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Abstract 

Under certain conditions, learning can transfer from a trained task to an untrained version 

of that same task. However, it is as yet unclear what those certain conditions are or why learning 

transfers when it does. Coordinated rhythmic movement is a valuable model system for 

investigating transfer because we have a model of the underlying task dynamic that includes 

perceptual coupling between the limbs being coordinated. The model predicts that (1) 

coordinated rhythmic movements, both bimanual and unimanual, are organized with respect to 

relative motion information for relative phase in the coupling function, (2) unimanual is less 

stable than bimanual coordination because the coupling is uni- rather than bi- directional, and (3) 

learning a new coordination is primarily about learning to perceive and use the relevant 

information which, with equal perceptual improvement due to training, yields equal transfer of 

learning from bimanual to unimanual coordination and visa versa (but, given prediction (2), the 

resulting performance is also conditioned by the intrinsic stability of each task). In the present 

study, two groups were trained to produce 90° either unimanually or bimanually, respectively, 

and tested in respect to learning (namely, improved performance in the trained 90° coordination 

task and improved visual discrimination of 90°) and transfer of learning (to the other, untrained 

90° coordination task). Both groups improved in the task condition in which they were trained 

and in their ability to visually discriminate 90° and this learning transferred to the untrained 

condition. When scaled by the relative intrinsic stability of each task, transfer levels were found 

to be equal. The results are discussed in the context of the perception-action approach to learning 

and performance.  

 

Keywords: bimanual coordination; motor learning; transfer of learning  
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1. Introduction 

The acquisition of skilled performance generally depends on practice; more practice leads 

to better performance. Also, there seems to be a high level of specificity in that performance is 

usually best when tested under the same conditions that were present during learning (e.g., 

Newell, Shapiro, and Carlton, 1979; Proteau, Marteniuk, and Le ́vesque, 1992). At the same 

time, there is abundant evidence that the perception/action system is flexibly organized so that 

many actions can be skilfully executed despite changes in test conditions or modifications of the 

task. A good example of this comes from handwriting. Merton (1972) showed that the shape and 

form of a person’s signature is largely preserved across changes in the effector system used to 

produce the signature, an extension of the original use of handwriting by Bernstein (1967) to 

demonstrate ‘motor equivalence’. In line with this, one of the most prominent theories 

concerning human motor control, Schema theory (Schmidt, 1975), used generality as its basis.  

This apparent discrepancy between specificity and generality is vexing. How can learning 

be both specific and general? A number of solutions have been proposed (as seen in Keetch et al. 

2005) dating back to Thorndike (1913) who theorized that it is the number of “identical 

elements” between two tasks that dictates the degree of transfer. According to this, learning is 

specific if the number of elements is low and, learning is general (i.e. learning transfers) if the 

number is high. The difficulty lies in the ability to predict specificity or generality, i.e. how can 

one know (in advance) if learning will transfer to another task? Part of the problem comes from 

finding a suitable definition of a task. In their review of the topic, Schmidt and Young (1987) 

noted the lack of a principled way to identify whether two movements are examples of different 

tasks or class of actions. The problem is generally solved post-hoc; when (positive) transfer of 

learning occurs, the two movements are characterized as examples of the same task, while no 
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transfer is interpreted to mean that they were different tasks. Solving this problem for prediction, 

rather than retro-diction, requires a way to formally define the structure of the perception-action 

system assembled to perform a given action. Task-dynamics was formulated as a means for 

doing this (e.g. Beek and Bingham 1989; Bingham, 1988; 1995; Bingham, Schmidt, Turvey and 

Rosenblum 1991; Kugler and Turvey 1987; Saltzman and Kelso 1987; Simko and Cummins 

2010; Warren 2006). When the task-dynamic is well specified, then it is possible to make and 

test predictions derived from the hypothesised mechanism about how learning should transfer.  

Coordinated rhythmic movement is a standard model perception-action task for studying 

performance and learning, and the task dynamic has been modelled explicitly as a perception-

action system with terms in the equations representing the perceptual information and action 

control variables involved (Bingham 2001, 2004a, b, Snapp-Childs et al. 2011). The model 

predicted results both from movement studies (e.g. Kay, Kelso, Saltzman and Schöner 1987; 

Kay, Saltzman and Kelso 1991; Kelso 1984; Schmidt, Carello and Turvey 1990) and from 

perceptual judgment studies that had investigated both vision (Bingham, Schmidt and Zaal 1999; 

Bingham, Schmidt, Shull and Collins 2001; Collins and Bingham 2001; Zaal, Bingham and 

Schmidt 2000) and proprioception (Wilson, Craig and Bingham 2003). It is this model that 

motivated the current study because it generates predictions about how learning one version of 

this task should generalise to another version.  

The basic phenomena of the rhythmic movement coordination task are well-known: people 

can typically only produce two coordination patterns stably, 0° mean relative phase (in which the 

limbs oscillate so as to do the same thing at the same time) and 180° (in which the limbs 

alternate). In addition, 180° is less stable than 0°; when the required movement frequency is 

increased to make the task harder, people transition from 180° to 0° at around 3Hz (for bimanual 
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coordination) but not vice versa. Without training, other coordination patterns (such as the 

intermediate 90° phase) are unstable with a reliable tendency to transition to 0° (Kelso 1984; 

Kelso et al. 1986; Kelso et al. 1987). However, people can learn to produce initially unstable 

patterns either with feedback driven training (e.g. Wilson et al. 2010b) or with transformed 

feedback displays which simplify the task (e.g. Kovacs et al. 2009a, b; Zanone and Kelso 1992a, 

1992b, 1997). Studies on the learning of novel coordination patterns also found transfer. 

Learning transfers to untrained and previously unstable coordination patterns (e.g. Kelso and 

Zanone 2002), that are highly specific to the trained pattern. Improvement only transfers to the 

symmetry partners of the trained pattern. For example, improvement at 90° only transfers to 270° 

and improvement at 135° only transfers to 225° (Zanone and Kelso 1997). Furthermore, the 

stability of the intrinsically stable coordination patterns (that is, 0° and 180°) or other novel 

patterns is not affected.  

The original Bingham model (2001, 2004a, b) was not explicitly set up to handle learning. 

