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There	 is	 a	 pressing	 need	 for	 new	 technologies	 that	 improve	 the	 efficacy	 and	16	

efficiency	 of	 drug	 discovery.	 Structure-based	methods	 have	 contributed	 towards	17	

this	 goal	 but	 they	 focus	 on	 predicting	 the	 binding	 affinity	 of	 protein–ligand	18	

complexes,	which	 is	 notoriously	 difficult.	We	 adopt	 an	 alternative	 approach	 that	19	

evaluates	 structural,	 rather	 than	 thermodynamic,	 stability.	 Noting	 that	 bioactive	20	

molecules	present	a	static	binding	mode,	we	devised	Dynamic	Undocking	(DUck),	a	21	

fast	computational	method	to	calculate	the	work	necessary	to	reach	a	quasi-bound	22	

state,	where	the	ligand	has	just	broken	the	most	important	native	contact	with	the	23	

receptor.	 This	 non-equilibrium	 property	 is	 surprisingly	 effective	 in	 virtual	24	

screening	 because	 true	 ligands	 form	 more	 resilient	 interactions	 than	 decoys.	25	

Notably,	DUck	 is	orthogonal	 to	docking	and	other	 ‘thermodynamic’	methods.	We	26	

demonstrate	 the	 potential	 of	 the	 docking–undocking	 combination	 in	 a	 fragment	27	

screening	against	the	molecular	chaperone	and	oncology	target	Hsp90,	 for	which	28	

we	obtain	novel	chemotypes	and	a	hit	rate	approaching	40%.		29	

	30	

	31	

	32	

	33	

	34	

	35	

	36	

	37	

	38	

	39	

	40	
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Structural	stability	is	a	fundamental	property	of	protein–ligand	complexes.	Though	41	

cases	of	dual	binding	modes	have	been	reported,1,2	they	are	generally	not	dynamic,	42	

or	involve	predominantly	hydrophobic	interactions,3	which	lack	directionality	and	43	

do	not	impose	strict	geometric	constraints.4	By	contrast,	hydrogen	bonds	are	ideal	44	

to	 provide	 structural	 stability	 because	 they	 have	 sharp	 distance	 and	 angular	45	

dependencies.4	Their	contribution	to	the	free	energy	of	binding	(ΔGbind)	is	variable	46	

but	can	be	substantial.5	Importantly,	they	often	act	as	anchoring	points	in	protein–47	

ligand	 complexes,	 providing	 the	 minimal	 binding	 unit	 through	 one	 or	 a	 few	48	

hydrogen	 bonds	 as	 demonstrated	 for	 fragment-sized	 ligands.6,7	 We	 have	49	

previously	shown	that	certain	hydrogen	bonds	present	strong	opposition	to	small	50	

structural	distortions	and	can	act	as	kinetic	 traps	because	 the	 local	 environment	51	

hinders	 the	 transition	 from	 a	 direct	 hydrogen	 bond	 to	 a	 water-bridged	52	

interaction.8	As	an	early	unbinding	event,	rupture	of	the	so-called	water-shielded	53	

hydrogen	 bonds	 can	 influence	 the	whole	 dissociation	 process.8,9	 Taken	 together,	54	

these	 observations	 suggest	 that	 hydrogen	 bonds	 are	 the	 main	 determinants	 of	55	

structural	 stability,	 and	 lead	 us	 to	 postulate	 that	 their	 resilience	 should	 provide	56	

information	about	 the	binding	potential	of	candidate	 ligands.	Thus,	we	set	out	 to	57	

investigate	whether	the	work	required	to	disrupt	intermolecular	hydrogen	bonds	58	

can	be	used	to	predict	ligand	binding.		59	

	60	

We	 will	 introduce	 DUck,	 a	 simplified	 computational	 procedure	 to	 calculate	 the	61	

work	 needed	 to	 break	 a	 key	 native	 contact,	 reaching	 a	 quasi-bound	 state	 (WQB).	62	

Then,	 we	 will	 show	 that	 active	 compounds	 are	 structurally	 stable	 and	 present	63	

higher	 WQB	 values	 than	 inactive	 ones.	 Finally,	 we	 demonstrate	 the	 use	 of	 this	64	
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property	 in	 virtual	 screening	 (VS)	 applications,	 showing	 that	DUck	 complements	65	

the	thermodynamic	perspective	offered	by	existing	methods.		66	

	67	

	68	

Results	and	Discussion	69	

	70	

Simplified	simulation	of	the	early	dissociation	stage	71	

To	 assess	 the	 hypothesis,	 we	 have	 devised	 Dynamic	 Undocking	 (DUck)	72	

simulations,	where	 a	 key	 intermolecular	hydrogen	bond	 is	pulled	 from	an	 initial	73	

distance	of	2.5	Å	(close	contact)	to	5.0	Å	(broken	contact).	In	order	to	focus	on	just	74	

one	specific	hydrogen	bond,	we	use	model	receptors	comprising	only	the	protein	75	

residues	 that	 are	within	 6	 Å	 of	 the	 given	 hydrogen	 bond	 (Figure	 1A).	 The	work	76	

necessary	to	carry	out	the	steering	process	is	monitored,	and	we	define	the	quasi-77	

bound	 (QB)	 state	 as	 the	 point	 along	 the	 simulation	 where	 the	 work	 profile	78	

presents	 the	 highest	 value.	WQB	 is	 the	 work	 necessary	 to	 depart	 from	 the	 ideal	79	

hydrogen	bond	configuration	and	reach	the	QB	state	(Figure	1B).	Notably,	this	is	a	80	

non-equilibrium	property,	and	there	is	no	reason	why	it	should	correlate	with	any	81	

measurement	 of	 binding	 affinity.	 What	 is	 more,	 as	 the	 unbound	 state	 is	 not	82	

considered,	 WQB	 cannot	 inform	 about	 the	 binding	 free	 energy.	 Instead,	 this	83	

magnitude	 solely	 indicates	 if	 the	 interaction	 under	 investigation	 gives	 rise	 to	 a	84	

(local)	 minimum	 in	 the	 free	 energy	 landscape	 and	 estimates	 the	 depth	 of	 said	85	

minimum	(Supplementary	Figure	1).	86	

	87	

Relationship	between	WQB	and	binding	affinity	88	
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As	an	 initial	proof	of	concept,	we	apply	DUck	to	a	set	of	41	fragment-like	 ligands	89	

(<300Da)	of	the	cyclin	dependent	kinase	2	(CDK2)	with	known	binding	mode	and	90	

half	maximal	inhibitory	concentration	(IC50)	values.	The	hinge	region	of	all	kinases	91	

is	a	hot	spot	for	binding,	where	the	protein	backbone	offers	privileged	hydrogen-92	

bonding	 opportunities.10	 For	 CDK2,	 the	 central	 hydrogen-bond	 donor	 (NH	 of	93	

Leu83)	is	the	most	conserved	interaction	site	and	was	used	to	define	the	reaction	94	

coordinate.	 WQB	 presents	 only	 a	 weak	 correlation	 with	 binding	 affinity	95	

(Supplementary	 Figure	 2),	 but	 the	 distribution	 of	 WQB	 values	 is	 clearly	 skewed	96	

(Figure	2A	and	Supplementary	Figure	3).	Thus,	65%	of	weak	binders	(IC50	>	1	µM)	97	

present	WQB	values	below	6	kcal/mol,	while	all	strong	binders	(IC50	<	1	µM)	pass	98	

this	 threshold.	 Ligand	3FZ1,11	 is	 the	 clear	 exception	 as	 it	 presents	 an	 almost	 flat	99	

dissociation	profile	(WQB	=	0.12	kcal/mol).	This	is	explained	by	an	unsuitably	long	100	

(3.4	Å)	 interaction	with	 the	hinge	 region,	 involving	 a	methoxy	 group,	which	 is	 a	101	

poor	 hydrogen	 bond	 acceptor.4	 Instead,	 this	 unusual	 ligand	 forms	 two	 charge-102	

reinforced	hydrogen	bonds	with	Lys33	and	Asn132,	from	which	it	draws	structural	103	

stability	 (Supplementary	 Figure	 4).	 This	 shows	 that	 some	 ligands	 can	 use	104	

alternative	or	additional	 interaction	points	 to	attain	 structural	 stability,	 in	which	105	

case,	DUck	calculations	(as	currently	implemented)	may	underestimate	the	cost	of	106	

breaking	the	native	contacts.		107	

	108	

To	further	examine	the	surprising	relationship	between	binding	affinity	and	WQB,	109	

we	use	 the	bromodomain	and	extra-terminal	 (BET)	BRD4-BD1	as	additional	 test	110	

system.	The	side-chain	N	of	Asn140	is	a	well-known	pharmacophoric	point	of	this	111	

epigenetic	target,12	and	defines	the	key	intermolecular	hydrogen	bond.	Again,	we	112	

observe	the	same	trend,	 i.e.	higher	WQB	 for	more	potent	 ligands,	but	with	a	 large	113	
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dispersion	 that	blurs	 correlation	 (Supplementary	Figures	3	 and	5).	 Interestingly,	114	

the	 lowest	 WQB	 values	 (0,	 1.1	 and	 1.7	 kcal/mol)	 correspond	 to	 three	 kinase	115	

inhibitors	with	off-target	activity	 for	 the	BRD4-BD1.13	Thus,	achieving	potency	 in	116	

the	absence	of	a	robust	anchoring	interaction	is	possible,	but	rare,	which	suggests	117	

that	it	is	an	ineffective	strategy.		118	

	119	

DUck	is	very	effective	in	virtual	screening	120	

We	then	assess	whether	 the	approach	can	be	used	 in	virtual	 ligand	screening	by	121	

testing	the	ability	of	DUck	to	distinguish	true	CDK2	ligands	from	a	set	of	carefully	122	

selected	 decoys14	 for	 which	 we	 had	 generated	 binding	 modes	 by	 docking.	 	 The	123	

distribution	 of	 WQB	 is	 strikingly	 different	 from	 the	 active	 set,	 with	 61%	 of	124	

molecules	presenting	values	below	2	kcal/mol	and	49%	below	1	kcal/mol	(Figure	125	

2A).	This	indicates	that,	in	spite	of	forming	the	key	hydrogen	bond,	this	interaction	126	

is	 labile	 for	 most	 of	 the	 docking	 decoys,	 which	 would	 translate	 to	 an	 unstable	127	

binding	mode.	We	 therefore	 propose	 that	WQB	 can	 distinguish	 true	 ligands	 from	128	

inactive	molecules,	as	shown	in	the	receiver	operating	characteristics	(ROC)	curves	129	

