferon regulatory factor 8 (IRF8) that control the 

immunosuppressive functions of neutrophils25,87,89,90. IFNβ acts as a negative regulator of the 

pro-tumorigenic phenotype of neutrophils91,92. Cytokine concentration and tumor physiology 

(such as hypoxia) may also be important for neutrophil polarization, because cytotoxic 

neutrophils are shaped into cancer-promoting cells as tumors expand and evolve93. It is 

currently unclear at which differentiation step these molecules instruct phenotypic changes in 

neutrophils. For G-CSF, there is evidence that this cytokine can affect gene expression in 

stem or progenitor cells and fully differentiated cells as G-CSFR is expressed throughout 

neutrophil development18,19. These data suggest that neutrophil polarization is programmed 

early in the developmental process in the bone marrow, but when and where individual 

molecules shape neutrophil polarization needs further attention. Understanding the influence 

of the cytokines discussed here, as well as others, will provide more insights into how 

neutrophil activation goes hand in hand with granulopoiesis. 

Neutrophil polarization states have been divided into ‘N1’ or ‘N2’ categories to mirror 

the Th1/Th2 and M1/M2 nomenclature of T cells and macrophages, respectively65. The study 

introducing the N1/N2 nomenclature noted a difference in neutrophil polarization after 

treating mice bearing subcutaneous mesothelioma tumors with a TGFβ inhibitor. Neutrophils 

in untreated mice supported tumor growth through inhibition of CD8+ T cells, whereas 

neutrophils from TGFβ inhibitor-treated mice opposed tumor growth through their cytotoxic 

ability65. However, knowledge surrounding N1- and N2-polarized neutrophils has not 

progressed much beyond this original study. Their surface markers, cytokine expression 
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patterns, transcription factor regulators and other hallmarks of activation are largely unknown. 

In non-cancerous disease models driven by type 1 or type 2 immunity, the role of neutrophils 

in the disease phenotype is not well understood. It is unclear whether neutrophils respond to 

type 1-associated cytokines (i.e. IFNγ) or type 2-associated cytokines (i.e. IL-4 and IL-13) or 

whether neutrophils produce these cytokines to affect disease phenotype. Although some 

studies addressing these issues are emerging94,95, the lack of concrete evidence in mice or 

humans raises the question of whether the N1/N2 terminology can be applied to cancer-

associated neutrophils. 

The study proposing the N1/N2 terminology characterized N1 neutrophils by a 

hypersegmented nucleus and N2 neutrophils by banded or ring-like nuclei65. Because 

nuclear morphology is a hallmark of neutrophil differentiation10, it is unclear whether the so-

called N2 neutrophils are just immature cells or represent a distinct polarized state, leaving 

the relationship between polarization and maturation unresolved. Nevertheless, the binary 

N1/N2 classification system is most likely an oversimplification of neutrophil polarization for 

the same arguments that have been given against using ‘M1’ and ‘M2’ to describe tumor-

associated macrophages96-98. Similarly to macrophages, neutrophil polarization probably 

exists as a spectrum of activation states, rather than only two extremes. We suggest that 

researchers should follow the recent advances in the macrophage field and apply a 

combinatorial nomenclature that describes neutrophil activation status99. 

A further complication to the picture of neutrophil subtypes is the ongoing debate on 

the kinship of neutrophils and myeloid-derived suppressor cells (MDSCs), and it is currently 

unclear whether these are analogous or separate populations (Box 1). 

 

Neutrophils and tumor initiation 

Over the past two decades, it has become apparent that mutations in normal cells are 

required but not sufficient for tumorigenesis. Inflammation plays an essential role in initiating 

tumorigenesis by damaging specific tissues100, and neutrophils are a critical component of 

this process. Inflammation-induced models of cancer initiated by chemical carcinogens, such 

as the dimethylbenz[a]anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) skin 

cancer model and the azoxymethane (AOM)/dextran sodium sulphate (DSS) colitis-

associated colon cancer model, have established the importance of neutrophils in tumor 

initiation (Figure 3). In these models, neutrophils are attracted to tumor-prone tissues via the 

CXCR2 ligands, CXCL1, CXCL2 and CXCL5101-104. Application of these carcinogens to 

CXCR2-deficient mice, which show impaired neutrophil trafficking, prevents papilloma or 

adenoma formation102,104. Similarly, CXCR2 ligands are increased in several genetically 

engineered mouse models, including the intestinal adenoma ApcMin/+ model, the invasive 
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intestinal adenocarcinoma Ah-CreER;ApcF/+;PtenF/F model and the spontaneous oral 

papilloma K14-CreER;KrasG12D/+ model. In these models, CXCR2 deficiency or inhibition 

retards tumor formation102. However, it should be noted that CXCR2 expression is not 

exclusive to neutrophils. Depletion of the entire neutrophil population using anti-Ly6G 

antibodies phenocopies CXCR2 deficiency and hinders tumorigenesis in both chemically 

induced101,102 and spontaneous tumor models102. In a zebrafish model of HrasG12V-driven 

melanoma, wounding-induced inflammation increases the formation of tumors in a 

neutrophil-dependent manner105. Thus, neutrophils can provide a causal link between 

inflammation and cancer. 

Tumors in various mouse models of KRAS-driven lung cancer – such as Cc10-

Cre;KrasG12D (also known as Ccsp-Cre;KrasG12D), Adeno-Cre;KrasG12D and KrasLA1 models – 

upregulate neutrophil-related chemokines and display expansion of neutrophils90,106-109 

(Figure 2). These phenotypes may be a result of direct upregulation of neutrophil-related 

cytokines like GM-CSF and CXCL8 by KRAS signaling29,30,110. The IL-17-G-CSF axis is 

responsible for expanding neutrophils in at least some of these KRAS models108, but whether 

these cytokines are regulated by KRAS is unknown. As in the chemical-induced colon and 

skin cancer models, depletion of neutrophils or inhibition of CXCR2 signaling reduces the 

number of pulmonary tumors in these KRAS models108,109,111, indicating their dependence on 

neutrophils. The association between KRAS and neutrophils is even stronger in humans and 

mice exposed to cigarette smoke. Cigarette carcinogens cause specific activating mutations 

in KRAS112,113 as well as inflammation and neutrophil accumulation114. These data raise the 

question of whether every KRAS-driven tumor type requires neutrophils for initiation and 

whether KRAS orchestrates their polarization.  

