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Mixing quantum and classical mechanics

Oleg V. Prezhdo*
Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712

Vladimir V. Kisil†

Institute of Mathematics, Economics, and Mechanics, Odessa State University, ulica Petra Velikogo, 2, Odessa-57, 270057, Ukraine

~Received 17 October 1996; revised manuscript received 3 March 1997!

Quantum-classical mixing is studied by a group-theoretical approach, and a quantum-classical equation of

motion is derived. The quantum-classical bracket entering the equation preserves the Lie algebra structure of

quantum and classical mechanics, and, therefore, leads to a natural description of interaction between quantum

and classical degrees of freedom. The exact formalism is applied to coupled quantum and classical oscillators.

Various approximations, such as the mean-field and the multiconfiguration mean-field approaches, which are

of great utility in studying realistic multidimensional systems, are derived. Based on the formulation, a natural

classification of the previously suggested quantum-classical equations of motion arises, and several problems

from earlier works are resolved. @S1050-2947~97!03507-5#

PACS number~s!: 03.65.Sq, 03.65.Db, 03.65.Fd

I. INTRODUCTION

Many phenomena in nature are described by quantum me-

chanics at a fundamental level and with high precision. Yet,

there exist numerous situations where mixed quantum-

classical models are needed. In some cases the phenomena

are too complex to allow for a fully quantum approach, in

others a consistent quantum theory is lacking. Classical me-

chanics often provides a more suggestive description and a

clearer picture of physical events. Applications of various

quantum-classical approaches range from biochemical and

condensed-matter chemical reactions, where the large dimen-

sionality of the systems of interest requires approximations,

to the evolution of the Universe and cosmology, where no

theory of quantum gravity has been established.

The issue of treating quantum and classical degrees of

freedom within the same formalism has been discussed re-

cently in a number of publications @1–10#. The interest was

spurred @11# by the cosmological problem of defining the

backreaction of quantum matter fields on the classical space-

time background, where classical variables should be inde-

pendently correlated with each individual quantum state. The

traditional quantum-classical mean-field approach fails the

last requirement and was generalized in Ref. @12#. ~For a

fully quantum approach to cosmology see Ref. @13#.! Earlier

a similar situation was encountered in chemical physics,

where quantum-classical trajectory methods were employed

to simulate gas-phase scattering phenomena @14–21# and,

later, chemical dynamics on surfaces @22# and in liquids @23–
27#. It was noticed in these studies that asymptotically dis-

tinct quantum evolutions should correlate with different clas-

sical trajectories.

The first relationship between quantum and classical vari-

ables is due to Ehrenfest @28# who showed that the equation

of motion for the average values of quantum observables

coincides with the corresponding classical expression. ~Sur-

prisingly, the first mathematically rigorous treatment on the
subject was not carried out until as late as 1974, see Ref.
@29#.! Ehrenfest’s result leads to the mean-field approach,
where classical dynamics is coupled to the evolution of the
expectation values of quantum variables @30–33#. The mean-
field equations of motion possess all of the properties of the
purely classical equations and are rigorous insofaras the
mean values of quantum operators are concerned. However,
an expectation value does not provide information about the
outcome of an individual process. The mean-field approach
gives a satisfactory description of the classical subsystem as
long as changes within the quantum part are fast compared to
the characteristic classical time scale. If classical trajectories
depend strongly on a particular realization of the quantum
evolution, the mean-field approximation is inadequate. The
problem can be corrected, for instance, by the introduction of
stochastic quantum hops between preferred basis states,
which define classical potential energy surfaces, with prob-
abilities determined by the usual quantum-mechanical rules
@34–36#. The decoherent histories interpretation of quantum
mechanics @37,38# formulated on the level of individual his-
tories @39,40# establishes a theoretical foundation of the sur-
face hopping technique @41#.

Similarity between the algebraic structures underlying
quantum and classical mechanics provides a consistent way
of improving upon the mean-field approximation, as ex-
plored in Refs. @2,12,15#, which aim to derive a quantum-
classical bracket that reduces to the quantum commutator
and the Poisson bracket in the purely quantum and classical
cases. In addition to the reduction property the bracket
should satisfy other criteria so as to produce physically
meaningful quantum-classical evolutions. For example, an
antisymmetric bracket conserves the total energy.
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Recently, Kisil proposed a mathematical construction that
naturally envelops classical and quantum mechanics and is
named here p mechanics @42#. Formulated within the frame-
work of operator algebras, the p-mechanical equation of mo-
tion reduces to the appropriate quantum or classical equa-
tions under suitable representations of the algebra of
observables. In this paper we extend the ideas of p mechan-
ics to incorporate mixed quantum-classical descriptions. We
derive the quantum-classical bracket and explicitly show that
it satisfies the properties common to quantum and classical
mechanics. The technique described in this paper allows one
to construct families of mixed quantum-classical approaches,
each having a specific set of properties. Focusing on the
simplest among such families we investigate the relationship
between the quantum-classical equations of motions pro-
posed by other authors @2,12,15#.