(Figure	2B).	To	demonstrate	the	wider	applicability	of	the	method,	we	conducted	130	

similar	 experiments	 with	 the	 adenosine	 A2A	 receptor	 (AA2R)	 and	 Trypsin,	 as	131	

representatives	 of	 G	 protein-coupled	 receptors	 (GPCR)	 and	 serine	 proteases,	132	

respectively	 (Figure	 2B).	 Together	 with	 kinases	 (such	 as	 CDK2)	 these	 protein	133	

families	include	a	large	part	of	the	current	and	investigational	drug	targets.15	The	134	

key	 hydrogen	 bonds	 tracked	 by	 the	 DUck	 simulations	 involve	 the	 side-chain	135	

carbonyl	 of	 Asn253,	 in	 the	 case	 of	 AA2R,	 and	 the	 carboxylic	 acid	 of	 Asp189,	 for	136	

Trypsin.	As	shown	in	Figure	2B,	the	results	for	these	systems	are	even	better	than	137	

for	 CDK2,	 demonstrating	 that	 DUck	 is	 surprisingly	 effective	 in	 virtual	 screening.	138	
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Importantly,	 the	 performance	 improves	 consistently	 as	 sampling	 increases,	 but	139	

good	 enrichments	 can	 be	 obtained	 with	 as	 little	 as	 2	 DUck	 runs	 per	 ligand	140	

(Supplementary	Figure	6).	141	

	142	

DUck	is	orthogonal	to	existing	methods	143	

These	results	position	DUck	as	a	new	method	for	virtual	screening.	But,	as	it	aims	144	

to	predict	a	property	that	is	fundamentally	different	from	thermodynamic	stability,	145	

we	investigate	its	complementarity	with	molecular	docking,	a	method	with	a	long	146	

and	 successful	 history	 of	 application	 in	 virtual	 screening.16,17	 Using	 the	 rDock	147	

software,18	we	 find	 that	 docking	 scores	 have	 no	 correlation	with	WQB,	 and	 good	148	

docking	scorers	are	nearly	as	 likely	to	present	a	 low	resistance	to	dissociation	as	149	

the	 rest	 of	 the	 decoys	 (Figures	 2C,	 2D	 and	 Supplementary	 Figure	 7).	 As	 such,	150	

molecular	 docking	 and	 dynamic	 undocking	 can	 be	 considered	 orthogonal	 (i.e.	151	

perfectly	complementary)	and	the	intersection	between	both	techniques	defines	a	152	

region	 highly	 enriched	 in	 true	 ligands.	 We	 have	 also	 performed	 extensive	153	

calculations	 with	 other	 virtual	 screening	 tools	 (Glide	 docking,	 MMPBSA	 and	154	

MMGBSA	re-scoring).	The	results,	summarised	in	Supplementary	Figures	8	and	9,	155	

confirm	that	DUck	is	complementary	to	all	of	them.	In	fact,	as	we	obtain	low	WQB	156	

values	for	many	decoys	with	good	scores	by	all	other	methods,	DUck	post-filtering	157	

delivers	 several	 fold	 improvement	even	when	applied	 to	a	 consensus	 list	by	 two	158	

independent	 ‘thermodynamic’	 approaches	 (Figures	 2E,	 2F	 and	 Supplementary	159	

Figure	10).	These	results	 support	 the	 idea	 that	 structural	 stability	of	 the	binding	160	

mode,	just	like	good	chemical	complementarity,	is	a	necessary	–	but	not	sufficient	–	161	

condition	 for	 binding.	 By	 imposing	 both	 conditions	 simultaneously,	 we	 can	162	

multiply	 the	effectiveness	of	 structure-based	virtual	 screening.	At	 the	same	 time,	163	
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using	WQB	as	a	post-docking	 filter	means	 that	only	 the	best-scoring	subset	of	 the	164	

virtual	 chemical	 collection	 needs	 to	 be	 reassessed	 by	 DUck	 simulations,	 thus	165	

improving	computational	efficiency.		166	

	167	

Fragment	discovery	with	in	tandem	docking-undocking	calculations.	168	

To	 demonstrate	 the	 power	 of	 the	 docking-undocking	 combination,	 we	 have	169	

applied	 the	 method	 prospectively	 for	 the	 identification	 of	 small	 molecules	 that	170	

bind	the	molecular	chaperone,	Heat	Shock	Protein	90KDa	(Hsp90).	This	oncology	171	

target	 has	 been	 a	 test-bed	 and	 paradigm	 in	 fragment	 and	 structure-based	 drug	172	

design.19	With	hundreds	of	Hsp90-ligand	complexes	deposited	in	the	Protein	Data	173	

Bank	 (PDB),	 discovery	 of	 novel	 chemotypes	 is	 very	 challenging.	 We	 focused	 on	174	

fragment-like	molecules,	 as	 this	may	 be	 the	most	 efficient	 way	 to	 discover	 new	175	

leads	and	to	generate	scaffold-hoping	ideas.20,21	A	collection	of	280000	fragment-176	

sized	molecules	was	docked	to	the	ATP	binding	site	of	Hsp90.	A	diverse	set	of	139	177	

molecules	 from	 the	 best	 450	 (top	 0.16%)	 was	 then	 selected	 and	 each	 one	 was	178	

subjected	to	100	DUck	runs	to	obtain	fully	converged	WQB	values	(note	that	fewer	179	

DUck	 runs	 would	 have	 given	 similar	 results	 (Supplementary	 Figure	 11)).	 The	180	

distribution	of	WQB	values	(Figure	3A,	Supplementary	Figure	12)	shows	that	even	181	

at	the	upper	limit	of	the	docking	score	distribution	a	large	proportion	of	putative	182	

ligands	present	low	resistance	to	dissociation,	with	32%,	50%	and	80%	presenting	183	

WQB	below	3,	4	and	6	kcal/mol,	respectively.	We	purchased	all	the	molecules	from	184	

the	 high	 stability	 set	 (WQB	 >	 6	 kcal/mol)	 that	were	 available	 (n=21).	 They	were	185	

tested	using	 three	different	 ligand-observed	Nuclear	Magnetic	Resonance	 (NMR)	186	

experiments,	 in	 the	 absence	 or	 presence	 of	 a	 known	 competitor	 to	 confirm	 that	187	

fragment	hits	bind	at	 the	 target	site.19	Eight	out	of	 the	21	molecules	(38%)	were	188	
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confirmed	 as	 true	 hits	 (Table	 1).	 Crucially,	 for	 the	 same	 system	 and	 screening	189	

method,	the	hit	rate	obtained	with	a	general	fragment	screening	library	is	4.4%.22	190	

Therefore,	 the	DUck-based	virtual	screening	 increases	the	efficiency	by	nearly	an	191	

order	of	magnitude.	This	 is	 similar	 to	 optimal	 virtual	 fragment	 screening	 results	192	

reported	for	other	systems.23.	In	order	to	better	assess	the	contribution	of	DUck	to	193	

the	success	rate,	we	also	purchased	and	collected	data	for	15	molecules	from	the	194	

medium	stability	set	(WQB	between	3	and	6	kcal/mol)	and	11	from	the	low	stability	195	

set	 (WQB	 <	 3	 kcal/mol).	 Only	 one	 molecule	 from	 these	 sets	 was	 a	 hit	 and,	196	

importantly,	its	WQB	value	is	very	close	to	the	upper	threshold	(5.6	kcal/mol).	This	197	

confirms	that	DUck	false	negatives	(i.e.	active	molecules	with	low	WQB)	are	rare,	an	198	

ideal	 property	 for	 a	 screening	 method.	 Hit	 rates	 for	 the	 three	 categories	 are	199	

summarized	in	Figure	3B.	200	

	201	

To	assess	the	value	of	the	hits	as	starting	points,	we	have	compared	their	chemical	202	

structures	 to	existing	Hsp90	 ligands,	 finding	 low	similarity	 in	all	 cases	 (Table	1).	203	

Binding	mode	determination	and	analysis	of	the	main	interactions	that	define	the	204	

chemical	 scaffold	 offers	 a	 more	 precise	 assessment	 of	 their	 novelty.	 Crystal	205	

structures	 for	 3	 of	 the	 fragment	 hits	 were	 determined	 by	 X-ray	 crystallography	206	

(Figure	 4	 and	 Supplementary	 Figure	 13).	 This	 confirmed	 that	 the	 docking	 pose	207	

used	 as	 starting	 position	 for	 the	 DUck	 experiments	 was	 correct,	 particularly	208	

regarding	 the	 key	 interaction	 that	 was	 being	 monitored	 (side-chain	 of	 Asp93).	209	

Compound	1	is	the	most	potent	fragment	hit	(dissociation	constant	KD=77µM)	and	210	

has	 a	 ligand	 efficiency	 (LE)	 of	 0.33	 kcal/mol	 per	 non-hydrogen	 atom,	 similar	 to	211	

other	 Hsp90	 fragment	 hits	 that	 have	 been	 evolved	 into	 very	 efficient	 lead	212	

compounds.24	Many	2-aminopyrimidines	have	been	described	as	Hsp90	ligands,19	213	
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confirming	the	potential	of	the	fragment	hit,	but	the	relative	lack	of	novelty	would	214	

advise	against	using	 this	 fragment	as	 starting	point	at	 this	 stage.	Compound	2	 is	215	

less	potent	(KD=320µM)	but	equally	efficient	(LE=0.32)	by	virtue	of	having	fewer	216	

atoms.	In	this	case,	the	key	interaction	with	Asp93	is	mediated	by	an	aminothiazole	217	

moiety,	 which	 is	 unprecedented	 and	 would	 constitute	 a	 good	 starting	 point	 to	218	

develop	new	chemical	entities.	Compound	3	(KD=700µM;	LE=0.25)	belongs	to	the	219	

well-known	 family	 of	 resorcinol	 inhibitors,	which	 includes	 the	 clinical	 candidate	220	

NVP-AUY922,19	but	provides	an	interesting	example	of	scaffold	hopping,	where	the	221	

oxime	acts	a	bioisosteric	replacement	of	the	five-membered	rings	included	as	core	222	

scaffold	 in	 the	 patents.	 Compounds	 4,	 5	 and	 6	 also	 represent	 completely	 novel	223	

starting	points,	as	their	scaffold	is	unique	amongst	Hsp90	inhibitors.	The	binding	224	

mode	 could	 not	 be	 confirmed	 experimentally,	 but	 is	 likely	 correct	 because	 two	225	

independent	 methods	 deemed	 the	 molecules	 active	 based	 on	 the	 predicted	226	

geometry	(Their	predicted	binding	modes	can	be	 found	 in	Supplementary	Figure	227	