However, the perception-action theory it instantiates can explain the pattern of transfer to 

symmetry partners. The model is based on the premise that information guides the assembly of 

the movement patterns and the execution of actions. The model predicts that the system 

producing coordinated rhythmic movements is organised with respect to the information for 

relative phase, rather than relative phase per se. Learning a novel coordinated rhythmic 

movement is therefore primarily about learning to use appropriate perceptual information 

(Wilson et al. 2010a) and the consequences of learning are constrained by the nature of this 

information. Wilson and Bingham (2008) demonstrated that learning to visually perceive 90° 

entails learning to use new information, either position or position plus velocity. That work also 

demonstrated that the information used to produce 0° or 180° coordination is relative direction, 
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not position (or position plus velocity). The information used to produce a learned 90° 

coordination and (for example) a 180° coordination is different, and so learning fails to transfer 

between these relative phases (Wilson, Snapp-Childs and Bingham 2010).  

As far as relative direction is concerned, however, a coordinated rhythmic movement 

pattern and its symmetry partner are identical states with the only difference being which 

oscillator is leading the other. The same is true for moving at 90° with one trained arm-leg 

combination versus another untrained combination. In each of these cases, the information is the 

same and, thus to a large extent, learning one of these actions is learning the other. Training thus 

‘transfers’. Information is thus the key factor that shapes learning and transfer of learning, and 

transfer only occurs when the information that was learned is the same in both the trained and the 

transfer task. A similar idea was described by Langley and Zelaznik (1984) in terms of learning 

essential versus non-essential variables. However, they did not specify a way to identify which 

were which ahead of time, and our analysis points specifically to information as the essential 

variable. 

An intuition of how information might shape transfer comes from Wilson et al. (2010a) 

who trained participants to become expert perceivers of 90° mean relative phase. This improved 

visual discrimination of 90° then allowed stable movement at 90°, without any training on the 

movement task. We did not interpret these results as reflecting ‘transfer between a perceptual 

and a motor task’. Instead, we argued that both the perceptual judgment and movement tasks 

required access to the same information and the training provided this common access. 

Nevertheless, the result following the perceptual learning reflected a type of transfer between 

tasks, from judgments to performance of actions. The latter entail additional dynamics that 

contribute to a determination of the stability of performance as seen, for example, in the case of 
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unimanual versus bimanual rhythmic coordination tasks. The information is the same but the 

action dynamics are different and thus, the stability.  

In sum, learning to produce stable coordination patterns is largely about learning to detect 

the relevant information. There are multiple ways to facilitate the learning process. Wilson et al. 

(2010b) demonstrated that (augmented or extrinsic) feedback is required to learn 90°. The 

feedback was a visual “hot/cold” signal which activated when the participant was producing 90° 

within a certain range of accuracy. There are, of course, other ways to provide feedback. 

Auditory feedback about the relative positions of the hands or joints has been shown to be 

effective in enabling learning of 90° (de Boer et al. 2013). Another way to provide feedback is 

by using Lissajous figures (for example, see Swinnen, De Pooter and Delrue 1991). Lissajous 

figures are a very powerful tool to enable performance of otherwise difficult tasks (for example, 

see Kovacs et al. 2009a). However, they do not actually enable learning of 90° (again, see 

Kovacs et al. 2009a) unless the presence of the Lissajous figure is faded during the learning 

process (Kovacs and Shea, 2011). Without this fading, people become dependent on the 

augmented feedback, failing to develop perceptual sensitivity to the naturally occurring 

information that can specify a 90° coordination, and thus, are unable to produce the trained 

movements without the Lissajous figure. Our previous work (Wilson et al. 2010a) showed that 

people do not become dependent on the hot/cold feedback signal. Instead, the evidence shows 

that what the feedback does is signal when information specifying 90° coordination (in contrast 

to 0° or 180°) is available and thus, it allows participants to learn to detect the new information.  

Another variation in coordinated rhythmic movements is whether the required movement is 

unimanual or bimanual. Many studies have investigated bimanual coordinated rhythmic 

movements (a single person moving and coordinating two limbs), but it is well known that the 
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pattern of key stability characteristics are preserved when the coordination is between two people 

(e.g. de Rugy et al. 2006; Schmidt et al. 1990; Temprado et al. 2003; Temprado and Laurent, 

2004), or between a person and a computer display (e.g. Wimmers et al. 1992; Buekers et al. 

2000; Wilson et al. 2005a, b, 2010a, b). These latter cases are called visual coordination. A 

single actor is responsible for controlling only one of the oscillators and the two oscillators 

interact or are coupled visually. In the human-computer case, the coupling between the two 

oscillators is uni-directional because the computer does not perceive or react to the human. 

However, the pattern of stabilities and instabilities (that is, the transition phenomena) of the 

bimanual task remain essentially the same. Accordingly, the visual (unimanual) and bimanual 

versions are essentially the same task. However, unimanual coordination with uni-directional 

coupling exhibits weaker stability while preserving the overall patterns of stability. 

Snapp-Childs et al. (2011) modified the Bingham model of bimanual coordination to 

make the coupling unidirectional and then tested the effects of this change. The primary 

consequence was that coordination stability in the model was diminished. Simulations of the 

bimanual model, for example, show that 180° movements remain stable with increases in 

frequency up to ≈3 Hz (matching empirical data, e.g. Kelso 1984; Kelso et al. 1986; Kelso et al. 

1987). Simulations of the unimanual model showed that 180° movements only remained stable 

up to ≈1.5 Hz, again matching the empirical data (Snapp-Childs et al. 2011). Other than this, the 

unimanual model produces all the same coordination phenomena as the bimanual model. The 

coupling function is of the same form and entails the same information (the relative direction of 

motion).  