How neutrophils foster tumorigenesis is not completely understood. Neutrophil-

derived elastase and the immunosuppressive ability of neutrophils have both been implicated 

in tumor initiation108,111,115, but the exact mechanisms need further elucidation. Neutrophil 

production of reactive oxygen and reactive nitrogen species (ROS and RNS) and angiogenic 

factors such as MMP9116 may also be important for tumor initiation (Figure 3). In future work, 

genetically engineered mouse tumor models will be extremely valuable in this area of cancer-

related neutrophil biology, as they allow neutrophils and neutrophil-derived factors to be 

manipulated as tumors arise de novo. 

 

Neutrophils and tumor growth 

Early studies on neutrophil function during tumor growth set the stage for the ongoing 

discussion over when and how neutrophils can be anti-tumorigenic or pro-tumorigenic. More 

than two decades ago, it was shown that neutrophils can mediate tumor rejection of 

transplanted G-CSF-producing colon cancer cells into mice117. A few years later, an opposing 
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tumor-promoting role was uncovered when mice bearing transplantable tumors that were 

depleted of neutrophils via anti-Gr1 antibody showed reduced tumor growth118,119. 

Since then, the literature showing a tumor growth-promoting role for neutrophils in 

vivo has largely outweighed the studies showing an opposite effect. One mechanism 

neutrophils employ to promote tumor growth is the induction of angiogenesis (Figure 3), and 

neutrophil depletion decreased tumor growth and microvessel density in both transplantable 

and spontaneous tumor models65,85,91,120-123. Blocking CXCR2 signaling or transplanting 

cancer cell lines into CXCR2-deficient mice recapitulated these effects58,124,125. In other 

studies, co-injection of cancer cell lines with neutrophils isolated from tumor-bearing mice 

increased tumor growth and angiogenesis126, underscoring their ability to perpetuate 

proliferation. Several mitogenic and pro-angiogenic molecules have been implicated in 

neutrophil-driven tumor growth including elastase, prokineticin 2 (PROK2, also known as 

BV8) and MMP9115,120,126-129. Immunosuppression – through amino acid depletion or specific 

cytokine release – is another predominant mechanism neutrophils use to facilitate tumor 

progression130. Data from other disease models indicate that neutrophils are important 

players in directing adaptive immune responses (reviewed in 131), but apart from their effects 

on cytotoxic T lymphocytes, many of the underlying mechanisms by which this is achieved 

are unknown in cancer. More recently, a new pro-tumorigenic function of neutrophils 

emerged showing that these cells counteract senescence via IL-1RA to promote prostate 

cancer progression in a PTEN-deficient autochthonous model132.  

 Even though the literature on anti-tumorigenic neutrophils is less abundant, there 

have been some intriguing new data in this area. For example, neutrophils in mice with 

transplanted MMTV-PyMT;MMTV-cMyc mammary tumors hindered tumor growth133, 

presumably through their cytotoxic effects mediated by H2O2. Neutrophil specific-deletion of 

MET, the hepatocyte growth factor (HGF) receptor, impaired recruitment of neutrophils to 

tumors and led to enhanced tumor growth of various transplantable cell lines and in a 

spontaneous liver cancer model134. Expression of MET in neutrophils was upregulated by 

endothelial cell- and cancer cell-derived tumour necrosis factor (TNF) in this study134; 

whereas others have shown that TNF signaling in CD4+ T cells led to increased IL-17 levels 

and neutrophil accumulation in ovarian tumor-associated ascites121. These data suggest that 

the control of neutrophil behavior by TNF is context dependent. Notably, there are 

contradictory results regarding neutrophil function using the same transplantable cell lines. 

Some studies reported a pro-tumorigenic role of neutrophils, whereas other studies reported 

no effects in the 4T1 mammary85,133 and the Lewis lung cancer (LLC)134,135 models. The 

timing of neutrophil depletion experiments may be critical for the interpretation of these data, 

as neutrophil function evolves from anti-tumoral to pro-tumoral in mice bearing transplantable 

cancer cell lines93. Antibody-dependent cellular cytotoxicity (ADCC) is another mechanism 
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neutrophils can use to kill cancer cells after antibody therapy (reviewed in 136). It remains to 

be seen whether ADCC occurs in vivo without exogenous antibodies, as cancer-induced 

endogenous antibodies are known to activate pro-tumoral programs in myeloid cells via Fc 

receptors137,138. Taken together, more research emphasis should be put on determining the 

context in which neutrophil behavior is modulated.  

 Several studies demonstrated the importance of neutrophils in tumor progression by 

blocking neutrophil recruitment to tumors, usually via CXCR2 inhibition. For instance, 

prostate cancer cells in Probasin-Cre4;PtenF/F;Smad4F/F mice upregulated CXCL5 via the 

Hippo-YAP1 pathway and blocking YAP1 or CXCR2 decreased immunosuppressive 

neutrophil recruitment to tumors and blunted tumor proliferation139. Less attention has been 

directed at understanding whether these recruitment factors are also important for neutrophil 

effector functions. In a de novo model of endometrial adenocarcinoma, progesterone 

receptor (Pgr)-Cre;PtenF/F mice, blockade of neutrophil recruitment by genetic deletion of G-

CSFR or CXCR2 increased uterine tumor burden140. Hypoxia-induced CXCL1, -2 and -5 

recruited neutrophils, and these cells impeded tumor growth by promoting cancer cell 

detachment from the basement membrane via modulation of integrins. Interestingly, 

neutrophils deficient in MyD88 signaling maintained their trafficking ability, but lost their anti-

tumorigenic functions140. These data suggest that CXCR2 ligands regulate neutrophil 

recruitment, not function. Future work should focus on whether the same is true for every 

tumor type and whether neutrophil-recruiting molecules can be uncoupled from neutrophil-

activating molecules. 

 

Tumor metastasis 

Most neutrophil-centered studies published in the cancer field over recent years pertain 

specifically to metastasis. Neutrophils actively participate in different steps of the metastatic 

cascade: cancer cell escape from the primary tumor, intravasation into the blood and/or the 

lymphatic vascular system, survival in circulation, extravasation into distant organs and 

outgrowth of metastases (Figure 4). As early as the late 1980s – before the importance of 

neutrophils in primary tumor growth was established117-119 – co-injection of cancer cells and 

neutrophils from tumor-bearing rodents intravenously was shown to increase experimental 

lung metastases141,142. Although these studies substantiated the pro-metastatic ability of 

neutrophils, this research area is surrounded by controversy, as opposing roles for 

neutrophils exist in the literature and often within the same model system.  