14).	228	

	229	

Conclusions	230	

	231	

In	summary,	we	have	demonstrated	that	the	concept	of	structural	stability	can	be	232	

used	very	effectively	in	structure-based	drug	design,	complementing	the	standard	233	

focus	 on	 binding	 free	 energy.	 Hydrogen-bonding	 groups	 in	 the	 active	 site	 are	234	

privileged	 structures	 to	 fix	 the	 ligand	 in	 place,	 particularly	 when	 they	 act	 as	235	

binding	hot	spots	and	can	form	water-shielded	hydrogen	bonds.8	The	work	needed	236	

to	break	such	interactions	(WQB)	is	very	useful	to	detect	true	ligands	even	though	it	237	

is	 a	 non-equilibrium	 property	 that	 is	 not	 expected	 to	 correlate	with	ΔGbind.	 This	238	
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intriguing	 fact	 may	 reflect	 the	 nature	 of	 proteins,	 which	 have	 been	 designed	 to	239	

bind	 their	 natural	 ligands	 not	 only	 with	 high	 affinity	 and	 selectivity,	 but	 also	240	

forming	 structurally	 stable	 complexes.	 Thus,	 it	 will	 be	 important	 to	 test	 the	241	

approach	 on	 other	 types	 of	 supramolecular	 assemblies.	 Dynamic	 Undocking	242	

(DUck),	 a	particular	 implementation	of	 steered	molecular	dynamics,	 allows	us	 to	243	

calculate	WQB	 in	 a	 very	 efficient	manner.	DUck	 can	be	 used	 in	 combination	with	244	

existing	‘thermodynamic’	approaches	to	multiply	their	effectiveness.	The	docking-245	

undocking	 combination	 has	 proven	 particularly	 useful	 for	 virtual	 fragment	246	

screening,	delivering	novel,	diverse	and	suitable	starting	points	with	a	hit	rate	of	247	

38%.	At	present,	we	focus	on	a	single	key	hydrogen	bond	to	estimate	WQB,	which	248	

requires	 previous	 knowledge	 and	 has	 a	 critical	 impact	 on	 the	 outcome.	 Future	249	

investigations	 should	 address	 the	 extension	 of	 the	method	 to	multiple	 sites	 and	250	

other	 interaction	 types	 to	 improve	 performance	 and	 avoid	 reliance	 on	 extrinsic	251	

decisions.	DUck	 inherits	 the	 intrinsic	 limitations	of	structure-based	methods	(e.g.	252	

protein	 flexibility,	 quality	 of	 the	 force-field)	 and	may	 have	 some	 of	 its	 own	 (e.g.	253	

long	range	effects,	steering	conditions).	Further	tests	will	reveal	its	true	potential,	254	

but	considering	that	it	is	orthogonal	to	existing	methods	and	computationally	very	255	

efficient,	 we	 expect	 that	 it	 will	 be	 rapidly	 adopted	 by	 the	 structure-based	 drug	256	

design	 community	 and	 adapted	 to	 other	 biotechnological	 applications	 involving	257	

non-covalent	complexes.	258	

	259	

	 	260	
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METHODS	261	

	262	

Dynamic	Undocking	263	

Dynamic	 Undocking	 (DUck)	 is	 a	 particular	 type	 of	 Steered	 Molecular	 Dynamics	264	

(SMD),25	where	we	force	the	rupture	of	an	intermolecular	hydrogen	bond	formed	265	

between	 a	 pre-defined	 interaction	 point	 in	 the	 receptor	 and	 a	 complementary	266	

atom	 in	 the	 ligand.	Additionally,	we	use	 a	model	 receptor	 that	 includes	 only	 the	267	

minimal	subset	of	the	protein	necessary	to	preserve	the	local	environment	around	268	

the	 hydrogen	 bond	 that	 is	 being	 monitored.	 This	 transformation	 minimizes	 the	269	

influence	of	peripheral	interactions,	thus	simplifying	the	dissociation	pathway	and	270	

facilitating	convergence	(Supplementary	Figure	15).	As	an	added	bonus,	it	speeds	271	

up	the	calculations	by	a	factor	of	5	(Supplementary	Table	2).	The	first	and	essential	272	

step	is	to	identify	an	atom	of	reference	in	the	protein,	which	must	form	a	hydrogen	273	

bond	with	all	(or	most)	known	ligands.	For	well-known	systems,	like	the	ones	used	274	

here,	 it	 can	 be	 identified	 from	 a	 structural	 superimposition	 of	 all	 the	 available	275	

protein-ligand	 complexes.	 On	 novel	 binding	 sites,	 it	 may	 be	 identified	 with	 a	276	

quantitative	 hot	 spot	 identification	 method.26.	 Then,	 the	 model	 receptor	 is	277	

generated	 from	 a	 representative	 3D	 structure	 of	 the	 protein	 by	 selecting	 all	278	

residues	with	at	least	one	atom	within	6	Å	of	the	atom	of	reference.	The	selection	is	279	

visually	inspected	and,	if	needed,	additional	residues	that	are	deemed	necessary	to	280	

preserve	the	local	environment	are	included	in	the	selection.	Unselected	residues	281	

are	 eliminated	 and	 truncated	 side	 chains	 are	 acetylated	 or	 N-methylated,	 as	282	

needed.	 Interstitial	 water	 molecules,	 if	 present,	 are	 preserved.	 The	 PDB	 codes,	283	

reference	 interaction	points	and	 the	 list	of	protein	residues	and	water	molecules	284	

for	 each	 system	 are	 listed	 in	 Supplementary	 Table	 3.	 Given	 the	model	 receptor	285	
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(protein	 chunk)	 and	 a	 set	 of	 ligands	 properly	 oriented	 (docking	 poses	 or	286	

superimposed	 X-ray	 geometries),	 a	 MOE27	 SVL	 script	 developed	 in	 house	287	

automatically	performs	the	following	steps:	1)	Calculates	AM1-BCC	charges	for	the	288	

ligand.28	2)	Assigns	parm@Frosst29	atom	types	and	non-bonded	parameters	to	the	289	

ligand.	 3)	 Identifies	 the	 ligand	 atom	 that	 is	 hydrogen-bonded	 to	 the	 protein’s	290	

reference	atom	(based	on	distance	and	type).	4)	Writes	input	and	execution	files	to	291	

carry	out	 the	MD	simulations	with	AMBER30.	5)	Calls	AMBER’s	 tLeap	to	generate	292	

valid	 topology	 and	 coordinate	 files	 for	 each	 individual	 receptor-ligand	 complex.	293	

For	 the	 protein,	 the	AMBER	 force	 field	 99SB	 is	 used.	 Each	 system	 is	 placed	 in	 a	294	

cuboid	box	spanning	at	 least	12	Å	more	than	the	furthest	atom	in	each	direction.	295	

The	 box	 is	 then	 filled	 with	 TIP3	 water	 molecules	 to	 create	 periodic	 boundary	296	

conditions.	When	needed,	Na+	or	Cl-	 ions	are	added	to	force	the	neutrality	of	the	297	

whole	system.	MD	simulation	conditions	(where	non-default)	are	as	follows:	1)	At	298	

all	stages,	harmonic	restraints	with	a	force	constant	of	1	kcal/mol·Å2	are	placed	on	299	

all	 non-hydrogen	 atoms	 of	 the	 receptor	 to	 prevent	 structural	 changes.	 2)	300	

Spontaneous	rupture	of	the	key	hydrogen	bond	during	non-steered	simulations	is	301	

prevented	with	a	gradual	 restraint	 for	distances	beyond	3	Å	 (parabolic	with	k=1	302	

kcal/mol·Å2	between	3Å	and	4Å	and	linear	with	k=10	kcal/mol·Å	beyond	4	Å).	3)	303	

All	equilibration	and	simulation	steps	were	run	using	a	Langevin	thermostat	with	a	304	

collision	frequency	of	4	ps-1	and	the	cutoff	for	non-bonded	interactions	was	set	to	305	

9Å.	 4)	 Bonds	 involving	 hydrogen	 are	 constrained	 using	 SHAKE.31	 In	 order	 to	306	

equilibrate	 the	 system	 the	 following	 steps	 are	 executed:	 1)	Energy	minimization	307	

for	1000	cycles.	2)	Assignment	of	random	velocities	at	100K	and	gradual	warming	308	

to	300K	for	400	ps	in	the	NVT	ensemble.	3)	Equilibration	of	the	system	for	1	ns	in	309	

the	NPT	ensemble	 (1	atm,	300K).	At	 this	 stage,	 the	 first	 SMD	simulations	 can	be	310	
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executed.	 We	 run	 two	 SMDs	 from	 the	 same	 restart	 file,	 but	 at	 different	311	

temperatures	(300K	and	325K)	to	ensure	that	the	trajectories	proceed	differently.	312	

The	SMD	lasts	500	ps,	during	which	time	the	distance	between	the	key	hydrogen	313	

bonds	 is	 steered	 from	2.5	Å	 to	5.0	Å	 (constant	 velocity	 of	 5	Å/ns)	with	 a	 spring	314	

constant	of	50	kcal/mol·Å2.	We	have	 tested	 slower	velocities	 and	 the	 results	 are	315	

essentially	 unchanged	 (Supplementary	 Figure	16).	 The	 spring	 constant	 had	 little	316	

influence	and	on	a	limited	test	set	we	obtained	essentially	identical	results	in	the	317	

range	 k=10	 kcal/mol·Å2	 to	 k=1000	 kcal/mol·Å2.	 We	 have	 also	 investigated	 the	318	

importance	 of	 the	 specific	 reaction	 coordinate	 by	 using	 the	 closest	 contact	319	

between	 CDK2	 Leu83:O	 and	 the	 ligand	 (instead	 of	 Leu83:N).	 The	 WQB	 values	320	

obtained	with	these	different	atoms	of	reference	(located	only	3	Å	apart)	present	a	321	

high	correlation	(r2=0.75;	Supplementary	Figure	17).	By	contrast,	when	the	atoms	322	

of	 reference	 involve	 completely	 different	 part	 of	 the	 ligand,	 the	 results	 are	323	

uncorrelated	(Supplementary	Figure	18).	 	To	generate	diverse	starting	points	 for	324	