 As shown by Wilson and Bingham (2008) and Wilson et al (2010), learning to perform 

90° coordination entails the acquisition of the ability to discriminate new and different perceptual 
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information used to produce stable 90° movement. The original Bingham model, in both its 

bimanual and unimanual versions, successfully simulated coordinative movement at 0° and 180° 

and transitions between them. However, the information represented in the coupling function of 

the model has to be changed to model 90° coordination. Bingham and Snapp-Childs (in 

preparation) extended the original Bingham model to account for patterns of performance in the 

learning of 90° coordination. The driver in the original model was a normed velocity. The driver 

in the new model is a normed position.
1
 The models include hypotheses about perceptual 

information variables and the hypothesis in the extended model is that participants learn to 

perform 90° coordination, in part, by learning to perceive the positions of the oscillators, whereas 

the original model hypothesized that the velocities were perceived. Just as in the original model, 

bimanual and unimanual versions entail the same information variables and differ only in 

whether the coupling is bi-directional or uni-directional. 

 The current experiment 

Coordinated rhythmic movements exhibit a pattern of stability that emerges from a 

perception-action task dynamic in which the information for relative phase provides much of the 

structure. Learning a novel coordination pattern entails perceptual learning of new information 

that specifies the coordination and the learning only transfers to a symmetry partner or a novel 

limb combination because the relevant information is the same. In the unimanual and bimanual 

versions of the tasks, the information remains the same (even though the coupling functions are 

uni- and bi-directional, respectively) so these are, therefore, treated as examples of nearly (but 

obviously not entirely) the same task dynamic (Snapp-Childs et al. 2011). Our previous work 

                                                 
1
 The normed forms of these state variables in the dynamics are those appropriate to model visual event perception 

(Bingham, 2004a, b). 
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(Wilson et al. 2005a, b, 2010a, b) has assumed this to be this case, but we have never tested it 

empirically. Therefore, in the current study, we trained two groups of participants to move at 90° 

either unimanually or bimanually, respectively. Participants used either one or two joysticks to 

control either one or two dots on a computer screen so as to move them at 90° to one another (in 

the unimanual case one dot was controlled by the computer as a simple harmonic oscillator). We 

measured learning and also transfer of learning between unimanual and bimanual versions. We 

predicted that learning should indeed transfer between the two versions because the information 

learned is the same. To confirm that it was the perceptual information that was learned and that 

this is what supports the predicted transfer, we also tested the visual perception of mean relative 

phase at 90° (Wilson and Bingham 2008; Wilson et al. 2010a). Participants were asked to 

identify displays showing 90° in a 2 alternative forced choice paradigm (2AFC) and we 

measured thresholds for the required difference in displays. We predicted that practice of the 

action tasks should be associated with lower perceptual thresholds for the trained relative phase. 

Finally, Snapp-Childs et al. (2011) showed in model simulations and confirmed with data 

that performance in the uni-manual tasks is inherently less stable than in the bi-manual tasks 

because the coupling is uni-directional instead of bi-directional. Thus, we must expect the level 

of improvement in performance, after equivalent amounts of training, to be less in the uni-

manual task than in the bi-manual task. The same must be expected in tests of transfer. Thus, 

measured amounts of transfer from uni-manual to bimanual and visa versa must be adjusted by 

the decrement in performance to be expected for the uni-manual as compared to the bi-manual 

task. We will measure the difference in performance (as expected due to the inherent difference 

in stability) as the proportion of the respective amounts of improvement in trained performance 

(post-test minus baseline) in the uni-manual and bi-manual tasks. This proportion will be used to 



Transfer of learning between unimanual and bimanual coordination 

 

 

10 

adjust portions between transfer and trained performance. The prediction is that the adjusted 

transfer levels should be equal.  

2. Method 

2.1 Participants  

Fourteen adults (18-35 years old) participated in this study. All were right-handed, had 

normal or corrected-to-normal vision and were free from any known neurological defects or 

motor disabilities. All participants were naïve to the experimental questions and their 90 relative 

phase production was worse than their 0 and 180 relative phase production prior to training. 

Ethical approval was granted by the Institutional Review Board at Indiana University, 

Bloomington. 

2.2  Procedure 

Participants performed seven separate sessions (see Table 1). Participants performed all 

sessions on a 20” iMac which was located 70 cm from the participants and was connected to one 

or two Logitech Force 3D Pro joysticks; the joysticks’ force feedback feature was disabled. The 

computer presented a display
2
 of two white dots, one above the other, moving horizontally across 

a black background (screen refresh rate 60 Hz, resolution 1024x768). The vertical position of 

both dots was fixed, but the horizontal position of either one or both dots, depending on 

condition, was controlled by the horizontal position of the joystick(s). The mapping of 

                                                 
2
 All displays were presented and controlled by a custom Matlab toolbox written by ADW and incorporating the 

Psychtoolbox (Brainard, 1997; Kleiner et al. 2007; Pelli, 1997; http://psychtoolbox.org). This software also recorded 

and analysed the data. 

http://psychtoolbox.org/
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joystick(s) to screen amplitude was set so that required amplitude on the screen did not entail 

hitting limits of the joystick range of movement.  

During the Baseline and Post-Training assessment sessions, participants performed three 

different tasks in the order described. In the Unimanual task, participants were shown an 8s 

demonstration of 0 relative phase (two dots moving in the same direction at the same time). 

Participants then performed one block of five 20s trials in which the computer controlled the 

motion of the top dot (0.75 Hz frequency, 300 pixels (~11.5 cm) amplitude) while they 

controlled the motion of the bottom dot with their dominant hand. Participants were instructed to 

move the joystick in a smooth, side-to-side, movement to produce 0. The first trial in the block 

was practice and was not analyzed. This procedure was then repeated for 180 and 90 relative 

phase. These data were used to be sure that none of the participants could already perform 90° at 

a level equivalent to 0° or 180° and could take part in the learning study.  

Next, in the Bimanual task, participants were shown another 8s demonstration of 90 

relative phase and then performed one block of five, 20s duration, trials in which they controlled 

the horizontal motion of both dots (bottom dot controlled by the participant’s dominant hand). 

Participants were instructed to move the joysticks in a smooth, side-to-side, movement to 

produce 90 while an external metronome played at 45 beats-per-minute (0.75 Hz).  