The format of this paper is as follows: In Sec. II we sum-
marize p mechanics and introduce the essential mathematical
definitions. In Sec. III we construct the simplest
p-mechanical model that adopts two distinct sets of variables
associated with quantum and classical degrees of freedom.
By taking an appropriate representation for the model we
derive the quantum-classical bracket, show that it is antisym-
metric, and discuss the Jacobi identity. The procedure pre-
sented in Sec. III allows us to discriminate between the very
similar brackets of Refs. @12# and @15#, and to obtain the
antisymmetric analog of the bracket of Ref. @2#. In Sec. IV
we consider coupled classical and quantum harmonic oscil-
lators and illustrate how the dynamics of a mixed quantum-
classical system can be studied by p mechanics without ex-
plicit reference to an equation of motion. In Sec. V we
investigate various approximations to the general quantum-
classical description, including the mean-field and the multi-
configuration mean-field approaches. In the concluding sec-
tion we classify the quantum-classical equations of motion
from earlier papers according to the present formalism and
summarize our results.

II. P MECHANICS

A. The elements of P mechanics

We recall the constructions from Refs. @42,43# and intro-
duce appropriate modifications.

Definition 1. An operator algebra P gives a
p-mechanical description @42# of a system if the following
conditions hold.

~1.1! The set P̂ of all irreducible representations ph of P

is a disjoint union of subsets P̂5øpPPP̂p parametrized by
the elements of a set P . The elements of the set P are asso-
ciated with different values for the Planck constant. We refer
to this set as the set of Planck constants. If for p0 the set

P̂p0
consists of only commutative ~and, therefore, one-

dimensional! representations, then P̂p0
gives a classical de-

scription. If P̂p0
5$pp0

% consists of a single noncommutative

representation pp0
, then P̂p0

gives a purely quantum model.

Sets P̂p of other types provide mixed ~quantum-classical!
descriptions.

~1.2! Let P̂ be equipped with a natural operator topology
~for example, it may be the Jacobson topology @44# or the

*-bundle topology @45,46#!. Then P has a natural factor to-

pology induced by the partition P̂5øpPP .
~1.3! ~Dynamics!: the algebra P is equipped with the one-

parameter semigroup of transformations G(t): P→P,t

PR
1. All sets P̂p , pPP are preserved by G(t). Namely,

for any pPP̂p all new representations p t5p+G(t) again

belong to P̂p .
~1.4! ~The correspondence principle!: let S: p°S(p)

PPp be an operator-valued section, which is continuous in
the *-bundle topology @45,46# over P . Then for any t , i.e., at
any moment of time, the image S t(p)5G(t)S(p) is also a
section due to statement ~3!. In the *-bundle topology the
sections S t(p) are continuous for all t .

The above conditions are general. Next, we describe an
important particular case of group quantization @43#. All
components of p mechanics ~operator algebra, partition of
representations, topology! readily arise there.

Construction 2. Group quantization comprises the follow-
ing steps.

~2.1! Let V5$x j%, 1< j<N be a set of physical variables
defining the state of a classical system. Classical observables
are real-valued functions on the states. The best known and
the most important case is the set $x j5q j , x j1n5p j%, 1< j

<n , N52n of coordinates and momenta of n classical par-
ticles. The observables are real-valued functions on R

2n. We
will use this example throughout this section.

~2.2! We complete the set V with additional variables

x j , N, j<N̄ , such that the new set V̄ forms the smallest
algebra, which contains V and is closed under the Poisson
bracket

$x i ,x j%PV̄, for all x i ,x jPV̄.

In the above example we add the unit function x2n1151.

The complete set contains N̄52n11 elements satisfying the
famous relations

$x j ,x j1n%52$x j1n ,x j%5x2n11 . ~1!

All other Poisson brackets are zero.

~2.3! We form an N̄-dimensional Lie algebra p with the

frame $ x̂ j%, 1< j<N̄ defined by the formal mapping ˆ :
x j° x̂ j . The commutators of the frame vectors are formally
defined by the formula

@ x̂ i , x̂ j#5$x i ,x ĵ%. ~2!

We extend the commutator onto the whole algebra by linear-
ity.