SMD	trajectories,	we	perform	1ns	unbiased	MD	simulation	and	repeat	the	process	325	

as	 many	 times	 as	 desired	 (e.g.	 50ns	 unbiased	 MD	 simulations	 are	 needed	 to	326	

execute	 100	 SMD	 trajectories).	 All	 simulations	 were	 performed	 with	 Amber	 12	327	

adapted	 for	 running	 in	GPUs	and	executed	either	 in-house	with	NVIDIA	GeForce	328	

TITAN	 X	 GPUs	 or	 at	 the	 Barcelona	 Supercomputing	 Center	 using	 NVIDIA	 Tesla	329	

M2090	 GPUs.	 The	 simulations	 took	 24	 minutes	 (unbiased	 MD)	 or	 30	 minutes	330	

(SMD)	of	wallclock	time	per	nanosecond	(average	values	for	the	systems	tested	on	331	

the	TITAN	GPUs).	Work	profiles	outputted	by	the	SMD	simulations	are	processed	332	

as	explained	in	the	main	text	to	obtain	WQB	values.	Various	methods	could	be	used	333	

to	 obtain	 free	 energies	 from	 the	 SMD	 work,	 but	 they	 have	 strict	 convergence	334	

requirements,	are	computationally	much	more	expensive	and	the	results	are	only	335	
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valid	 if	 the	 reaction	 coordinate	 is	 mechanistically	 correct.25	 Instead,	 we	 simply	336	

assume	 that	 WQB	 is	 an	 upper	 limit	 to	 the	 equivalent	 magnitude	 in	 free	 energy	337	

(ΔGQB).	In	order	to	get	as	close	as	possible	to	ΔGQB,	we	run	multiple	SMD	replicas	338	

and	take	the	overall	lower	WQB	as	the	representative	value.	Note	that	we	have	used	339	

very	 conservative	 settings,	 favouring	 sampling	 over	 computational	 efficiency.	340	

Based	on	convergence	analysis	(Supplementary	Figures	6	and	11)	and	other	tests,	341	

we	propose	the	protocol	shown	in	Supplementary	Figure	19	for	virtual	screening.	342	

Less	than	one	GPU	hour	per	 ligand	would	be	necessary	to	discard	approximately	343	

80%	 of	 candidate	 ligands	 and	 produce	 a	 reasonable	 estimate	 of	 WQB	 for	 the	344	

remaining	ones.	By	comparison,	a	high-throughput	implementation	of	MM-PBSA	(1	345	

ns	 of	 sampling)	 would	 require	 at	 least	 3	 GPU	 hours	 plus	 20	 CPU	 minutes	 per	346	

ligand.			347	

	348	

Hsp90	virtual	screening	349	

A	 collection	 of	 280000	 purchasable	 fragment-sized	 molecules	 (<250	 Da),	 were	350	

docked	to	the	ATP	binding	site	of	Hsp90	with	an	optimized	protocol,	where	the	key	351	

hydrogen	bond	with	Asp93	 is	enforced.18	Next,	we	grouped	the	1000	top	scoring	352	

molecules	into	400	clusters	based	on	chemical	similarity	and	visually	inspected	the	353	

top-scoring	 molecule	 within	 each	 cluster	 to	 select	 139	 molecules	 that	 were	354	

subjected	 to	 DUck	 simulations.	 Docking	 score	 was	 the	 main	 selection	 criterion,	355	

with	90	molecules	originating	from	the	top	200	and	all	of	them	within	the	top	450.	356	

Additional	 criteria	 included	 high	 predicted	 aqueous	 solubility	 and	 chemical	357	

diversity.	 The	 selected	 molecules	 were	 subjected	 to	 100	 DUck	 calculations.	 We	358	

divided	 the	 molecules	 in	 three	 categories	 according	 to	 their	 resistance	 to	359	

dissociation:	weak	(WQB	<	3;	N=44;	32%),	medium	(3	<	WQB	<	6;	N=67;	48%)	and	360	
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strong	(WQB	>	6;	N=28;	20%).	We	tested	all	the	molecules	that	we	could	buy	from	361	

the	 strong	 set.	 For	 comparison,	 we	 also	 purchased	 and	 tested	 15	 molecules	 of	362	

medium	 and	 11	 from	 the	 low	 stability	 sets.	 The	 chemical	 structures	 of	 the	 47	363	

compounds	are	shown	in	Supplementary	Figure	12.		364	

	365	

Screening	by	NMR		366	

Identification	of	compounds	which	bind	to	the	ATP	site	of	Hsp90α	was	performed	367	

as	 described	 previously.32,33	 Briefly,	 a	 number	 of	 1D	 1H	NMR	 experiments	 (STD,	368	

water-LOGSY,	 relaxation	 filtered)	 were	 used	 to	 identify	 interactions	 between	369	

compounds	and	the	protein;	a	potent	competitor	(PU3)	was	then	added	in	order	to	370	

block	 the	 ATP	 binding	 site.	 Compounds	 which	 bound	 and	 were	 then	 displaced	371	

were	identified	as	interacting	specifically	with	the	protein.34	Molecules	active	in	all	372	

experiments	were	considered	bona	fide	hits,	while	those	giving	a	positive	response	373	

in	one	or	two	experiments	were	considered	unconfirmed	hits	because	changes	in	374	

NMR	 signal	 are	 not	 necessarily	 related	 to	 binding.	 All	 NMR	 experiments	 were	375	

performed	 on	 a	 BrukerAvIII	 HD	 600	 MHz	 NMR	 spectrometer	 at	 298K;	 pulse	376	

sequences	 included	 an	 excitation	 sculpting	 module	 in	 order	 to	 suppress	 bulk	377	

water.	Samples	contained	500	µM	ligand	and	10	µM	Hsp90α	in	20mM	tris	pH	7.5,	378	

50mM	NaCl	1mM	freshly	prepared	DTT	and	contained	10%	D2O.	379	

	380	

X-Ray	crystallographic	studies	381	

Protein	 was	 produced	 and	 crystallized	 as	 previously	 described.35	 For	 the	382	

successful	crystals,	data	were	collected	at	100K	on	an	in-house	Bruker	D8	Venture	383	

TXS	 Generator	 with	 a	 Bruker	 Photo	 100	 detector	 and	 were	 subsequently	384	

processed	using	SAINT	&	SADABS.	The	crystals	belong	 to	 the	space	groups	 I222.	385	
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The	 structures	were	 solved	 by	molecular	 replacement	 using	 a	 previously	 solved	386	

Hsp90α	protein	model	(PDB	code:	1UY6;	PU3	ligand	and	solvent	removed)	and	the	387	

program	AMoRe.36	 Twenty	 cycles	 of	 rigid-body	 then	 restrained	 refinement	were	388	

carried	out	using	the	refinement	program	REFMAC537	followed	by	model	building	389	

and	solvent	addition	using	the	molecular	graphics	program	COOT.38	The	progress	390	

of	 the	 refinement	 was	 assessed	 using	 Rfree	 and	 the	 conventional	 R	 factor.	 Once	391	

refinement	was	completed	the	structures	were	validated	using	various	programs	392	

from	 the	 CCP4i	 package.39	 Full	 data	 collection	 and	 refinement	 statistics	 are	393	

presented	in	Supplementary	Table	4.		394	

	395	

Methodological	details	concerning	the	creation	of	the	datasets,	molecular	docking,	396	

MMPBSA	and	MMGBSA	calculations,	and	surface	plasmon	resonance	experiments	397	

are	provided	as	Supplementary	Information.		398	

	399	

	400	

	401	

	 	402	
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TABLES	530	
	531	
Table	1.	Summary	of	results	for	the	9	Hsp90	NMR	Class	1	hits.	Chemical	structures	532	
of	all	compounds	are	shown	in	Supplementary	Table	1.	533	
	534	

ID	 MW	

Docking	 DUck	 SPR	

Kd	

(mM)	

PDB	

Simb	

ChEMBL	

Sim.b	Score	
(Ranka)	

Score	
(Ranka)	

1*	 248.7	
-25.0	
(79)	

9.1	
(10)	

77	
2XDX	
(0.37)	

CHEMBL
1340447	
(0.44)	

2*	 221.3	
-25.0	
(73)	

8.2	
(11)	

320	
2WI6	
(0.29)	

CHEMBL
1536318	
(0.54)	

3*	 230.2	
-26.7	
(19)	

11.3	
(1)	

700	
4EFU	
(0.32)	

CHEMBL
1458840	
(0.51)	

4	 240.3	
-26.4	
(22)	

7.4	
(16)	

730	
3WHA	
(0.29)	

CHEMBL
1542436	
(0.37)	

5	 165.2	
-23.8	
(128)	

8.1	
(12)	

-	
4EFT	
(0.27)	

CHEMBL
1313412	
(0.28)	

6	 206.3	
-23.3	
(138)	

9.5	
(5)	

-	
3HHU	
(0.42)	

CHEMBL
2103879	
(0.42)	

7	 236.3	
-25.4	
(51)	

7.8	
(15)	

-	
3B24	
(0.31)	

CHEMBL
1375884	
(0.36)	

8	 224.7	
-25.3	
(58)	

7.0	
(22)	

-	
2XDX	
(0.35)	

CHEMBL
1383799	
(0.37)	

22	 237.3	
-28.3	
(2)	

5.6	
(33)	

-	
3O0I	
(0.27)	

CHEMBL
1834092	
(0.33)	

	 	 	 	 	 	 	

	535	
*Xray	structure	solved	aPosition	within	the	list	536	
of	149	molecules	that	were	evaluated	with	537	
DUck.	bHsp90	structure	in	the	PDB	or	538	
compound	with	Hsp90	activity	in	ChEMBL	(as	539	
of	23/03/2016)	with	the	closest	similarity	to	540	
the	fragment	hit.	Similarity	(values	in	541	
parentheses)	was	calculated	with	Open	Babel	542	
using	the	FP2	fingerprint.	543	
	544	
	 	545	
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FIGURE	CAPTIONS	546	
	547	

	548	

Figure	 1.	 Calculation	 of	 WQB.	 a.	 The	 receptor	 is	 idealized	 as	 a	 model	 system	549	

containing	 only	 the	 local	 environment	 around	 a	 key	 intermolecular	 hydrogen	550	

bond.	 b.	 Representative	 work	 profiles	 obtained	 from	 dynamic	 undocking	551	

simulations	for	a	strong	(black)	and	a	weak	(grey)	ligand.	The	quasi-bound	state	is	552	

defined	as	 the	point	with	 the	highest	energy	relative	 to	 the	 ideal	hydrogen	bond	553	

geometry.	554	

	555	
	556	

Figure	 2.	 Application	 of	 the	 quasi-bound	 approximation	 to	 ligand	 ranking.	 a.	557	