Bimanual movements introduce an additional aspect: muscle homology. Movements 

which use homologous muscle groups at the same time (e.g. mirror symmetric movements in the 

fronto-parallel plane) are typically referred to as in-phase and are more stable than those which 

entail using non-homologous muscle groups at the same time (anti-phase). In the case of these 

two coordinations, that is, in phase or 0° and anti-phase or 180°, the egocentric constraint 
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interacts with the allocentric constraint of whether the motion is in the same direction or not to 

affect overall coordination stability (Swinnen et al. 1997; Swinnen et al. 1998). However, a 90° 

coordination does not entail this interaction. Producing 90° bimanual movements produces 90° 

or 270° visually where 270° is the symmetry partner of 90° and, thus, these are identical states 

with respect to the perceiver-actor. For the current study, we were only interested in learning and 

transfer of learning at 90°, where egocentric and allocentric constraints are not pitted against one 

another directly. We did, therefore, not assess changes in bimanual performance at 0°/anti-phase 

or 180°/in-phase, and focused only on 90° where the interaction of these constraints does not 

affect the data. We did, nevertheless test 0° and 180° at baseline so we could use them to 

establish the relative lack of ability to produce 90° coordination before training. 

Finally, in the Judgment task, participants performed a series of two-alternative forced 

choice (2AFC) judgments about 90. 2AFC is a standard psychophysical method for determining 

perceptual thresholds that we have used with this task before (Wilson et al. 2010a; Wilson and 

Bingham, 2008). Each trial consisted of a 4s demonstration trial of 90 and a pair of successively 

presented stimuli (two dots moving harmonically on the screen at some mean relative phase, for 

4s at 0.75Hz). The motion of both dots was centered at the screen center, with an amplitude of 

300 pixels (~11.5 cm). One of each pair showed two dots moving at the target relative phase 

(90°) and the other was “different” from 90°; the participants’ goal was to choose which one of 

the displays, first or second, was 90°. The magnitude of the “different” displays was determined 

using a transformed 1-up/2-down staircase procedure, using a step size ‘up’ of 10° and a stop 

rule of 8 reversals. Step size ‘down’ was fixed according to Table 5.1 of Kingdom and Prins 

(2009). The staircase makes the judgments easier or more difficult as a function of whether or 
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not the last choice was correct or incorrect; so, the number of trials that each participant 

experiences varies as the pattern of responses varies. No feedback about performance was given.  

After the Baseline session, participants were trained to produce 90° either unimanually or 

bimanually. The first group of seven participants was trained to produce 90° unimanually. In this 

case, the computer controlled the motion of the top dot while the participant controlled the 

(horizontal) motion of the bottom dot. The second group of seven participants was trained to 

produce 90° bimanually. These participants controlled the (horizontal) motion of both the top 

and bottom dots; unlike during the baseline and post-training sessions, there was no external 

metronome. During each of the five training sessions, participants performed twelve different 

(20s duration) trials where their goal was to produce 90°. Participants received coordination 

feedback for all trials except for every fourth trial in each session; feedback was removed for 

every fourth trial to encourage participants not to become dependent on it (as it would not be 

present during posttest) (see Kovacs et al. 2009b). The dot(s) which were under their control 

changed color from white to green when performance was within a given error bandwidth of the 

target relative phase. This error bandwidth was reduced in each successive training session; the 

bandwidth during the first training session was 30° and decreased 5° (to 25°, 20°, 15° and 10°) 

during each subsequent training session (as per Wilson et al. 2010). 

2.2.1 A note on terminology 

All of the action tasks included a display of two dots at all times. There was therefore 

visual information about the coordination being performed available at all times. Prior to 

training, this information (for 90°) was not reliably detected, while after training it was, and 

being able to detect this information about the coordination being performed is what allowed 
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participants to maintain the coordination (Wilson et al. 2010a). During training only, we 

provided visual feedback about the success of the coordination being performed. This feedback is 

in the form of a color change that acts as a ‘hot/cold’ signal to the participant, and has been 

shown to drive learning successfully (Wilson et al. 2010b). We are therefore using feedback 

(present only during training) to improve the detection of coordination information (present 

throughout but not reliably detected at the beginning) and it is this latter learning that we expect 

to transfer between unimanual and bimanual movements. 

2.3 Data Analysis 

For the action tasks, a 60 Hz position time series for both the computer- and person-

controlled dots was recorded. The time series data were filtered using a low-pass Butterworth 

filter with a 10 Hz cut-off frequency and numerically differentiated using a central difference 

method to produce a velocity time series. For each trial, a continuous relative phase time series 

was computed as the difference between the arctangent of each dot’s velocity divided by position 

with requisite corrections for the quadrants of the phase plane. From each relative phase time 

series (trial), we computed proportion of time-on-task. Proportion of time-on-task is the 

proportion of each continuous relative phase time series (trial) that fell within the range of the 

target phase + a tolerance (set to 20° for all sessions, and, in addition, to the error bandwidth in 

the training sessions). It is a valid measure of performance at the required relative phase, i.e. how 

well the participant was able to move as requested (Wilson et al. 2010a, 2010b). We then 
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averaged proportion of time-on-task, for each participant, over the trials performed in a given 

condition
3
. 

For the judgment tasks, the computer recorded the responses (“correct” or “incorrect”) in 

relation to the relative phase of the “different” display that was shown. We separately averaged 

the difference from 90° of relative phases at which reversals in the staircase procedure occurred 

for the “different” phases that were greater than 90° and those less than 90°, excluding the first 

reversal, for each participant. We then averaged those thresholds for perceiving 90° for each 

participant. 

3.  Results 

INSERT FIGURE 1 ABOUT HERE 

3.1 Baseline performance 

First, we verified that the groups were similar before training with respect to their 90° 

performances (Figure 1A shows the group means at baseline for unimanual 90° and bimanual 

90°). To do this, we first performed a repeated-measures ANOVA with the following factors and 

levels: Group (Unimanual Training, Bimanual Training) as a between subject factor and 

Condition (Unimanual 90°, Bimanual 90°) as a within subject factor. The ANOVA yielded no 

significant factors (Group × Condition: F(1,12) = 0.40, p = 0.54, Group: F(1,12) = 0.19, p = 0.67, 

Condition: F(1,12) = 0.09, p = 0.77).  