 

The pro-metastatic role of neutrophils 

A large body of literature indicates that neutrophils are most important during the early steps 

of the metastatic cascade. Enhanced retention of human melanoma cells in lungs can be 
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seen as early as 24 hours after co-injection with neutrophils into nude mice143. In 

experimental lung or liver metastasis models where cancer cell lines are injected into the 

circulation or spleen, respectively, systemic depletion of neutrophils (via anti-Gr1 antibodies) 

reduces the formation of metastases144,145. Intravital imaging has shown that cancer cells co-

localize with endothelial cell-associated neutrophils in a CD11b-dependent manner144, 

suggesting that neutrophils guide cancer cells into tissues and/or retain them there rather 

than supporting the outgrowth of secondary tumors. Neutrophils use neutrophil extracellular 

traps (NETs) for this purpose to sequester circulating cancer cells in a mesh of nucleic acids, 

antimicrobial factors and enzymes, and to promote adhesion at distant organ sites146. In vitro, 

NETs also stimulate cancer cell migration and invasion146. 

Experimental metastasis models bypass several initial steps of the metastatic 

cascade, including exit from the primary tumor, intravasation and priming of the pre-

metastatic niche. Spontaneous models of metastasis indicate that neutrophils are important 

for intravasation and formation of the pre-metastatic niche. As mentioned above, neutrophils 

are potent effectors of angiogenesis147, providing cancer cells with more routes of escape. 

Neutrophils can also direct cancer cells towards endothelial cells to promote intravasation 

into the circulation. For example, melanomas in Hgf-Cdk4R24C mice exposed to ultraviolet 

(UV) light showed cancer cell clustering around blood vessels and increased lung metastasis 

but no effects on primary tumor growth148. In this setting, UV-induced damage to 

keratinocytes increased the levels of high mobility group box 1 (HMGB1), which recruits 

TLR4+ neutrophils to primary tumors. These neutrophils then facilitate cancer cell 

angiotropism and metastasis. In vitro, neutrophil-derived TNF stimulates the migration of 

melanoma cells, suggesting that TNF is at least one factor that neutrophils produce in vivo to 

initiate metastasis148. The same study found that ulcerated melanomas and the 

accompanying neutrophilic influx in patients are associated with greater melanoma-

endothelial cell interactions and higher metastatic incidence. These data are supported by 

another study showing a strong correlation between neutrophil infiltration and the extent of 

ulceration105. Taken together, these studies indicate that neutrophils initiate interactions 

between cancer cells and endothelial cells in the vicinity of the primary tumor 

microenvironment to expedite metastasis. 

An interesting consequence of tumor expansion at the primary site is the 

accumulation of neutrophils in visceral organs before the arrival of disseminated cancer 

cells25,26,28,133,149-152, in what has been termed the pre-metastatic niche153. This accumulation 

of neutrophils in distant organs is highly reminiscent of the swarming behavior of neutrophils 

that occurs after injury, which is stimulated by neutrophil-derived leukotriene B4 (LTB4), a 

lipid by-product of the arachidonate 5-lipoxygenase (ALOX5) enzyme154. Recent data 

showed that LTB4 production by neutrophils in the pre-metastatic niche supports LTB4 
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receptor+ metastasis-initiating cells in the MMTV-PyMT mouse model, and that inhibition of 

ALOX5 reduces pulmonary metastasis without affecting primary tumor growth152. But why do 

these neutrophils accumulate in pre-metastatic organs? In tumor-bearing mice, primary 

tumors release factors that systemically condition distant sites for future metastases. 

Neutrophil accumulation at distant sites is G-CSF-dependent in some tumor models25,26,28,152; 

however, the original studies characterizing CD11b+ myeloid cell recruitment to the pre-

metastatic niche implicated vascular endothelial growth factor A (VEGFA), TNF and 

TGFβ153,155.  

Some or all of these tumor-derived factors may also dictate whether neutrophils 

promote metastasis at distant locations. Indeed, the genetic loss of TGFβR2 or TGFβ 

signaling blockade in neutrophils decreased lung metastasis in the 4T1 mammary tumor 

model86,88. Interestingly, the TGFβ-induced immunosuppressive function of neutrophils 

occurs through an autocrine loop that is activated by regulatory B cells (Breg cells)88. G-CSF 

is another factor that drives a pro-metastatic phenotype in neutrophils, and G-CSF 

presumably stems directly from cancer cells in the 4T1 model27,28. G-CSF induces 

PROK2/BV8 expression in neutrophils26,156, which may induce cancer cell migration or 

vascular leakiness to support metastasis28,128,129. We recently identified another mechanism 

whereby G-CSF modulates neutrophil phenotypes and pro-metastatic functions26. In this 

mechanism, a systemic inflammatory cascade involving the secretion of IL-1β by mammary 

tumor-associated macrophages leads to IL-17 expression by γδ T cells and subsequently 

raises systemic G-CSF levels. G-CSF then stimulates neutrophil expansion and converts 

neutrophils into immunosuppressive cells that block the anti-tumor functions of CD8+ T cells, 

allowing disseminated cancer cells to evade immune detection26. Thus, both cancer cells and 

immune cells can educate the pro-metastatic abilities of neutrophils. 

Neutrophil precursors are found ectopically in organs where metastases commonly 

occur. In the K14-Cre;Cdh1F/F;Trp53F/F mouse breast cancer model, we noted that a 

proportion of neutrophils in various tissues express KIT and display a mixed nuclear 

morphology26. Others have identified KIT-expressing cells in the pre-metastatic niche28,153,157. 

Antagonizing KIT signaling or inhibition of KIT ligand (KITL) expression by cancer cells 

prevents pulmonary metastasis formation in the 4T1 model31, suggesting a pro-metastatic 

role for KIT+ neutrophils. In addition, C-C chemokine ligand 9 (CCL9)-CCR1 signaling 

mediates colon cancer metastasis through recruitment of immature myeloid cells and mature 

neutrophils158,159. These data indicate that the release of neutrophil precursors from the bone 

marrow supports metastatic progression. 