Distribution	of	WQB	values	of	potent	CDK2	 ligands	(IC50	<	1µM;	dark	grey),	weak	558	

CDK2	 ligands	 (IC50	 >	 1µM;	 light	 grey)	 and	 non-binding	 decoys	 (black).	 Points	559	

indicate	population	values,	from	which	the	smooth	lines	are	extrapolated.		b.	ROC	560	

curves	 for	 the	 CDK2	 (black),	 A2AR	 (red)	 and	 Trypsin	 (green)	 DUD	 sets.	 Plotted	561	

results	 correspond	 to	 2	 DUck	 runs	 per	 ligand.	 AUC	 values	 are	 shown	 in	562	

Supplementary	 Figure	 6.	 c.	 Docking	 score	 vs.	 WQB	 values	 for	 active	 (red)	 and	563	

inactive	 (black	 or	 gray)	 compounds	 in	 the	 CDK2	 retrospective	 virtual	 screening	564	

dataset.	 The	 quadrant	 in	 orange	 highlights	 the	 area	 corresponding	 to	 top	 25%	565	

docking	score	and	top	25%	WQB	values,	where	optimal	enrichment	factors	(EF)	are	566	

achieved.	d.	For	the	same	set,	distribution	of	WQB	values	for	the	active	compounds	567	

(red),	 all	 decoys	 (black)	 and	 decoys	 in	 the	 top	 25%	 docking	 score	 (gray).	 e.	568	

Distribution	of	WQB	values	of	CDK2	actives	(red)	and	decoys	(gray)	ranked	in	the	569	

top	25%	by	two	independent	docking	programs	(rDock	and	Glide).	f.	Distribution	570	

of	WQB	values	of	CDK2	actives	(red)	and	decoys	(gray)	ranked	in	the	top	25%	both	571	

by	MMPBSA	and	the	rDock	docking	program.	572	

	573	

	574	
Figure	3.	Additional	analyses	of	the	prospective	application	of	DUck	in	Hsp90.	a.	575	

Distribution	of	WQB	values	for	139	top	docking	scorers	(pale	gray),	47	compounds	576	

within	this	set	that	were	purchased	(dark	gray),	and	the	9	compounds	detected	as	577	

active.	b.	Pie	charts	showing	the	hit	rates	for	the	set	of	compounds	with	high	WQB	578	

(top),	medium	WQB	(middle)	and	low	WQB	(bottom).	The	area	in	black	corresponds	579	

to	bona	fide	hits,	dark	gray	represents	compounds	that	give	a	positive	signal	in	1	580	

or	2	NMR	experiments,	pale	gray	corresponds	to	inactive	compounds.	Labels	581	

indicate	the	number	of	compounds	of	each	class.	Chemical	structures	are	shown	in	582	

Supplementary	Figure	12.	583	

	584	
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Figure	4.	Experimental	(grey)	and	predicted	(orange)	binding	modes	of	the	585	

fragment	hits.	a.	Compound	1,	the	RMSD	of	the	whole	molecule	is	2.58	Å	due	to	a	586	

conformational	change	of	the	protein	next	to	the	p-toluene	ring.	The	pyridine	ring	587	

and	bonded	atoms,	where	the	key	interaction	occur,	have	a	RMSD	of	0.54	Å		b.	588	

Compound	2	has	a	RMSD	of	0.54	Å	c.	Compound	3	has	a	RMSD	of	1.55	Å,	all	589	

hydrogen	bond	interactions	are	preserved.	590	

	591	
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SUPPLEMENTARY	METHODS	

Datasets	

When	possible,	datasets	were	geared	towards	fragment-sized	ligands	because	they	

present	 more	 scaffold	 diversity,	 make	 fewer	 peripheral	 interactions	 that	 could	

mask	the	main	interactions	and	because	Fragment-Based	Drug	Discovery	(FBDD)	

approaches	 are	 increasingly	 important	 as	hit	 identification	 strategy.1,2	 For	CDK2,	

all	ligands	with	molecular	weight	below	300	Da	and	known	binding	affinity	(IC50)	

were	extracted	from	the	PDB.3	To	increase	the	diversity	of	the	dataset,	all	ligands	

were	clustered	at	75%	similarity	using	the	MACCS	fingerprints	as	implemented	in	

MOE	(Chemical	Computing	Group	Inc.,	2015)	and	only	the	centroids	were	used	to	

define	the	active	set.	The	composition	of	the	dataset	is	described	in	Supplementary	

Table	 5.	 It	 should	be	noted	 that	 this	 is	 a	 noisy	 dataset	 because	data	 sources	 are	

very	heterogeneous	and	IC50	values	have	an	indirect	relationship	with	dissociation	

constants.4	As	such,	it	should	only	be	used	to	detect	trends.	In	order	to	assess	the	

significance	of	 the	correlation,	we	have	also	 investigated	the	correlation	between	

IC50	 and	 molecular	 weight	 (Supplementary	 Figure	 20).	 For	 retrospective	 VS	

experiments,	a	pool	of	30	decoys	per	active	fragment	was	obtained	with	the	DUD-E	

decoy	generator,5	which	puts	together	a	set	of	putatively	 inactive	molecules	with	

physicochemical	 properties	 very	 similar	 to	 active	 ones.	 For	 BRD4,	 as	 it	 was	

designed	to	study	the	correlation	between	experimental	binding	affinity	and	WQB,	

only	 the	 ligands	 with	 known	 binding	 mode	 and	 measured	 IC50	 or	 KD	 were	

considered	(relationship	with	molecular	weight	reported	in	Supplementary	Figure	

21).	The	crystal	structure	of	each	ligand-protein	complex	was	obtained	from	PDB	

and	used	as	 input	 for	 subsequent	 calculations.	The	 composition	of	 the	dataset	 is	

described	 in	 Supplementary	 Table	 6.	 In	 the	 case	 of	 AA2AR,	 as	 there	 are	 few	

structures	in	the	PDB,	the	active	fragments	were	taken	from	the	DUD-E	benchmark	

set.5	The	rest	of	the	procedure	is	the	same	as	described	for	CDK2.	For	Trypsin,	we	

found	 that	 few	 ligands	have	 a	 low	molecular	weight	 so	we	did	not	 filter	by	 size.	

Instead,	a	random	subset	of	2000	actives	and	decoys	was	selected	from	DUD-E.	In	

the	 case	 of	 Hsp90,	 all	 candidate	 molecules	 originate	 from	 a	 unified	 collection	

generated	in	house	from	the	commercial	libraries	of	five	preferred	vendors	(Specs,	

Enamine,	Life	Chemicals,	Princeton	Biomoleculars	and	Asinex).	In	this	case	we	set	

an	upper	limit	of	250	Da,	obtaining	280000	candidate	fragments.	All	ligands	were	
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prepared	 for	 docking	 using	 Schrödinger’s	 Ligprep6with	 the	 following	 options	

different	than	default:	neutralize	and	ionize	at	pH	7	with	a	threshold	of	+-	1	with	a	

maximum	of	6	tautomers		and	8	stereoisomers	generated.	

	

Molecular	Docking	with	rDock	

For	CDK2,	AA2AR	and	Trypsin,	 the	3D	structure	used	 to	define	 the	receptor	was	

obtained	 from	the	DUD-E	benchmark	set.5	MOE7	was	used	 to	generate	mol2	 files	

that	can	be	read	by	rDock,	our	docking	engine.8	For	Hsp90,	we	use	the	same	cavity	

definition	 and	 docking	 protocol	 described	 previously.8	 In	 all	 systems,	

pharmacophoric	restraints	were	used	to	ensure	that	the	key	interaction	point	was	

matched	by	 every	molecule	 in	 the	dataset,	 as	 defined	 in	 Supplementary	Table	 3.	

rDock	 was	 run	 with	 the	 default	 parameters	 for	 standard	 docking.	 50	 individual	

docking	processes	were	executed	per	ligand,	thus	ensuring	that	the	lowest-energy	

binding	mode	 is	 identified.	 The	 best-scoring	 solution	 is	 accepted	 as	 the	 putative	

binding	mode.	Ligands	that	do	not	fulfill	the	pharmacophore	are	identified	by	the	

restraint	penalty	and	eliminated	 from	the	dataset	 (i.e.	not	considered	 in	 the	ROC	

curves	or	any	other	analysis).		

	

Molecular	Docking	with	Glide	

In	order	to	demonstrate	that	our	methodology	provides	an	advantage	regardless	of	

the	 docking	 program	 used,	 we	 also	 run	 CDK2,	 AA2R	 and	 trypsin	 systems	 with	

Glide.9	 The	 generation	of	 the	 cavity	with	Glide	was	performed	using	 coordinates	

defined	 as	 in	 rDock	 docking	 and	 default	 parameters.	 Pharmacophoric	 restraints	

were	 defined	 to	 force	 all	 ligands	 to	 make	 a	 hydrogen	 bond	 as	 defined	 in	

Supplementary	Table	3.	Glide	docking	was	run	with	default	parameters	and	with	

pharmacophoric	 restraints	 (Supplementary	 Figures	 22,	 23	 and	 24).	 The	 best	

docking	pose	for	each	ligand	was	selected	and	used	as	input	for	DUck.	

	

MMGBSA	and	MMPBSA	

MMGBSA	 and	 MMPBSA	 calculations	 using	 AMBER12	 software	 were	 also	

performed	and	compared	against	the	rest	of	methods.	Each	ligand	was	simulated	

for	 5	 ns	 with	 the	 full	 size	 receptor	 of	 CDK2	 using	 the	 same	 MD	 configuration	

defined	 in	 the	 section	 above	 (Supplementary	 Figures	 24	 and	 25).	 For	 each	
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simulation,	 a	 total	 of	 25	 snapshots	 separated	 by	 200	 ps	were	 used	 and	 the	 free	

energies	were	averaged	over	 the	ensemble	of	 conformations.	All	 the	 calculations	

were	performed	with	default	parameters	with	the	exception	of	the	following:	the	

GB	model	used	is	one	of	the	developed	by	Onufriev	et	al.10	(igb=2)	and	the	atomic	

radii	are	set	up	according	to	the	topology	(radiopt=0).	