                                                 
3
 Other coordination researchers rely on measures of mean error and variability. However, the hallmark of human 

coordinated rhythmic movement is that these are not independent. A common problem at unstable phases (e.g. 90°) 

is that people produce large errors (e.g. moving at 0° instead) but with low variability. You therefore cannot 

interpret variability without the error and vice versa. We use and advocate for the proportion measure because it 

addresses these problems; it succinctly and validly measures performance at the required relative phase. (Wilson et 

al. 2010a, b).  



Transfer of learning between unimanual and bimanual coordination 

 

 

16 

Next, we used the confidence interval approach to the two one-sided test procedure to 

infer equivalence. In this procedure, equivalence is established if the designated confidence 

interval (for  = 0.05, the CI = (1-2)×100 = 90%) for the mean difference between groups is 

contained within the equivalence margin or (-, ) interval (Walker and Nowacki, 2011). For this 

experiment, the mean difference between groups was obtained by subtracting the Unimanual 

training group’s performance from the Bimanual training group’s performance (so negative 

numbers reflect the Unimanual group being superior to the Bimanual group). The (-, ) interval 

was set at (-0.125, 0.125). We chose this (-, ) because this approximately reflects the 

difference between 0° and 180°; again, 0° is well established to be more stable than 180° and, 

usually between 0.10 and 0.15, for the total proportion measure. For both the unimanual 90° and 

bimanual 90° conditions, we report the mean difference between groups and the confidence 

intervals as follows: 0.049 ± 0.075 (-0.026, 0.124) and 0.009 ± 0.074 (-0.065, 0.083), 

respectively. Therefore, performance levels were equivalent between the training groups at 

Baseline in both unimanual 90° and bimanual 90° conditions. 

INSERT FIGURE 2 ABOUT HERE 

3.2 Learning and transfer  

Next, to examine how training mode influenced performance of 90° we analysed average 

time-on-task using a three-way mixed design ANOVA with the following factors and levels: 

Group (Unimanual Training, Bimanual Training) as a between subject factor and Condition 

(Unimanual 90°, Bimanual 90°) and Session (Baseline, Post-Training) as within-subject factors. 

Figure 1a shows proportion of time-on-task at Baseline for unimanual 90° and bimanual 90° for 

each of the training groups while Figure 1b shows the same measure after training. There was a 
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significant three-way (Condition by Session by Group) interaction (F(1,12) = 7.03, p < 0.05) as 

well as a main effect of Session (F(1,12) = 77.3, p < 0.01). No other main effects or interactions 

were significant (all p’s >.05). The three-way interaction indicates that the groups changed 

unequally, from before to after training, for the unimanual 90° and bimanual 90° conditions.  

To illustrate the source of this interaction, we plotted improvement in performance by 

performance condition (Figure 2a) and training condition (Figure 2b). The Trained data entail 

post testing using the task in which participants trained. So, Trained data are the difference 

scores (post-test minus baseline) for Unimanual 90° performed by the Unimanual Training group 

and for Bimanual 90° performed by the Bimanual Training group. The Untrained data entail post 

testing using the transfer task in each case. The Untrained data are the difference scores for 

Unimanual 90° performed by the Bimanual Training group and for Bimanual 90° performed by 

the Unimanual Training group. As expected given the difference in stability intrinsic to the 

respective tasks, the Bimanual training group improved more at Bimanual 90° than the 

Unimanual group did at Unimanual 90° (the Trained conditions). On the other hand, the mean 

difference scores were the same for the two groups in the Untrained 90° conditions. To confirm 

this, we tested for equivalence using the two one-sided test procedure. The mean difference 

between groups and 90% confidence intervals for the trained 90° and untrained 90° were: 0.066 

± 0.078 (-0.012, 0.144) and -0.006 ± 0.077 (-0.083, 0.071), respectively. Thus, equivalence for 

the Trained 90° condition was not established but equivalence for the Untrained 90° was 

established.  

However, the latter scores (that is, the difference scores for Untrained) do not provide a 

measure of transfer. This requires the relevant proportions of untrained and trained difference 

scores, namely, untrained unimanual to trained bimanual (transfer for the bimanual training 
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group) and untrained bimanual to trained unimanual (transfer for the unimanual training group). 

Respectively, these yielded 0.45 and 0.56. However, to control for the known difference in 

inherent stability of unimanual and bimanual performance, these proportions must be adjusted by 

the proportion of unimanual trained to bimanual trained difference scores, which was 0.77. (That 

is, unimanual only does 77% as well as bimanual.) So, 0.77 x 0.56 = 0.43. So, the two transfer 

amounts were 45% and 43%. Thus, as predicted, the measures of transfer, adjusted for the 

inherent difference in stability of the two tasks, reveal equal transfer in the two cases, that is, 

from unimanual to bimanual and from bi-manual to unimanual. This is the main result of the 

study. 

INSERT FIGURE 3 ABOUT HERE 

3.3 Judgment thresholds  

The perception-action approach to coordination predicts that learning primarily entails 

learning to perceive the target novel relative phase, which then allows stable coordinated actions 

(Wilson et al. 2010a). We hypothesised that this perceptual learning underpins the observed 

transfer of learning between the training conditions. To test this, we measured 90° visual 

judgment thresholds at Baseline and Post Training (note there was no training on the judgment 

task). These data are shown in Figure 3. We ran a two-way mixed design ANOVA with Group 

(Unimanual Training, Bimanual Training) as a between subjects factor and Session (Baseline, 

Post-Training) as repeated measures. As shown in Figure 4, there were no group differences in 

ability to perceive 90° but judgment thresholds improved from before to after training. This was 

confirmed by a main effect of Session (F(1,12) = 18.09, p < 0.01), but no effect of Group nor any 

Group × Session interaction (all p’s > 0.05). To confirm that the groups were equivalent in their 
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ability to visually perceive 90° after training, we tested for equivalence using the two one-sided 

test procedure. The (-, ) interval was set at (-10°, 10°). The mean difference between groups 

and 90% confidence intervals for the 90° judgment threshold at posttest was: -2.315° ± 5.663° (-

7.978°, 3.348°). Thus, equivalence was established for 90° judgment thresholds at post test. 