 

The anti-metastatic role of neutrophils 
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In stark contrast to the studies above that described a metastasis-promoting role for 

neutrophils, others have shown that depletion of neutrophils increases metastasis133,160. The 

H2O2-mediated cytotoxic behavior of these anti-metastatic neutrophils is controlled by 

CCL2133. However, G-CSF still controls the transcriptional activity and expansion of 

neutrophils26-28. Controversially, these studies used the 4T1 mammary tumor cell line to show 

an anti-metastatic role133, whereas other laboratories have used the same cell line to 

demonstrate a pro-metastatic role of neutrophils28,88,150. So, how can different studies of 

neutrophils produce contradictory results using the same cell line? The timing of neutrophil 

depletion experiments may be critical, as neutrophils isolated from early-stage tumors exhibit 

different behavior than neutrophils from late-stage tumors93,161. Another possibility may be 

that the cell lines used by independent labs are not actually the same at all. It is well known 

that in vitro culture places a selection bias on cancer cells, making them more prone to 

genetic drift162. As a result, the ‘same’ cell lines may diverge in the cytokines they produce. 

Likewise, the introduction of ectopic transgenes, such as luciferase or green fluorescent 

protein (GFP), may skew the secretome, immunogenicity or behavior of these cells. 

Microbiome differences between experimental animal cohorts may also influence neutrophil 

behavior in conflicting ways. Indeed, neutrophil ageing is controlled by the microbiota in 

tumor-free mice76. 

In addition to their production of H2O2
133,160, neutrophils can also limit the formation of 

metastases through their expression of thrombospondin 1 (TSP1)163 and MET134 in 

experimental metastasis models. However, pro-metastatic neutrophils deactivate TSP1 by 

elastase- and cathepsin G-mediated degradation after degranulation in lung tissue, and 

inactivation of TSP1 contributes to metastasis formation164. Interestingly, TSP1 can be 

induced in neutrophils by a peptide derived from prosaposin, a precursor of sphingolipid 

activator proteins, and treatment of MDA-231-LM2 mammary tumor-bearing mice with this 

peptide reduced spontaneous formation of pulmonary metastases without affecting primary 

tumor growth163. These data provide proof of principle that the pro-metastatic behavior of 

neutrophils can be switched in vivo, and could open up possible avenues of therapeutic 

intervention. 

 

Clinical implications 

Neutrophils as biomarkers in cancer patients 

Although experimental studies have highlighted multifaceted and sometimes opposing roles 

of neutrophils in cancer, the bulk of clinical evidence assessing neutrophil to lymphocyte 

ratios (NLRs) mostly supports the notion that neutrophils promote, rather than inhibit, cancer 

progression3. The NLR has thus been proposed to be an attractive biomarker for risk 

stratification of patients with cancer and to guide treatment decisions. NLRs can easily and 
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cost effectively be determined using standard blood analyses. That said, at the level of 

individual patients, it might be challenging to translate a given NLR into a personalized 

prognosis or treatment plan due to the large variability in neutrophil levels between healthy 

individuals165. In addition, the variation in the reported NLR cutoff points used to allocate 

patients to high or low risk cohorts complicates the use of a single NLR determination for 

patient diagnostics and treatment.  

To maximize the clinical utility of systemic neutrophil scores, it may be more 

informative to perform longitudinal measurements of NLR in individual patients. A rise in 

neutrophil counts and/or NLR over time may indicate disease recurrence or progression, and 

a drop in these values after initiation of therapy may indicate a good response. Thus far, a 

limited number of studies have attempted this approach. For example, in colorectal cancer 

patients, surgical removal of the primary tumor reduces the NLR in a proportion of patients, 

and a post-surgical low NLR is associated with improved survival166. Patients who have 

metastatic renal cell carcinoma with a low pre-treatment NLR that is maintained during 

treatment with tyrosine kinase or mTOR inhibitors experience a more favorable outcome167. It 

will be interesting to assess whether parallel scoring of patient serum levels of neutrophil-

activating and polarizing soluble mediators, including IL-1β, IL-17, G-CSF, GM-CSF and/or 

TGFβ, increases the prognostic or predictive power of NLR measures. 

In comparison to NLR, the prognostic and predictive power of intratumoral neutrophils 

is murkier and more variable, and positive (gastric168), negative (renal169, melanoma170) or no 

(lung171) correlation with patient outcome has been observed in different studies. Colorectal 

cancer is one example where controversy surrounds the potential role of intratumoral 

neutrophils172,173. The markers used to identify tumor-associated neutrophils (such as CD66b, 

myeloperoxidase and cell morphology by haematoxylin and eosin staining) may explain 

these discrepancies, as expression of these markers in neutrophils may vary in different 

tumor microenvironments. NLR is more reliable in this way because blood neutrophils are 

easily separated from other immune cells by flow cytometry. Employing combinatorial 

markers in tumor sections based on neutrophil polarization may provide some clarity. In fact, 

combinatorial approaches involving assessment of the expression of multiple neutrophil-

related genes have been recently applied to data sets from thousands of patients with cancer. 

Two independent studies found that the enrichment of neutrophil-associated genes 

correlates with poor prognosis when encompassing all solid tumor types4,140. Thus, moving 

beyond single markers may be necessary to accurately determine whether the numbers of 

intratumoral neutrophils has prognostic or predictive power.  

 

Neutrophils as therapeutic targets in cancer patients 
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Neutrophils and their associated soluble mediators not only serve as prognostic and/or 

predictive biomarkers in cancer patients, but the versatile functions of neutrophils in cancer 

biology may also represent therapeutic targets. A relatively straightforward approach to 

target neutrophils in cancer types in which they are detrimental is via inhibition of their 

trafficking or activation. Importantly, the cancer field can take advantage of neutrophil-

targeting agents that are being developed for the treatment of inflammatory and autoimmune 

diseases. For example, ongoing clinical trials with a CXCR2 antagonist in patients with 

chronic obstructive pulmonary disease have shown that treatment results in decreased 

absolute neutrophil counts, reduced inflammatory biomarkers and reduced disease 

symptoms174. The first clinical trials with reparixin, a CXCR1 and 2 inhibitor175, are ongoing in 

cancer patients176,177. Importantly, characterization of neutrophil polarization in different tumor 

types as well as at early and late stages is urgently needed in order to maximize the utility of 

therapeutic modalities. In tumors in which neutrophils are beneficial, such as early stage lung 

cancer161, strategies to magnify their anti-tumor abilities should be explored. 

Another neutrophil-associated pathway under intense investigation is the IL-23-IL-17 

axis (reviewed in 51). The US Food and Drug Administration (FDA) approved antagonists 

targeting IL-12p40 (a subunit of IL-23) in 2009 and IL-17 in 2015 for the treatment of 

psoriasis, and these agents substantially improve quality of life in people with this disease. It 

would be interesting to investigate whether these already existing drugs are efficacious in 

cancer patients because pre-clinical models and clinical samples indicate that this pathway is 

important for cancer progression26,68. Therapeutic strategies aimed at re-polarizing tumor-

induced neutrophils or interfering with their downstream pro-tumorigenic effects could offer 

additional opportunities for intervention65,152. 