	

Surface	plasmon	resonance	

Surface	 plasmon	 resonance	 (SPR)	 experiments	 have	 been	 done	 mainly	 as	

described	 before.11,12	 All	 measurements	 were	 performed	 on	 a	 Biacore	 T200	

instrument	(Biacore	GE	Healthcare)	at	20°C	on	Series	S	NTA	chips.	25	mM	HEPES	

pH7.4,	 175	mM	NaCl,	 0.01%	P-20,	 0.025mM	EDTA	and	1%	DMSO	was	used	 as	 a	

running	buffer.	HSP90	protein	was	produced	as	described	previously.	Chip	surface	

was	generated	with	multi-His-tagged	Hsp90	protein	as	 in	reference.11	The	sensor	

surface	was	regenerated	by	0.35	M	EDTA	and	45%	DMSO	with	additional	60	sec	

injections	 of	 0.1	mg/mL	 trypsin	 and	0.5	M	 imidazole.	 	 In	 some	 experiments,	 the	

protein	 was	 further	 stabilized	 on	 NTA	 surface	 by	 covalent	 amine	 coupling	 as	

advised	by	manufacturer.		Screening	of	fragments	was	conducted	in	dose	response	

titrations	of	nine	two-fold	diluted	experimental	points	with	the	top	concentration	

of	500	µM.	Each	fragment	has	been	tested	at	least	three	times.	Data	processing	was	

performed	 using	 BIAevaluation	 2.1	 (Biacore	 GE	Healthcare	 Bio-SciencesCorp)	 or	

Scrubber2	 (BioLogic)	 software.	 Sensorgrams	 were	 double	 referenced	 prior	 to	

global	 fitting	 of	 the	 concentration	 series	 to	 a	 Steady	 State	 Affinity	 model.	

Representative	sensorgrams	are	shown	in	Supplementary	Figure	26.	
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SUPPLEMENTARY	FIGURES	

Supplementary	Figure	1	

Graphical	representation	of	 the	quasi-bound	state	 in	relation	to	the	dissociation	process.	
The	 macroscopic	 constants	 describing	 the	 behavior	 of	 a	 non-covalent	 complex	 are	
determined	 by	 the	 relative	 free	 energies	 of	 three	 states	 (bound,	 transition	 state	 and	
unbound).	 States	 in-between	 are	 theoretically	 irrelevant,	 so	molecules	1,	 2	 and	3	would	
have	 the	 same	 kinetic	 and	 thermodynamic	 constants.	 The	 Quasi-bound	 state	 is	 merely	
designed	 to	 probe	 the	 slope	 around	 the	 bound	 state,	 obtaining	 an	 approximation	 to	 the	
structural	stability	of	the	binding	mode.	We	find	that	true	ligands	are	more	likely	to	have	a	
profile	like	1,	whereas	many	decoys	have	profiles	similar	to	2	or	3.	

	

Supplementary	Figure	2	

WQB	values	vs.	experimentally	determined	activities	(expressed	as	Log(IC50)),	 for	a	set	of	
41	Fragment-like	CDK2	ligands	taken	from	the	PDB.	Ligand	3FZ1	is	shown	in	red	and	not	
included	 in	 the	 correlation.	As	 shown	below,	 this	 ligand	does	 not	 fulfill	 the	 condition	 of	
using	the	hinge	region	as	attachment	point.	
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Supplementary	Figure	3	

Distribution	of	WQB	values	as	a	 function	of	binding	affinity	(IC50),	 for	the	CDK2	(top)	and	
BRD4	set	(bottom).	Compounds	with	the	same	binding	affinity	present	a	wide	distribution	
of	WQB	values,	but	there	is	a	tendency	towards	higher	values	for	more	potent	compounds.	
Most	notably,	very	low	WQB	values	are	rare	for	potent	ligands.	
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Supplementary	Figure	4	

Binding	 mode	 of	 ligand	 in	 PDB	 structure	 3FZ1.	 This	 ligand	 is	 unusual	 because	 its	
interaction	 with	 the	 hinge	 region	 is	 labile.	 Structural	 and	 SAR	 data	 confirms	 that	 this	
interaction	is	not	important	for	potency.13	Instead,	this	ligand	forms	two	charge-reinforced	
hydrogen	 bonds	 with	 Nζ	 of	 Lys33	 and	 Oδ1	 of	 Asn132,	 from	 which	 it	 draws	 structural	
stability	(WQB	=	10.50	kcal/mol;	Supplementary	Figure	18).	Note	that	the	IC50	reported	in	
the	PDB	for	this	compound	is	wrong.	The	correct	value	is	146	nM.13	

	

Supplementary	Figure	5	

WQB	values	vs.	experimentally	determined	activities	(expressed	as	Log(IC50)),	 for	a	set	of	
30	 BRD4	 ligands	 taken	 from	 the	 PDB.	 The	 points	 in	 red	 have	 not	 been	 included	 in	 the	
correlation.	 They	 correspond	 to	 three	 kinase	 inhibitors	 that	 bind	 to	 BRD4	 as	 an	
unintended	 secondary	 target	 and	 present	 extremely	 low	 resistance	 to	 breaking	 the	
interaction	with	Nδ2	of	Asn120	(PDB	codes	4O74,	4O77	&	4O7E).	
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Supplementary	Figure	6	

ROC	 curves	 (left)	 and	 semilog-ROC	 curves	 (right)	 of	 the	 retrospective	 virtual	 screening	
experiments	on	CDK2	(top),	AA2R	(middle)	and	Trypsin	(bottom).	The	grey	line	indicates	
the	baseline	(random	selection).	For	CDK2,	the	results	corresponding	to	2,	8	and	22	DUck	
runs	 are	 reported.	 For	 AA2R,	 the	 results	 corresponding	 to	 2,	 and	 8	 DUck	 runs	 are	
reported.	For	Trypsin,	only	2	DUck	runs	were	executed.	AUC	values	are	inset	in	the	plots.	
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Supplementary	Figure	7	

Docking	(rDock)	score	vs.	WQB	values	
for	active	(red)	and	inactive	
compounds	(black	or	gray)	in	the	
retrospective	virtual	screening	
datasets	for	CDK2	(top),	AA2AR	
(middle)and	Trypsin	(bottom).	The	
side	panels	show	the	distribution	of	
active	(red)	and	inactive	(black)	
compounds	for	each	individual	
method	(docking	to	the	left,	DUck	at	
the	bottom).	Gray	points	(central	
panel)	and	gray	line	(inferior	panel)	
represent	the	decoys	with	a	docking	
score	within	the	top	25%.	The	orange	
square	highlights	the	area	
corresponding	to	top	25%	docking	
score	and	top	25%	WQB	values,	
where	optimal	enrichment	factors	
(EF)	are	achieved.		
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Supplementary	Figure	8	

Docking	 score	 vs.	WQB	 obtained	 for	 two	 different	 programs	 on	 the	 CDK2	 test	 set.	 Each	
molecule	was	docked	with	rDock	(top)	or	Glide	(bottom)	and	the	binding	mode	generated	
by	 each	 program	 was	 used	 as	 starting	 geometry	 for	 DUck	 simulations.	 In	 both	 cases,	
docking	scores	are	orthogonal	to	WQB	and	a	high	proportion	of	good	scorers	have	very	low	
WQB	values.	The	intersection	between	methods	defines	a	subset	highly	enriched	in	active	
molecules.	Two	intersecting	levels	are	presented	per	program:top25%	docking+	top	25%	
DUck	(left);and	top25%	docking	+	top	12%	DUck	(right).	
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Supplementary	Figure	9	

MMPBSA	 and	 MMGBSA-calculated	 ΔGbind	 vs.	 WQB	 on	 the	 CDK2	 test	 set.	 The	 rDock-
generated	binding	mode	was	used	as	 starting	point	 for	molecular	dynamics	 simulations,	
which	where	 then	 processed	 to	 obtain	MMPBSA	 and	MMGBSA	binding	 free	 energies.	 In	
both	 cases,	 the	 calculated	ΔGbind	 values	 are	 orthogonal	 to	WQB	 and	 a	 high	 proportion	 of	
good	MM(PB/GB)SA	scorers	have	very	low	WQB	values.	The	intersection	between	methods	
defines	a	subset	highly	enriched	in	active	molecules.	Two	intersecting	levels	are	presented	
per	method:	top25%	MM(PB/GB)SA	+	top	25%	DUck	(left);	and	top25%	MM(PB/GB)SA	+	
top	12%	DUck	(right).		
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Supplementary	Figure	10	

Filtering	by	WQB	increases	performance	even	after	consensus	scoring	(CDK2	test	set).	The	
left	 panels	 show	 a	 scatter	 plot	 of	 rDock	 score	 vs.	 Glide	 score	 (top)	 and	 rDock	 score	 vs.	
MMPBSA-calculated	ΔGbind	 (bottom).	Molecules	 ranked	 in	 the	 top	25%	by	both	methods	
(highlighted	area)	are	then	binned	according	to	their	WQB	(right	panels,	also	shown	in	the	
main	text).	Filtering	by	WQB	would	 increase	the	enrichment	factor	 in	a	cut-off	dependent	
manner.	
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Supplementary	Figure	11	

Percentage	of	active	molecules	in	the	top	21	(out	of	47	compounds	tested)	as	a	function	of	
the	number	of	DUck	runs.	At	the	screening	stage	we	carried	out	100	DUck	simulations	per	
ligand,	obtaining	a	hit	rate	of	38%.	Retrospectively,	we	took	50	random	combinations	of	
N={2,4,6,8,10,20,50}	 DUck	 runs	 and	 calculated	 the	 hit	 rates	 that	 would	 have	 been	
obtained.	Averages	are	 represented	as	 filled	 circles	 and	 labeled	with	 their	 actual	 values.	
The	bars	span	from	the	maximum	to	the	minimum	values.		
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Supplementary	Figure	12	

Chemical	 structure	 of	 the	 tested	 compounds.	 Duck	 Class	 refers	 to	 strong,	 medium	 and	
weak	 binders	 (1,	 2	 &	 3,	 respectively).	 NMR	 Class	 1	 are	 true	 binders.	 The	 rest	 are	
considered	inactive.	The	real	numbers	correspond	to	rDock	score	(left)	and	WQB	(right).	
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Supplementary	Figure	12	(cont)	
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Supplementary	Figure	12	(cont)	
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Supplementary	Figure	13	

Crystal	structure	of	Hsp90	in	complex	with	compounds	1	(top),	2	(middle)	and	3	(bottom).	
The	2fofc	electron	density	maps	are	displayed	at	the	1.0	Sigma	level	(Carve	=	1.7).	
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Supplementary	Figure	14	

Predicted	binding	modes	for	compounds	4,	5	and	6	(from	left	to	right).		
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Supplementary	Figure	15	