3.4 Relating perceptual judgments and coordination performance  

Initially, we hypothesised (1) that after equivalent amounts of training, the level of improvement 

in performance would be less in the unimanual task than in the bimanual task (due to differences 

in intrinsic stability), and (2) that perceptual learning underpins the transfer of learning. We 

found equal perceptual improvement and unequal improvement in coordination performance as 

expected. Performance of the unimanual task is less stable not because of any difference in 

information or perceptual ability, but because the coupling in the task dynamic is uni-directional 

rather than bi-directional as it is for the bimanual task. Accordingly, we also expected that there 

would be a stronger relationship between performance at 90° and judgment thresholds for the 

bimanual task than for the unimanual task, although on average, there should be no difference 

between Trained and Untrained because the information and perceptual ability are the same. To 

examine these possibilities, we performed Pearson correlations of performance at 90° and the 

90° judgment thresholds separately for each training group and task. (The tasks in the context of 

training groups become Trained and Untrained.) Here we also expected all correlations to be 

negative because the coordination performance measure goes up with training while the 

perceptual threshold measure goes down.  

 The resulting Pearson r’s are shown in Table 2. As expected, the r’s for the bimanual task 

(r = -0.83, t(12) = -5.1, p < 0.001; r = -0.73, t(12) = -2.8, p < 0.02) were greater than those for the 

unimanual task (r = -0.55, t(12) = -2.3, p < 0.04; r = -0.62, t(12) = -3.7, p < 0.005). Also, (once 
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the different tasks were factored out by averaging over them) there was no difference in the 

overall r’s for Trained and Untrained, respectively. All tests revealed significant relations 

between the judgments and the coordination performance levels accounting for about 40%-70% 

of the variance.  

 

 

 

4. Discussion 

We suggest that a task dynamic model can be used to predict the extent to which learning 

will transfer among tasks with related task dynamics. (For task dynamics, see Beek & Bingham, 

1991; Bingham, 1988; Feldman et al., 1990; Kugler & Turvey, 1987; Saltzman & Kelso, 1987). 

We tested this idea in the context of an extensively studied type of task, namely, rhythmic 

movement coordination (e.g. Kelso, 1984). Both bimanual and unimanual versions of this 

general type of task have been modelled using a perception-action task dynamic in which the 

movements are perceptually coupled (e.g. Snapp-Childs et al., 2011). In addition, previous 

studies have shown that novel patterns of coordination, i.e. 90° relative phase, must be learned 

(Wilson et al., 2010b; Zanone & Kelso, 1992). And, in this context, it has been shown that the 

learning of a new coordination pattern is largely a matter of learning to perceive that 

coordination (Wilson et al. 2010a). So, the task dynamic for a to-be-learned coordination pattern 

is different in respect to perceptual information in the coupling function that specifies the 

relevant coordinative mode: for instance, 90° in contrast to 0° or 180° (Snapp-Childs & 

Bingham, in preparation; Wilson & Bingham, 2008). In other words, learning the new 

coordination entails learning to discriminate the new information variable. Once this has been 
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accomplished, learning is predicted to transfer to other versions of the coordination task that 

include the same information variable in the respective task dynamics. Thus, the learning of a 

90° bimanual coordination task is predicted to transfer to the performance of a 90° unimanual 

coordination task and visa versa.  

Bimanual coordination and unimanual coordination are different tasks as shown by the fact 

that they exhibit differences in their respective intrinsic stability (Snapp-Childs et al., 2011). The 

task dynamic for unimanual coordination entails a uni-directional coupling function whereas that 

for bimanual coordination entails a bi-directional coupling. The former is weaker and thus the 

coordinative modes exhibited in a unimanual coordination task are less stable than those 

exhibited in bimanual tasks. Of course, these differences must be taken into account when 

evaluating the amount of transfer between these tasks when a new coordinative mode has been 

learned. For a given amount of training, less improvement in performance can be expected for 

the less stable task, namely, unimanual coordination as compared to bimanual coordination. 

Likewise, when learning transfers between these tasks, the respective level of performance 

should be expected to be lower for unimanual coordination. 

 We set out in the current study to test these predictions. Over multiple sessions, we 

trained two groups of participants to produce 90° coordination, one group in a unimanual task 

and the other in a bimanual task. Then, we measured both learning and transfer of learning. For 

learning, we measured performance in the trained task and judgment thresholds for the visual 

discrimination of 90°. For transfer, we measured performance in the other, untrained task. Both 

groups improved in their ability to produce 90° in their trained task, although Bimanual more so 

than Unimanual as expected because of the difference in the intrinsic stability of the tasks. Both 

groups also improved in their visual discrimination of 90°, but this time equally so. Finally, we 
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derived measures of transfer of learning and found that the groups exhibited equal amounts of 

transfer. This derivation required that the differences in the intrinsic stability of the tasks be 

taken into account.  

 When we evaluated the learning that had occurred as a result of the multi-session 

training, we found equal improvements in perceptual thresholds for both training groups, but 

unequal improvements in coordination performance levels. The improvement was greater for the 

bimanual training group performing the bimanual coordination task than for the unimanual 

training group performing the unimanual task. Direct comparison of improvements in perceptual 

judgments and in coordination performance yielded stronger correlations for the bimanual group 

and task than for the unimanual group and task. This pattern of results had been expected. Equal 

improvements in ability to discriminate 90° perceptually were not expected to yield equal 

improvements in performance of 90° in the two tasks, unimanual and bimanual. The respective 

task dynamics did entail the same information variable but different coupling functions that yield 

differences in performance level. The unidirectional coupling in unimanual coordination is 

weaker and results in less stable and thus, poorer performance than that produced by the stronger 

bidirectional coupling in bimanual coordination.  

 Thus, the different correlational results were expected to reflect the tasks (and the 

differences in coupling functions) and not the training groups as such, because the training 

groups entailed equivalent learning of the same information variable. To test this, we performed 

the correlational analyses on the untrained data with the expectation that stronger correlations 

would be found for the bimanual as compared to the unimanual task. In the untrained data, the 

bimanual task was performed by the unimanual training group and the unimanual task was 

performed by the bimanual training group. Indeed, the results were as predicted. Finally, to 
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confirm that the differences in these correlations between improvements in perceptual thresholds 

and improvements in coordination performance reflected differences in the stability of the tasks 

(and thus, the nature of the coupling functions in the task dynamics), we performed the 

correlations on the combined data of the two training groups but separately in the case of the 

trained data and the untrained data. This controlled for the difference in tasks but preserved the 

commonality of the information. The prediction was that the correlations would be of equal 

strength. This was indeed the result. In all cases, the correlations were significant and showed 

that the perceptual learning underwrote the improvements in performance of the new 

coordination. 