 

Combining neutrophil targeting with other anti-cancer therapies 

Successful implementation of neutrophil-targeting approaches in the clinic will require a 

critical assessment of the most optimal combination therapy strategies. In this regard, we can 

learn from the growing number of mechanistic studies performed in clinically relevant mouse 

tumor models that have addressed the impact of neutrophils on the efficacy of anti-cancer 

therapies. As mentioned above, neutrophils are important mediators of angiogenesis, so 

perhaps it is no surprise that neutrophils induce refractoriness of experimental tumors to anti- 

VEGFA therapy in an IL-17- and G-CSF-dependent fashion178-180. These data suggest that 

simultaneous inhibition of neutrophils and anti-angiogenic therapy might be an effective anti-

cancer strategy. Indeed, therapeutic synergy is observed when anti-VEGFA therapy is 

combined with depletion of neutrophils via anti-Gr1 or anti-G-CSF antibodies179,181. 

Chemotherapy is another combination partner for neutrophil-targeting therapeutics; 

however, many types of chemotherapy negatively affect neutrophil production themselves. 
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Interestingly, chemotherapy-induced neutropenia is associated with improved survival in 

patients with non-small cell lung, breast, gastric or colorectal cancer182-185. This beneficial 

association may be explained by two reasons, one of which is neutrophil-independent and 

the other neutrophil-dependent. Because neutropenia is a surrogate marker of chemotherapy 

efficacy, lack of neutropenia in patients may indicate insufficient dosing and inadequate 

tumor killing. Alternatively, the patient survival benefit of chemotherapy-induced neutropenia 

may arise from reducing the neutrophils that counteract the efficacy of chemotherapy. A 

growing number of experimental studies have attempted to design strategic combination 

therapies, and some studies reported a beneficial role for neutrophils in chemotherapy 

responses, whereas others indicated that neutrophils counteract the anti-cancer efficacy of 

chemotherapy (recently reviewed in 186). For example, depletion of Gr1+ myeloid cells or 

Ly6G+ neutrophils reduced the anti-cancer efficacy of cyclophosphamide and doxorubicin in 

tumor inoculation models187,188. These data contrast to the improved tumor inhibition 

achieved by combining CXCR2 blockade with doxorubicin, cyclophosphamide or docetaxel in 

xenograft and de novo tumorigenesis mouse models58,132. Moreover, some 

chemotherapeutics, such as gemcitabine and 5-fluorouracil, directly reduce the viability 

and/or change the functionality of myeloid cells, which then influences the anti-cancer 

efficacy of these drugs. These drugs trigger IL-1β secretion from immunosuppressive 

monocytes and neutrophils, setting off a chain of inflammatory events that resulted in a 

reduced efficacy of chemotherapy on subcutaneous EL4 thymomas in mice189. 

Another unresolved issue is the clinical benefits and risks of using recombinant G-

CSF and GM-CSF to counteract chemotherapy-induced neutropenia. Neutropenia 

predisposes patients to life-threatening infections, therefore recombinant G-CSF or GM-CSF 

is commonly prescribed to counteract reduced neutrophil numbers brought on by 

chemotherapy and to lessen therapy-induced mortality190,191. However, experimental studies 

indicate that G-CSF polarizes neutrophils towards a pro-tumorigenic phenotype and 

promotes metastasis formation25-28,87. Two experimental studies examining tumor growth 

after combining chemotherapy with G-CSF neutralization reported contradictory results28,192, 

leaving the debate open. Therefore, it is critical to carefully assess whether the beneficial 

effect of G-CSF in reducing susceptibility to infections outweighs its potential risk of 

accelerating disease progression in cancer patients. 

Contrasting data also exist about the function of neutrophils in radiotherapy 

responses. Whereas anti-Ly6G antibody-mediated neutrophil depletion improves the efficacy 

of radiotherapy in a subcutaneous colon cancer model193, antibody-mediated depletion of 

Gr1+ cells does not alter radiotherapy responses of xenografted prostate cancer cells194. 

Taken together, the diverse and sometimes contradictory roles of neutrophils in anti-cancer 
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therapy responses may reflect differences in tumor type, tumor model, immune status of the 

host and mechanism of tumor killing by a particular anti-cancer therapy. 

A promising therapeutic avenue is the combination of T cell checkpoint inhibitor 

immunotherapy with neutrophil manipulation195. Despite the success of immune checkpoint 

blockade, disease progression remains unabated in a significant proportion of treated 

patients196. Relieving neutrophil-induced immunosuppression may be one way to improve 

immunotherapy. Indeed, experimental studies have shown that anti-programmed cell death 

protein 1 (PD1) or anti-PD1 and anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA4) 

synergizes with anti-CXCR2 or anti-Ly6G, respectively, to delay tumor growth197,198. These 

studies support the concept that combining cancer immunotherapies with neutrophil 

suppression may increase therapeutic benefit. 

In addition to T cell-based immunotherapies, macrophage inhibitors such as anti-

colony stimulating factor 1 receptor (CSF1R) are also gaining traction in the clinic199. Data 

from a genetically engineered skin cancer model and transplantable mammary tumor models 

indicate that neutrophil infiltration into tumors and their systemic expansion is increased 

following macrophage blockade via CSF1R or CCR2 signaling200,201. Given the tight interplay 

between neutrophils and macrophages131, neutrophils may be expected to promote 

resistance to macrophage-targeting therapies. In fact, neutrophils have been shown to 

mediate resistance to the anti-angiogenic drug sorafenib after macrophages are blocked in 

the RIP1-Tag2 pancreatic and MMTV-PyMT mammary tumor mouse models202. Thus, 

targeting one myeloid cell population may require additional targeting of another myeloid cell 

population to counteract therapeutic resistance. 

 

Conclusion and perspectives 

The influential role of neutrophils on cancer biology and their potential as therapeutic targets 

are now widely recognized. Recent data have shed light on this underappreciated cell type, 

while at the same time, dispelling the myth of neutrophil neutrality. Currently, the complex 

roles of neutrophils in cancer not only include their ability to promote or prevent tumor 

progression, but also encompass various polarization states. Each of these realizations 

opens up new opportunities for therapeutic intervention. A recurring theme from recent 

literature that may help in the design of novel neutrophil-targeting, anti-cancer therapies is 

the crosstalk between neutrophils and other immune cell populations (Table 1). Interestingly, 

several of these communication networks mirror the same pathways in other disease 

models94,203, suggesting that neutrophil-related inhibitors designed for specific inflammatory 

conditions may also be useful in cancer patients.  