Dependence	of	 the	 results	 on	 the	 size	of	 the	 receptor.	WQB	 values	of	CDK2	 ligands	were	
calculated	 using	 the	whole	 protein	 as	 receptor	 and	 plotted	 against	 the	 results	 obtained	
with	a	truncated	system	(top).	WQB	values	obtained	with	the	truncated	system	represent	a	
lower	bound	 to	 those	obtained	with	 the	 full	 system.	This	 indicates	 that	when	 the	whole	
system	 is	 included,	 WQB	 may	 not	 reflect	 the	 contribution	 of	 the	 interaction	 under	
investigation.	 Potentially,	 this	 may	 give	 rise	 to	 false	 positives.	 Noteworthy,	 the	 virtual	
screening	 results	 are	 comparable	 to	 those	 obtained	with	 the	 truncated	 system	 (bottom;	
compare	with	Supplementary	Figure	8).		
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Supplementary	Figure	16	

Dependence	of	the	results	on	the	steering	velocity.	Two	different	velocities	are	compared:	
5	Å·ns-1	(used	through	this	work)	and	1.25	Å·ns-1.	Slower	velocities	mean	more	sampling	
and,	 potentially,	 lower	 WQB	 values.	 The	 high	 correlation	 (r2=0.94)	 indicates	 that	 the	
standard	conditions	(v=5	Å·ns-1)	produce	converged	results.	
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Supplementary	Figure	17	

Dependence	of	the	results	on	the	choice	of	reaction	coordinate.	WQB	values	obtained	using	
two	different	atoms	of	 reference	 in	 the	hinge	region	of	CDK2	are	highly	correlated	(top)	
and	afford	similar	enrichment	factors	in	retrospective	virtual	screening	(bottom;	compare	
with	 Supplementary	 Figure	 8).	 The	 atoms	 used	 as	 reference	 (Leu83:N	 in	 the	 x-axis	 and	
Leu83:O	 in	 the	 y-axis)	 are	 part	 of	 the	 hinge	 and	 located	 in	 close	 proximity	 (3Å).	 Most	
ligands	form	a	hydrogen	bond	with	both	atoms	at	the	same	time.	Points	in	red	represent	
ligands	that	only	form	a	hydrogen	bond	with	Leu83:N.	
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Supplementary	Figure	18	

WQB	of	CDK2	ligands	pulling	the	amine	of	Lys33	and	comparison	with	WQB	values	obtained	
for	the	hinge	region	(in	kcal/mol).	Only	those	ligands	capable	of	forming	a	hydrogen	bond	
with	NZ	of	Lys33	have	been	considered.	It	should	be	noted	that	this	part	of	the	active	site	
presents	 large	 conformational	 diversity	 between	 structures.	 In	 consequence,	 the	 DUck	
results	may	be	less	reliable	than	for	the	hinge	region.	

PDB 
Code 

WQB 
(O Leu83) 

WQB 

(Nζ  Lys33) 

1OIQ 4.48 5.18 

3BHT 6.59 9.65 

3BHV 6.94 0.00 

3EJ1 5.77 2.06 

3FZ1 0.12 10.50 

3QTQ 6.66 5.56 

3QTW 9.76 5.91 

3TIY 3.47 0.00 

	

Supplementary	Figure	19	

Proposed	protocol	 for	DUck-based	virtual	 screening	and	comparison	with	MMPBSA.	The	
smaller	size	of	the	system	speeds	up	calculations	by	a	factor	or	5	(Supplementary	Table	2),	
also	 permitting	 shorter	 equilibration	 times.	 Each	 ligand	 undergoes	 equilibration	 and	 at	
least	 two	SMDs	(45	GPU	minutes).	Molecules	with	WQB	 above	a	given	 threshold	 (e.g.	 t=6	
kcal/mol)	would	 then	 proceed	 to	 N	 cycles	 of	 unbiased	MD	 +	 SMD	 simulations	 (42	 GPU	
minutes	per	cycle).	A	similar	protocol	for	MMPBSA	would	require	at	least	2	GPU	hours	of	
equilibration	 followed	 by	 N	 cycles	 of	 1ns	 MD	 simulation	 and	 MMPBSA	 calculation	 of	
representative	snapshots	(1	GPU	hour	+	20	CPU	minutes	per	cycle).		
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Supplementary	Figure	20	

CDK2	test	set:	correlation	between	LogIC50	and	WQB	 is	not	caused	by	Molecular	Weight.	
The	correlation	between	WQB	and	MW	(r2=0.07)	is	lower	than	the	correlation	between	WQB	
and	LogIC50	 (r2=0.23)	 or	 between	LogIC50	 and	MW	 (r2=0.36).	Red	points	 (discussed	 in	
Supplementary	Figure	2)	are	excluded	from	all	correlations.	
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Supplementary	Figure	21	

BRD4	test	set:	correlation	between	LogIC50	and	WQB	 is	not	caused	by	Molecular	Weight.	
The	correlation	between	WQB	and	MW	(r2=0.17)	is	lower	than	the	correlation	between	WQB	
and	 logIC50	 (r2=0.26)	 or	 between	 LogIC50	 and	MW	 (r2=0.43).	 Red	 points	 (discussed	 in	
Supplementary	Figure	5)	are	excluded	from	all	correlations.	
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Supplementary	Figure	22	

ROC	curves	comparison	of	DUck	(in	standalone	mode)	with	unbiased	docking	with	Glide	
and	rDock	for	the	three	test	systems:	CDK2,	AA2AR	and	Trypsin.	
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Supplementary	Figure	23	

ROC	 curves	 comparison	 of	 DUck	 (in	 standalone	 mode)	 with	 pharmacophore-guided	
docking	with	Glide	and	rDock	for	the	three	test	systems:	CDK2,	AA2AR	and	Trypsin.	
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Supplementary	Figure	24	

DUck	 postfiltering	 improves	 early	 enrichment.	 Semilogarithmic	 ROC	 curves	 for	 the	
retrospective	 virtual	 screening	of	 CDK2,	 obtained	with	 the	best-performing	program	 for	
this	 test	 set	 (Glide),alone	 or	 in	 combination	 with	 three	 different	 postfiltering	 methods:	
DUck	(left);	MMPBSA	(middle)	and	rDock	(right).	Ligands	were	initially	ranked	according	
to	Glide’s	score.	Then,	moved	to	the	back	of	the	list	if	they	were	not	in	the	top	12%	of	the	
rescoring	method.	This	shows	that	the	Glide-DUck	combination	is	superior	to	Glide	alone.	
For	 this	 test	 set	 the	 effect	 is	most	 prominent	 in	 the	 top	 1%	 to	 5%	of	 the	 library.	 Glide-
MMPBSA	 combination	 is	 provided	 for	 comparison	 and	 affords	 very	 similar	 results.	 The	
Glide-rDock	combination	does	not	improve	early	enrichment.	

	

	

Supplementary	Figure	25	

ROC	curves	comparison	of	DUck	(in	standalone	mode)	with	MMPBSA	and	MMGBSA	for	
CDK2	
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Supplementary	Figure	26	

Examples	of	 typical	 sensorgrams	 (left	 column)	and	 steady	 state	plots	 (right	 column)	 for	
the	 binding	 of	 the	 fragment	 hits	 to	 Hsp90.	 Fragments	 were	 tested	 in	 a	 2-fold	 dilution	
series	 starting	 at	 500uM	 or	 250uM	 concentrations.	 Steady	 state	 values	 were	 calculated	
4seconds	before	the	injection	stopped	and	plotted	against	the	concentration.	The	KD	value	
was	calculated	by	fitting	the	data	to	a	steady	state	affinity	model		(Biacore	T200	evaluation	
software	GE	Healthcare)	
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SUPPLEMENTARY	TABLES	

Supplementary	Table	1	

Chemical	structures	and	summary	of	results	for	the	9	Hsp90	NMR	Class	1	hits.	

ID	 Structure	 MW	

Docking	 DUck	

Xray	

SPR	

Kd	

(mM)	

PDB	

Simb	

ChEMBL	

Simb	Score	 Ranka	WQB	Ranka	

1	

	

248,72	 -24,97	 79	 9,1	 10	 Yes	 77	
2XDX	
(0.37)	

CHEMBL	
1340447	
(0.44)	

2	

	

221,29	 -25,03	 73	 8,2	 11	 Yes	 320	
2WI6	
(0.29)	

CHEMBL	
1536318	
(0.54)	

3	

	

230,22	 -26,62	 19	 11,3	 1	 Yes	 700	
4EFU	
(0.32)	

CHEMBL	
1458840	
(0.51)	

4	

	

240,33	 -26,45	 22	 7,4	 16	 -	 730	
3WHA	
(0.29)	

CHEMBL	
1542436	
(0.37)	

5	

	

165,20	 -23,77	 128	 8,1	 12	 -	 -	
4EFT	
(0.27)	

CHEMBL	
1313412	
(0.28)	

6	

	

206,27	 -23,26	 138	 9,5	 5	 -	 -	
3HHU	
(0.42)	

CHEMBL	
2103879	
(0.42)	

7	

	

236,30	 -25,45	 51	 7,8	 15	 -	 -	
3B24	
(0.31)	

CHEMBL	
1375884	
(0.36)	

8	

	

224,66	 -25,35	 58	 7,0	 22	 -	 -	
2XDX	
(0.35)	

CHEMBL	
1383799	
(0.37)	

22	

	

237,29	 -28,27	 2	 5,6	 33	 -	 -	
3O0I	
(0.27)	

CHEMBL	
1834092	
(0.33)	

a	Position	within	the	list	of	149	molecules	that	were	evaluated	with	DUck.	bHsp90	structure	in	the	PDB	or	
compound	with	Hsp90	activity	in	ChEMBL	(as	of	23/03/2016)	with	the	closest	similarity	to	the	fragment	hit.	
Similarity	(values	in	parentheses)	was	calculated	with	Open	Babel	using	the	FP2	fingerprint.14	
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Supplementary	Table	2	

Number	 of	 atoms	 of	 the	 investigated	 systems.	 On	 average,	 using	 a	 protein	 chunk	 with	
explicit	 solvation	 produces	 a	 system	 20%	 in	 size	 relative	 to	 the	 whole	 protein.	 As	
computational	 times	 scale	 linearly	with	 the	number	of	particles,	 this	 represents	a	5-fold	
gain	in	efficiency.	