 Thus, we were successful in predicting the relative levels of transfer of learning in the 

context of these two rhythmic coordination tasks using the task dynamics underlying the two 

tasks to make the predictions. The task dynamics conditioned the levels of transfer in two ways. 

First, transfer was conditioned by the perceptual information variables incorporated into the 

coupling functions in the task dynamics for both tasks. Both the information used to perform 

skilled coordination at 0° and 180° and new information used to perform learned coordination at 

90° were common to both unimanual and bimanual tasks. Progressively learning to discriminate 

and perceive new information enabled participants to progressively improve in their performance 

of 90° coordination in both unimanual and bimanual tasks. The performance of coordination 

tasks cannot, however, be reduced to the ability to perceive (contra Meschner et al., 2001) 

because actions entail task dynamics that include, but are more complex than, mere perceptual 

information. So, second, transfer performance was conditioned by the intrinsic stability of each 

task and this is determined, in part, by the nature of the coupling. In these cases, the coupling in 

the two tasks was different, uni-directional versus bi-directional. Because the former is weaker, 
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the respective transfer performance was bound to be less good. This difference in stability must 

be taken into account when evaluating the amount of transfer of learning.  

So, transfer of learning occurs when the composition of the underlying task dynamic does 

not change, and in the case of coordinated rhythmic movement this dynamic critically involves 

perceptual information. When the information is different, the composition of the dynamic is 

changed, and the two instances are then different tasks and learning does not transfer. When the 

information remains the same and there are not major alterations to the organization of the 

dynamic, as in the current experiment, then the task remains the largely the same and transfer can 

occur (although as always the relative level of performance reflects the relative levels of stability 

exhibited by the respective task dynamics). The details of learning itself depend on the alteration 

to the task dynamic; here, a change in the perceptual information. As shown in earlier studies, 

learning to perform 90° coordination entailed perceptual learning, learning to detect the 

information required to perceive and control 90° coordination. The model shows that this 

entailed a change from detecting velocity of movement to detecting the evolving position of each 

oscillator as well as a change from detecting consistently same or opposite directions of 

movement to detecting a balance of both. The details of transfer depend on these changes to 

perception. Improved visual discrimination of 90° allowed transfer to occur but the magnitude of 

transfer was incomplete, equal to about 40%-50%. This may have reflected the relatively modest 

magnitudes of improvement exhibited by the perceptual learning. Post-training visual perceptual 

thresholds in the current study averaged between 22° and 26°. Wilson et al. (2010a) found final 

thresholds at 90° averaged ~13° after much more extensive training. So, in the current study, 

there was room for further improvement in visual discrimination. These modest levels of 



Transfer of learning between unimanual and bimanual coordination 

 

 

25 

improvement may well contribute, when combined with the difference in stability of the 

bimanual and unimanual tasks, to the magnitudes of transfer.  

Finally, the understanding developed in the current study of what occurs during learning to 

promote transfer required theoretically motivated models of the task at hand such as the various 

versions of the Bingham model (bimanual 0°/180°: Bingham, 2001, 2004a, b; unimanual 

0°/180°: Snapp-Childs et al. 2011; bimanual and unimanual 90°: Bingham and Snapp-Childs in 

preparation). These models contain specific hypotheses about mechanism that, in turn, enables us 

to use them to make successful predictions about learning and transfer. The perception-action 

task dynamic models (and the theory driven research program that generated them) stand as 

examples of the explanatory power to be gained by studying the actual composition and 

organization of the perception-action mechanism responsible for observed behaviour in a task. 
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5. Appendix: Additional measures of coordination performance 

Measures of mean error and variability have been used in some studies to evaluate 

coordination performance and learning. We report these measures and show they are difficult to 

interpret in the current context in contrast to the proportion of time-on-task (PTT) measure that 

we have used.  Similar to Maslovat and collaborators (Maslovat et al., 2010), we computed the 

relative phase distributions windowed at intervals of 20° ranging from 0° to 180° and produced a 

histogram showing where participants were spending time when trying to move at 90° both 

before and after training (see Figures 4A and 4B). We used this graph to interpret the mean error 

and variability.   

The problem for the measures is as follows.  As participants begin to try to perform 90° 

coordination, they often fail to remain in the neighbourhood of 90° and transition to spend 

significant time at either 0° or 180°.  As they learn and improve in performance, they succeed 

better in staying near or at 90° (as shown directly by the PTT measure) although they may still 

occasionally transition to 0° or 180°.  There are individual differences in whether a performer 

tends to transition either to 0° or to 180° or to both.  If it is both rather than just 0° or 180°, for 

instance, then the resultant overall variability can be increased. However, this is not relevant to 

the level of success in performing the task, which is to stay at or near 90°.  It is all the same if the 

movement is at 0° or 180° instead of 90°.   Also, if the performer spends similar amounts of time 

at 0° and at 180°, then the mean can be 90°, whereas if the performer transitions more reliably to 

0°, then the mean can biased towards 0°.  Again, these differences are not of direct relevance to 

the success in performing the task.  For these reasons, measures of mean error and variability are 

problematic for evaluating performance in this learning task.   
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First, we describe the relevant measures of mean error and variability.   

5.1 Data analysis 

Relative phase is a circular variable (the distribution of possible values lies on a circle) 

that creates a problem for computing standard means and standard deviations. Circular statistics 

provide trigonometric solutions to these problems by treating each data point in a relative phase 

time series as a vector of unit length and an orientation that matches the relative phase at that 

time point. Mean direction is effectively the result of concatenating these vectors and computing 

the orientation of the vector between the origin and the tip of the final data point vector. The 

mean vector length or uniformity (U) (Fisher, 1993) measures the variability as the length of the 

resultant vector divided by the number of data points (and which therefore ranges from 0 to 1). 