To gain a better understanding of these pathways and to discover new ones, 

sophisticated animal models that allow selective neutrophil manipulation are desperately 
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needed. Neutrophils die quickly during ex vivo culture limiting the utility of this technique; 

therefore, neutrophil biology is best studied in vivo. Researchers commonly use two 

antibodies to deplete neutrophils, anti-Gr1 and anti-Ly6G, but these invaluable tools are far 

from foolproof. Anti-Gr1 also affects inflammatory monocytes and other Ly6C-expressing 

cells204, and neutrophils quickly reappear after antibody depletion in tumor-bearing mice205. 

Recently, a mouse model based on Ly6g-driven Cre recombinase was developed, the 

Catchup mouse, which includes a fluorescent reporter allowing the function of mature 

neutrophils to be monitored via in vivo imaging206. One value of this model stems from its 

ability to specifically delete neutrophil-derived molecules at later stages of these cells’ 

differentiation. We predict that this model and others like it will provide valuable information 

about the involvement of neutrophils and their molecular products in tumor initiation, growth 

and metastasis. These models may also generate novel findings in other less-studied areas 

of neutrophil biology, including the metabolic processes that occur during their tumor-related 

functions. For the unresolved issues – such as the relationship between neutrophil 

polarization and maturation, as well as neutrophils versus granulocytic or polymorphonuclear 

(G/PMN)-MDSCs  – single cell sequencing or single cell fate-mapping reporter tools should 

be coupled with identification of nuclear morphology and surface marker expression to better 

define the differences between activated neutrophils and immature cells. Together, these 

new methodologies are destined to provide novel insights into the not-so-neutral behavior of 

neutrophils in cancer and other diseases. 
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Box 1: Neutrophils and MDSCs 

Myeloid-derived suppressor cells (MDSCs) is a name assigned to a group of myeloid cells 

that suppress immune responses and express CD11b and Gr1 (reviewed in 130,207). The 

appearance of MDSCs is a consequence of a pathological condition, such as cancer, 

infection and inflammation, driven by the aberrant expression of cytokines. These cells are 

rarely, if ever, found in homeostatic conditions. MDSCs encompass many immune cells at 

various stages of differentiation because of the non-specific nature of the Gr1 antibody used 

to identify them (clone RB6-8C5). Gr1 binds two antigens, Ly6C and Ly6G, which identify two 

major cellular subsets in tumor-bearing mice: CD11b+Gr1high cells referred to as granulocytic 

or polymorphonuclear (G/PMN)-MDSCs and CD11b+Gr1low monocytic (M)-MDSCs. These 

two populations are more accurately recognized by the use of specific Ly6G (clone 1A8) and 

Ly6C antibodies: CD11b+Ly6G+Ly6Clow neutrophils and CD11b+Ly6G—Ly6C+ monocytes. 

Because G/PMN-MDSCs and neutrophils share a common set of markers and are 

morphologically identical, there is a great deal of controversy and confusion surrounding the 

relationship between these cells. There is currently no way to uniquely identify one cell type 

from the other, so the question of whether neutrophils and G/PMN-MDSCs are distinct 

populations remains unanswered. Immaturity is often attributed to G/PMN-MDSCs as a 

feature that distinguishes them from fully differentiated neutrophils130,207. However, Gr1 and 

Ly6G recognize both mature and immature cells, so it is not technically possible to separate 

neutrophils from their precursors based on these markers. The assumption that all 

CD11b+Gr1+ cells in tumor-bearing mice are MDSCs should be avoided because not all 

CD11b+Gr1+ cells are immunosuppressive in tumor-bearing mice138,208. Thus, data in the 

literature need to be interpreted with caution. 

In our view, the MDSC nomenclature is self-limiting. Assigning a name to a cell or 

group of cells based on one function such as immunosuppression implies that G/PMN-

MDSCs predominately exist for one purpose or are incapable of performing any other activity. 

Myeloid cells are extremely dynamic and adaptable cells that carry out many different 
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functions simultaneously. In fact, neutrophils can be both pro-angiogenic and 

immunosuppressive178. This reality is often overlooked, because individual studies often 

focus on one particular functional aspect of a cell population while other functions remain 

untested. Therefore, we suggest that the use of the restrictive term MDSCs be reevaluated, 

and until convincing evidence is generated that distinguishes neutrophils from G/PMN-

MDSCs, we consider G/PMN-MDSCs as neutrophils with immune suppressive capabilities. 

 

 

Figure legends 

Figure 1: Granulopoiesis during homeostasis. Neutrophil development in the bone 

marrow starts in the stem cell niche. A self-renewing long-term hematopoietic stem cell (LT-

HSC) differentiates into a short-term hematopoietic stem cell (ST-HSC) and subsequently a 

multipotent progenitor (MPP) that has lost its self-renewing capacity. MPPs give rise to 

lymphoid/myeloid-primed progenitors (LMPPs). LMPPs differentiate into 

granulocyte/monocyte progenitors (GMPs), which in turn give rise to granulocytes5,6,19. When 

GMPs commit to neutrophil generation under the direction of granulocyte-colony stimulating 

factor (G-CSF) or granulocyte-macrophage-colony stimulating factor (GM-CSF), myeloblasts 

differentiate from a promyelocyte, a myelocyte and a metamyelocyte into a band cell, and 

finally, into a mature, hypersegmented neutrophil10. During its differentiation, the developing 

neutrophil changes its nuclear morphology from a round shape to a banded morphology into 

a segmented shape. Developing neutrophils express G-CSFR throughout the myeloid 

lineage18. As neutrophils mature, they downregulate expression of various receptors, 

including KIT, VLA4 (also known as integrin β1) and C-X-C chemokine receptor 4 (CXCR4), 

while upregulating CXCR2 and Toll-like receptor 4 (TLR4). Under steady state conditions, 

ligands for KIT, VLA4 and CXCR4 (such as KITL, vascular cell adhesion molecule 1 

(VCAM1) and CXCL12, respectively) are produced by the bone marrow stroma to retain the 

progenitor cells. Ligands for CXCR2, including CXCL1, -2, -5, and -8 (in humans only) are 

expressed outside the bone marrow when neutrophils need to be mobilized34,37,41. 