System	

Number	of	Atoms	

Full	System	 Protein	Chunk	for	DUck	
Protein	 Periodic	Boxa	 Proteinb	 Periodic	Boxa,b	

Hsp90	 3291	 30387	 527	 (16,0%)	 9415	 (31,0%)	
Cdk2	 4578	 46803	 345	 (7,5%)	 9110	 (19,5%)	
AA2AR	 4603	 73039	 525	 (11,4%)	 8815	 (12,1%)	
Trypsin	 3231	 26721	 335	 (10,4%)	 9696	 (36,3%)	
Average	 3926	 44238	 433	 (11,0%)	 9259	 (20,9%)	

a	Protein	solvated	with	TIP3	water	molecules	using	Amber’s	tleap	program.	In	all	
cases,	the	periodic	system	is	a	truncated	octahedral	box,	the	distance	parameter	is	
12.0	and	the	closeness	parameter	is	0.65.b	Values	in	parentheses	are	percentage	of	
atoms	relative	to	the	full	system.	

Supplementary	Table	3	

Detail	of	the	receptor	definition	used	in	DUck	simulations.	Water	and	residue	numbers	
were	taken	from	the	corresponding	PDB	file.	

System	
Reference	

Atom	

PDB	Code	

(Chain)	
Protein	residues	included	as	receptor	

Water	

Molecules	

CDK2 LEU 83 NH 1CKP (A) 

ILE10 VAL18 LYS20 ALA21 VAL29 VAL30 

ALA31 LEU32 VAL64 PHE80 GLU81 PHE82 

LEU83 HIS84 GLN85 ASP86 LEU133 LEU134 

ILE135 ASN136 ALA144 

- 

AA2AR ASN 253 ND2 3EML (A) 

LEU167 PHE168 GLU169 VAL172 PRO173 

MET174 MET177 VAL178 ASN181 PHE182 

TRP246 LEU247 PRO248 LEU249 HIS250 

ILE251 ILE252 ASN253 CYS254 PHE255 

THR256 PHE257 HIS264 ALA265 PRO266 

LEU267 MET270 TYR271 LEU272 ALA273 

ILE274 

- 

Trypsin ASP189 OD1 2AYW (A) 

HIS57 LEU99 ASP102 ASP189 SER190 CYS191 

GLN192 GLY193 ASP194 SER195 VAL213 

SER214 TRP215 GLY216 SER217 GLY219 

CYS220 ALA221A GLN221 LYS224 PRO225 

GLY226 VAL227 TYR228 THR229 

1017 1096 

1098 1101 

Hsp90 ASP93 OD2 2YED (A) 

GLU47 LEU48 ILE49 SER50 ASN51 SER52 

SER53 ASP54 ALA55 LEU56 ASP57 LYS58 

ILE78 ILE91 VAL92 ASP93 THR94 GLY95 ILE96 

GLY97 MET98 GLY137 PHE138 VAL150 ILE151 

THR152 GLY183 THR184 LYS185 VAL186 

2043 2045 

2049 2105 

2107 

BRD4 ASN140 ND2 3U5L (A) 

TRP81 PRO82 PHE83 GLN84 GLN85 PRO86 

VAL87 ASP88 ALA89 LYS91 LEU92 ASN93 

LEU94 TYR97 ILE101 PRO104 MET105 

THR131 ASN135 CYS136 TYR137 TYR139 

ASN140 ASP144 ASP145 ILE146 MET149 

- 
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Supplementary	Table	4	

Data	collection	and	refinement	statistics	for	Hsp90	in	complex	with	Compounds	1,	2	and	
3.Rfree	is	the	R	factor	calculated	using	5%	of	the	reflection	data	chosen	randomly	and	
omitted	from	the	refinement	process,	whereas	Rcryst	is	calculated	with	the	remaining	data	
used	in	the	refinement.	Rms	bond	lengths	and	angles	are	the	deviations	from	ideal	values;	
the	rms	deviation	in	B	factors	is	calculated	between	covalently	bonded	atoms.		

Compound	 1	 2	 3	

Data	collection	statistics	

Resolution	(Ǻ)	 2.20	 2.00	 2.10	
Space	group	 I222	 I222	 I222	
Cell	dimensions	(Ǻ)	
a	=	
b	=	
c	=		

66.87	
90.29	
98.33	

64.96	
88.41	
99.06	

68.98	
88.18	
96.90	

No.	molecules/asymmetric	unit	 1	 1	 1	
Solvent	content	(%)	 57.25	 54.73	 57.41	
Measured	reflections	 66152	 66886	 62479	
Unique	reflections	 15401	 19011	 17526	
Completeness:	Overall	/	in	hrba	(%)	 99.5	/	98.5	 96.7	/	90.9b	 99.4	/	99.9	

Mean	I/σI:	Overall	/	in	hrb	 11.2	/	2.8	 11.1	/	1.3	 8.33	/	0.95	

Rmerge:	Overall	/	in	hrb	(%)	 0.083	/	0.315	 0.048	/	0.412	 0.074	/	0.555	

Refinement	statistics	

Rfree	(%)	 24.0	 30.8b	 27.6	
Rcryst	(%)	 19.1	 22.1	 22.4	
Rms	Deviations:	
Bonds	(Ǻ)	
Angles	(o)	
B	Factor	(Ǻ2)	

0.018	
1.920	
4.679	

	
0.019	
1.958	
5.536	

	
0.019	
2.046	
6.415	

PDB	Code	 5FNC	 5FND	 5FNF	
ahrb:	highest	resolution	bin.	bDiffraction	data	for	this	structure	was	collected	from	a	crystal	that	did	
not	cryo-freeze	correctly	therefore	the	data	in	some	of	the	resolution	bins	was	of	a	lesser	quality	
than	the	equivalent	data	collected	from	the	other	two	crystals.	This	is	likely	to	have	impacted	the	
refinement	statistics	for	this	structure.	
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Supplementary	Table	5	

List	 of	 ligands	 in	 the	 CDK2	 test	 set.	 Ligands	 highlighted	 in	 red	 are	 not	 included	 in	 the	
correlation	plotted	in	Supplementary	Figure	2	and	Supplementary	Figure	25.	

PDB No.Atoms MW IC50 (uM) Log IC50 WQB (kcal/mol) 

1E1V 21 247.303 12.00 1.08 5.53 

1E1X 22 251.292 1.30 0.11 3.19 

1JSV 23 265.293 2.00 0.30 6.93 

1JVP 19 233.274 1.60 0.20 5.59 

1OIQ 23 271.325 2.90 0.46 4.98 

1PF8 21 242.26 0.03 -1.51 6.88 

1PXJ 16 206.267 13.00 1.11 1.76 

1PXK 19 249.293 2.20 0.34 4.84 

1PXM 23 298.365 0.06 -1.22 7.32 

1VYW 24 291.355 0.04 -1.43 12.13 

1VYZ 19 227.268 0.29 -0.54 12.19 

1W0X 25 298.351 5.00 0.70 3.97 

1WCC 10 129.55 350.00 2.54 3.33 

2BTR 19 261.344 0.10 -1.02 6.50 

2BTS 24 300.417 0.02 -1.70 8.94 

2C4G 22 270.294 1.15 0.06 13.18 

2C5O 17 207.275 6.50 0.81 3.12 

2CLX 21 218.221 3.50 0.54 6.94 

2EXM 17 203.249 78.00 1.89 7.84 

2R3H 19 239.282 20.00 1.30 4.18 

2VTA 10 118.139 185.00 2.27 6.05 

2VTH 18 223.249 120.00 2.08 1.97 

2VTJ 22 286.739 1.90 0.28 1.68 

2VTL 16 187.203 97.00 1.99 7.89 

2VTM 11 144.137 1000.00 3.00 1.68 

2VTN 22 262.246 0.85 -0.07 9.11 

2VTR 16 234.67 1.50 0.18 5.34 

3BHT 20 241.255 0.01 -1.96 6.28 

3BHV 26 293.291 0.08 -1.10 7.30 

3EJ1 20 252.281 0.12 -0.92 6.41 

3FZ1 24 278.352 0.15 -0.84 0.12 

3PXY 22 233.233 5.90 0.77 3.66 

3QQK 21 259.328 15.00 1.18 7.87 

3QTQ 21 262.332 3.10 0.49 6.67 

3QTR 24 295.361 0.93 -0.03 10.90 

3QTW 24 296.349 0.65 -0.19 11.51 

3R8Z 21 262.332 49.00 1.69 6.57 

3RZB 20 236.294 100.00 2.00 9.31 

3TIY 20 220.185 17.00 1.23 3.38 

3TIZ 23 265.314 150.00 2.18 2.23 

4EZ3 25 296.305 45.00 1.65 2.33 
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Supplementary	Table	6	

List	 of	 ligands	 in	 the	 BRD4	 test	 set.	 Ligands	 highlighted	 in	 red	 are	 not	 included	 in	 the	
correlation	plotted	in	Supplementary	Figure	5	and	Supplementary	Figure	26.	

	

PDB No.Atoms MW IC50 or Kd (nM) Log IC50 WQB (kcal/mol) 

3MXF 31 458.00 49.00 -1.31 6.63 

3U5J 22 308.77 2460.00 0.39 7.00 

3U5L 23 323.78 640.00 -0.19 9.12 

4A9L 22 325.38 30000.00 1.48 4.78 

4C66 23 343.85 79400.00 1.90 3.92 

4CFK 23 307.35 1830.00 0.26 3.13 

4CFL 23 306.36 1330.00 0.12 3.63 

4E96 24 347.39 136.00 -0.87 4.51 

4HBV 13 241.09 23000.00 1.36 2.51 

4HBW 18 269.32 4800.00 0.68 5.98 

4HBX 20 295.36 1900.00 0.28 5.53 

4HBY 22 317.36 4400.00 0.64 5.42 

4HXR 21 338.41 4100.00 0.61 6.54 

4HXS 23 346.42 4100.00 0.61 4.90 

4J0R 22 295.34 386.00 -0.41 7.70 

4J0S 22 295.34 382.00 -0.42 7.10 

4LR6 13 174.20 33000.00 1.52 3.85 

4LZS 15 208.26 16000.00 1.20 2.84 

4MEN 20 267.33 125000.00 2.10 3.84 

4MEO 22 292.34 250000.00 2.40 5.73 

4MEQ 17 225.25 250000.00 2.40 4.62 

4O72 30 413.49 1000.00 0.00 9.00 

4O74 38 521.66 25.00 -1.60 1.67 

4O77 25 331.35 2500.00 0.40 1.10 

4O78 30 406.44 4600.00 0.66 4.07 

4O7A 23 349.17 19000.00 1.28 3.72 

4O7E 24 313.36 5700.00 0.76 0.00 

4PCE 19 253.34 7000.00 0.85 4.30 

4PCI 19 252.31 7500.00 0.88 4.84 

4UYD 15 205.22 79400.00 1.90 4.03 
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