This latter was transformed into a linear variable (SD) that varies between 0 and infinity using 

the following transformation: 

  

SDy = -2logeU( )
1 2

 

5.2 Results 

First, to examine performance before and after training we computed relative phase 

distributions (that is, the proportion of time spent at relative phases between 0° and 180° using 

20° bins) by condition (Unimanual 90°, Bimanual 90°) and separated by group. We illustrate the 

resulting individual differences in Figure 4. When performing the Bimanual task at Baseline, as 

expected, neither training group consistently produced a relative phase at or near 90°. As shown 

in Figure 4A, the group that would subsequently be trained at the Bimanual task tended to 

transition to and spend time at 180°, while the group that would be trained at the Unimanual task 
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tended to transition to and spend time at 0°. This was merely an individual difference between 

the groups that was, however, reflected in the pattern of results for the mean direction at 

Baseline.  (Note that individual differences also appeared in results at Baseline for the 

Unimanual task.)  As shown in Figure 5A, the training groups exhibited significant differences in 

mean direction that reflected the individual differences. To analyse the mean direction, we used a 

two-way mixed design analysis of variance (ANOVA) with Group (Unimanual Training, 

Bimanual Training) as a between subjects factor and Condition (Unimanual 90°, Bimanual 90°) 

as a within subjects factor. The result was a significant main effect of Group (F1, 12 = 4.98, 

p<.05). However, this difference was not relevant to the level of success in performing the task 

to be learned. Accordingly, we had found no differences when performance was evaluated using 

the PTT measure of success in performing the 90° task.   

We used the same ANOVA design to analyse SD and found no significant main effects 

or interactions.  This indicated that there was no difference in consistency between the groups at 

baseline as shown Figure 6A.  (Note that there could have been a difference if participants in one 

of the groups had tended to transition equally often both to 0° and to 180°, but this difference, if 

significant, also would not have been relevant to the evaluation of success in performing the task 

to be learned.) 

Next, we analysed mean direction and SD at Post-test. For mean direction, as shown in 

Figure 5B, there were no significant main effects or interactions. However, as shown in Figure 

4B, the Unimanually trained group still spent more time at 0° (in the Bimanual task) while the 

bimanually trained group spent more time at 90°.  This yielded a result in the analysis of SD 

where there was a significant group by condition interaction (F1, 12 = 7.82, p< 0.02) as shown in 

Figure 6B. A comparison of Baseline and Post-Test yielded a main effect of session for SD (F1, 
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12 = 13.50, p< 0.05), but not for mean direction.  Nevertheless, both measures must be taken into 

account when evaluating success in learning this task.  The reason is that stable but highly 

inaccurate performance can result from spending time only at 0° or only at 180° and apparently 

accurate but highly unstable performance can result from spending equal time at 0° and at 180°.  

So finally, using the two measures (mean direction and SD), it remained unclear how to 

evaluate the relative transfer of training, appropriately scaled by intrinsic differences in stability 

between the tasks.  PTT measures the goal of the learning task directly, providing a single 

measure of success in performing the 90° task.  It also yielded good measures of transfer.  Thus, 

this was the preferable measure to use.   
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Session Unimanual Group      Bimanual Group 

                 

Baseline 5 trials each of unimanual 0°, 180°, 90°   5 trials each of unimanual 0°, 180°, 90° 

  5 trials each of bimanual 90°     5 trials each of bimanual 90° 

  2AFC judgment task (90°)     2AFC judgment task (90°) 

 

Training 1 12x trials unimanual 90° w/feedback (+/-30°)  12x trials bimanual 90° w/feedback (+/-30°) 

Training 2 12x trials unimanual 90° w/feedback (+/-25°)  12x trials bimanual 90° w/feedback (+/-25°) 

Training 3 12x trials unimanual 90° w/feedback (+/-20°)  12x trials bimanual 90° w/feedback (+/-20°) 

Training 4 12x trials unimanual 90° w/feedback (+/-15°)  12x trials bimanual 90° w/feedback (+/-15°) 

Training 5 12x trials unimanual 90° w/feedback (+/-10°)  12x trials bimanual 90° w/feedback (+/-10°) 

 

Post Training 5 trials each of unimanual 0°, 180°, 90°   5 trials each of unimanual 0°, 180°, 90° 

  5 trials each of bimanual 90°     5 trials each of bimanual 90° 

  2AFC judgment task (90°)     2AFC judgment task (90°) 

                 

Table 1: Experimental design. All participants worked through these tasks in the order noted. The feedback bandwidth  

(e.g. +/-30°) indicates over what range from the target relative phase the colour feedback was triggered; this is faded  

over time to drive learning (Wilson et al. 2010).  
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Trained 90°  Untrained 90° 

Bimanually Trained:   -0.83    -0.62 

Unimanually Trained:   -0.55    -0.73 

 Overall:    -0.69    -0.68 

         

Table 2: Pearson correlations by training group and trained 

and untrained (transfer) tasks. r’s for the combined trained  

tasks (and thus, training groups) and combined untrained 

tasks (and training groups) are shown as Overall.  
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Figure Captions 

Figure 1. Unimanual 90° and Bimanual 90° performance for both training groups A) Before 

training and B) After training. Error bars represent the standard error of the mean. 

Figure 2. Difference scores (Post-Training – Baseline) for performance at 90° by A) Condition: 

Unimanual 90° versus Bimanual 90° and B) Training condition: Trained versus Untrained 

condition. Error bars represent the standard error of the mean. 

Figure 3. Thresholds for judging 90° before and after training for the two training groups. 

Thresholds were high at Baseline but reduced equally with training. Error bars represent the 

standard error of the mean. 

Figure 4. Relative phase distributions for Baseline and Post-Training for Bimanual 90° separated 

by group: A) Baseline; B) Post-Training. 

Figure 5. Mean vector direction (in degrees) at Baseline and Post-Training separated by 

condition and group: A) Baseline, Bimanual vs. Unimanual 90°; B) Post-Training, Bimanual vs. 

Unimanual 90°. 

Figure 6. SD at Baseline and Post-Training separated by condition and group: A) Baseline, 

Bimanual vs. Unimanual 90°; B) Post-Training, Bimanual vs. Unimanual 90°. 
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Figure 1. 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 

 