Neutrophils have three types of granules and other secretory vesicles that contain specific 

effector proteins – of which a selection is shown here – and these emerge during distinct 

developmental stages. Primary (azurophil) granules appear during the myeloblast to 

promyelocyte stage, secondary (specific) granules appear during the myelocyte to 

metamyelocyte stage, tertiary (gelatinase) granules appear during the band cell to 

segmented cell stage of development, and secretory vesicles appear only in mature 

neutrophils. A variety of transcription factors regulate commitment to the neutrophil lineage 

and subsequent developmental stages5,7,8. A selected list of these transcription factors and 
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their expression levels during maturation are shown at the bottom of the figure. Under 

homeostatic conditions, only fully differentiated neutrophils exit the bone marrow into the 

circulation. CR1, complement receptor type 1; IRF8; interferon regulatory factor 8; MMP9, 

matrix metalloproteinase 9; MPO, myeloperoxidase; NE, neutrophil elastase; STAT3, signal 

transducer and activator of transcription 3.  

 

Figure 2: Tumor-induced emergency granulopoiesis. Tumors affect both the 

development and the release of bone marrow neutrophils. Tumor-induced increases in the 

levels of granulocyte-colony stimulating factor (G-CSF) and granulocyte-macrophage-colony 

stimulating factor (GM-CSF) skew hematopoiesis towards a myeloid cell production, greatly 

increasing the generation of granulocyte/monocyte progenitors (GMPs) and neutrophil 

progenitors25-29,58. In addition, tumors interfere with neutrophil retention in the bone marrow 

by upregulating various cytokines and chemokines. The composition of these mediators 

depends on the tumor type, mutations and oxygen levels in the tumor. The expression of KIT 

ligand (KITL) and the C-X-C chemokine receptor 2 (CXCR2) ligands CXCL1, 2 and 5 by 

cancer cells increases in response to hypoxia31,140. KRAS signaling, as well as loss of PTEN 

or SMAD4, in cancer cells increases expression of GM-CSF and several ligands of CXCR2, 

including CXCL1, 2, 5 and 830,106,109,110,139. In addition, cancer cells either directly or indirectly 

– through interleukin (IL)-1² -producing macrophages and IL-17-producing ³ ´  T cells – 

produce G-CSF25,26. Neutrophil-derived BV8 also induces neutrophil expansion128,129. This 

pressure on the bone marrow emanating from the tumor causes increased generation and 

release of immature (from GMP to banded cells) and mature neutrophils into the 

circulation26,64-66. ECM, extracellular matrix; LMPP, lymphoid/myeloid-primed progenitor; LT-

HSC, long-term haematopoietic stem cell; MPP, multipotent progenitor; ST-HSC, short-term 

haematopoietic stem cell. 

 

Figure 3: Neutrophil function in tumor initiation and growth. There are several 

mechanisms by which neutrophils either promote or limit tumorigenesis. Transformation of an 

epithelial cell to a cancer cell can be supported by the production of reactive oxygen species 

(ROS) or reactive nitrogen species (RNS) and proteases by neutrophils. These molecules 

induce epithelial damage and subsequent tumor-promoting inflammation. Epithelial damage 

by wounding also recruits neutrophils by prostaglandin E2 (PGE2) to promote tumor 

initiation105. Promotion of tumor growth can also be mediated by crosstalk between 

neutrophils that are activated by tumour necrosis factor (TNF)-induced interleukin (IL)-17-

producing CD4+ T cells121. In addition to tumor initiation, neutrophils promote progression of 

tumor growth by converting senescent cancer cells into proliferating cancer cells via IL-1 

receptor antagonist (IL-1RA)132. Proliferation is directly stimulated by transfer of neutrophil 
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elastase (NE) to cancer cells, which causes the degradation of insulin receptor substrate 1 

(IRS1) and activates PI3K signaling115. Neutrophils express inducible nitric oxide synthase 

(iNOS) or arginase 1 (ARG1) to suppress CD8+ T cell-mediated anti-tumor immune 

responses and promote tumor progression. Immunosuppression can also be accomplished 

by transforming growth factor β (TGF² ) signaling in neutrophils65,88. In some contexts 

neutrophils can also limit tumor growth. Hypoxia in the tumor induces expression of C-X-C 

ligands (CXCL)1, -2 and -5 to recruit anti-tumor neutrophils140. Upregulation of MET on 

neutrophils by endothelial-derived TNF causes these cells to produce iNOS, which has 

cytotoxic effects on cancer cells134. Lastly, neutrophils participate in remodeling of the 

extracellular matrix (ECM) and induce angiogenesis by BV8 production and activation of 

vascular endothelial growth factor A (VEGFA) by matrix metalloproteinase 9 (MMP9)116,120,126-

129.  

 

Figure 4: Impact of neutrophils on the metastatic cascade. Neutrophils influence several 

steps of metastasis. In melanoma, ultraviolet (UV) radiation causes release of high mobility 

group box 1 (HMGB1) from keratinocytes, which recruits neutrophils through Toll-like 

receptor 4 (TLR4) signaling. These neutrophils induce migration of cancer cells towards 

endothelial cells by tumour necrosis factor (TNF), leading to enhanced metastasis148. In 

mammary tumors, interleukin (IL)-1β-expressing macrophages instigate IL-17-producing ³ ´  T 

cells, resulting in a granulocyte-colony stimulating factor (G-CSF)-dependent systemic 

expansion of neutrophils. At the metastatic site, these neutrophils limit anti-tumor CD8+ T cell 

responses by producing inducible nitric oxide synthase (iNOS)26. In addition, regulatory B 

(Breg) cells instruct neutrophils to limit T and NK cell responses to the metastatic lesion88. 

Neutrophils can support leukotriene B4 (LTB4) receptor-positive metastasis-initiating cancer 

cells by producing LTB4 at the metastatic site152. Neutrophils also capture circulating cancer 

cells by direct interactions using the cell surface molecule CD11b or by releasing neutrophil 

extracellular traps (NETs), which are associated with increased formation of metastases144,146. 

Neutrophils may also induce leaky vasculature to support extravasation of disseminated 

cancer cells by expression of matrix metalloproteinase 9 (MMP9) and BV8128,129. BV8 is also 

directly involved in cancer cell migration and the recruitment of neutrophils28,128,129. Anti-

metastatic functions of neutrophils are mediated by H2O2 or thrombospondin 1 (TSP1), but 

the latter is degraded by neutrophil elastase (NE) and cathepsin G (CG) during 

inflammation133,160,163,164. ALOX5, arachidonate 5-lipoxygenase; ECM, extracellular matrix; 

TGFβ, transforming growth factor β. 

 

Table 1. Bidirectional communication between neutrophils and other immune cells in 

homeostasis and cancer 
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Factor(s) Source Responder Outcome Reference 

CXCL1, 2, 5, 8 Megakaryocyte 

Endothelial cell 

Cancer cell 

Neutrophil Neutrophil release 

from bone marrow in 

homeostasis and 

cancer; recruitment to 

tumors 

34,37,38,58,101,1

02,104,109-

111,139,140 

G-CSF Fibroblast 

Cancer cell 

Neutrophil Granulopoiesis in 

homeostasis and 

cancer; neutrophil 

polarization and 

immunosuppression 

15-17,25-

28,57,87,133,152,

156,178 

GM-CSF Cancer cell Neutrophil 

Monocyte 

Granulopoiesis in 

homeostasis and 

cancer; neutrophil 

polarization and 

immunosuppression 

24,29,30 

IL-1β Macrophage 

Dendritic cell 

CD4+ T cell 

γδ T cell 

IL-17 and G-CSF-

mediated 

granulopoiesis in 

homeostasis and 

cancer 

26,56,57,59-63 

IL-17 CD4+ T cell 

γδ T cell 

Fibroblast 

Bone marrow 

stromal cells 

G-CSF-mediated 

granulopoiesis in 

homeostasis and 

cancer 

26,46,48,57,121 

IL-23 Macrophage 

Dendritic cell 

CD4+ T cell 

γδ T cell 

IL-17 and G-CSF-

mediated 

granulopoiesis in 

homeostasis and 

cancer 

46 

iNOS, ARG1 Neutrophil T cells Suppression of anti- 26,130 
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Monocyte NK cell 

 

tumor immunity 

TGFβ Neutrophil 

Breg 

T cells 

NK cell 

Neutrophil 

Immunosuppression 

in tumor 

microenvironment 

and metastasis 

25,65,85,86,88 

TNF Endothelial cell 

Cancer cell 

CD4 T cell 

Neutrophil 

Endothelial cell 

IL-17 and G-CSF-

mediated 

granulopoiesis in 

homeostasis; 

neutrophil recruitment 

to tumors; MET 

upregulation in 

neutrophils 

57,121,134,148 

TPO Unknown Megakaryocyte 

 

CXCR2 ligand-

dependent release of 

neutrophils from bone 

marrow in 

homeostasis 

38 

[ARG1, arginase 1; CXCL, C-X-C ligand; G-CSF, granulocyte-colony stimulating factor; GM-

CSF, granulocyte-macrophage-colony stimulating factor; IL, interleukin; iNOS, inducible nitric 

oxide synthase; TGFβ, transforming growth factor β; TNF, tumour necrosis factor; TPO, 

thrombopoietin] 

 

Glossary 

 

αβ T cells 

Most CD4+ and CD8+ T cells are αβ T cells, in which the T cell receptor (TCR) is composed 

of a heterodimer of an α and a β chain. 

 

 γδ T cells 

A small subset of T cells whose TCR consists of a γ and a δ chain. These cells behave like 

innate immune cells and are largely divided into IL-17- and IFNγ-producing subsets. 
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Innate lymphoid cells 

Innate immune cells that belong to the lymphoid lineage, but lack antigen-specific receptors.  

 

Neutrophil polarization 

A state of neutrophil activation in response to specific cues from its environment, which can 

promote or limit disease progression.  

 

Th1/Th2 

Two major activation states of CD4+ T-helper cells expressing distinct cytokines and exerting 

different functions. In general, Th1 cells provide immunity against intracellular pathogens, 

whereas Th2 cells mediate immune responses against extracellular parasites. 

 

M1/M2 

Term for macrophage polarization states, where M1 and M2 represent opposing ends of the 

macrophage activation spectrum. Historically, M1 represents an anti-tumor activation state, 

whereas M2 macrophages are pro-tumoral; although, this restrictive nomenclature fails to 

represent tumor-associated macrophage biology.  

 

N1/N2 

Proposed binary classification to distinguish tumor-inhibiting (N1) from tumor-promoting (N2) 

neutrophils in the cancer setting. However, further evidence to define these polarization 

states and their relation to type 1/2 immunity is required before applying this terminology to 

cancer-associated neutrophils. 

 

Myeloid-derived suppressor cells  

A heterogeneous group of immunosuppressive myeloid cells including neutrophils that 

expand in cancer patients and mouse cancer models.  

 

Autochthonous model 

Models of cancer in which tumors arise spontaneously from genetic manipulation or injection 

of a carcinogen. 

 

Neutrophil extracellular traps 

Extracellular neutrophil-derived networks of DNA, fibers and various proteins such as 

elastase and histones. Release of NETs (NETosis) occurs in response to pathogen infection, 

sterile inflammation and cancer.  
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Pre-metastatic niche 

A microenvironment in secondary organs primed by the primary tumor that is populated by 

non-cancer cells that promote seeding of metastasizing cancer cells.  

 

Regulatory B cells 

A subpopulation of immunosuppressive B cells involved in immunological tolerance.  

 

Secretome 

The total secreted factors of a cell or tissue.  

 

 

 

 

 

 

Key points  

 

• In patients with solid cancers, neutrophils expand both in the tumor microenvironment 

and systemically, and are generally associated with a poor prognosis. 

• Genetically engineered mouse models for cancer have been crucial in identifying 

underlying mechanisms by which neutrophils influence tumor initiation, growth and 

metastasis.  

• Neutrophils exert multifaceted and sometimes opposing roles during cancer initiation, 

growth and dissemination  

• Primary tumors activate granulopoiesis in the bone marrow and actively stimulate the 

release and recruitment of both mature neutrophils and their progenitors. 

• Depending on the spectrum and quantity of soluble mediators produced by cancer 

cells and cancer-associated cells, neutrophils can be polarized into different 

activation states by which they elicit various pro- or anti-tumor functions.  

• Interactions between neutrophils and other (immune) cells are key in exerting their 

function, and the interaction networks observed in cancer are often highly reminiscent 

of those seen in other immunological diseases.  

• Neutrophils modulate the efficacy of cancer therapies, and can also serve as 

biomarkers for progression and therapy response in cancer patients.  



 41 

• Now that there is a growing understanding of the impact of neutrophils on cancer, the 

mechanisms by which neutrophils promote cancer progression may be utilized as 

targets to maximize the efficacy of anti-cancer therapeutics.  
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