For our example, p is the Lie algebra corresponding to the
Heisenberg group ~see the next subsection for details!.

~2.4! We introduce the algebra P of convolutions induced
by p. The convolution operators are observables in the group
quantization, and by analogy with the classical case they can
be treated as functions of x̂ j . Particular representations of the
convolution algebra in spaces L

2(S) give different descrip-
tions of a physical system. The family of all one-dimensional
representations of P corresponds to classical mechanics;
various noncommutative representations lead to quantum

and quantum-classical descriptions with different Planck

constants.
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For our example the following possibilities exist. ~a! S

5R
n, x̂ j5X j5M q j

, x̂ j1n52i\]/]q j , the convolutions are

represented by pseudodifferential operators ~PDO!, and we
obtain the Dirac-Heisenberg-Schrödinger-Weyl quantization

by PDO. ~b! S5R
2n, x̂ j5X j5M q j

, x̂ j1n5M p j
, the convo-

lutions are represented by ~operators of multiplication by!
functions, and we obtain the classical description that we
started from.

It is an empirical observation that the steps above lead to

a nilpotent Lie group, with the dual Ẑ of the center Z of the
group interpreted as the set of Planck constants. Now we
illustrate this fact by a well-known example of quantization,
and later in Sec. III by constructing a quantum-classical
model.

B. The Heisenberg group generates quantum

and classical mechanics

In the previous subsection we claimed that the nth-order
Heisenberg group H

n describes a set of n quantum particles.
Here we show how this description is achieved.

H
n is generated by the n-dimensional translation and mul-

tiplication operators e ip•D, e iq•X, p , qPR
n satisfying the

Weyl commutator relations

e2pip•De2piq•X
5e2pip•qe2piq•Xe2pip•D. ~3!

An element of the Heisenberg group gPH
n is defined by

2n11 real numbers (p ,q ,s), p , qPR
n, sPR. The compo-

sition of two elements g and g8 is given by

~p ,q ,s !~p8,q8,s8!5@p1p8,q1q8,s1s81
1
2 ~pq82p8q !# .

D j , X j , and I form a (2n11)-dimensional basis of the
Heisenberg algebra hn with a one-dimensional center Z

5$sI;sPR%. Since all second- and higher-order commuta-
tors of the basis elements vanish, H

n and hn are step-two
nilpotent Lie group and algebra, respectively.

The unitary irreducible representations of the Heisenberg
group are classified by the Stone–von Neumann theorem
@47#. They are parametrized by a real number h , the charac-
ter of the one-dimensional center Z. A nonzero h gives non-
commutative unitary representations acting on the Hilbert
space L2(Rn):

rhÞ0~p ,q ,s !5e2pi~p•hD1q•X1s•hI !. ~4!

The n components of X and hD are the usual quantum-
mechanical position X j ~multiplication by x j! and momen-
tum hD j ~h/2pi times differentiation with respect to x j! op-
erators characterized by the Heisenberg commutator relation

@hD j ,Xk#5d jk

h

2pi
I . ~5!

In the limit of zero h the center Z of the Heisenberg group
vanishes, and H

n becomes isomorphic to R
2n. The irreduc-

ible representations of the latter are homomorphisms from
R

2n into the circle group acting on C

rh50~p ,q !5e2pi~pk1qx !. ~6!

The dual Ĥn as a set is equal to $R\0%øR
2n ~see Fig. 1!. It

has the natural topology coinciding on $R\0% with the Eu-
clidean topology. Any sequence of representations $rh j

%,

h j→0, h jÞ0 is dense in whole R
2n. The last property is

fundamental for the correspondence principle.
The unitary representations of Hn can be extended to the

convolution algebra L1(Hn). Namely, if APL1(Hn), then it
defines a convolution on the Heisenberg group:

Ab~g !5E
H

n
A~g8!b~g+g8!dg8.

The representation rh maps the convolution to the operator

rh~A !5E
H

n
A~g !rh~g !dg

5E E E A~p ,q ,s !rh~p ,q ,s !dp dq ds . ~7!

The p-mechanical equation of motion ~see @42# for details!
for an element A(g) (g[$p ,q%) of the convolution algebra
is defined by

]A~g !

]t
52pi@H ,A#~g ! ~8!

with

@H ,A#~g !5E
H

n
@H~g8!A~g8+g !2A~g8!H~g8+g !#dg8,

where H(g) is the Hamiltonian. The noncommutative uni-
tary representations of Eq. ~4! reduce this equation to the
Heisenberg equation of motion for operators acting on the
Hilbert space L2(Rn). Under the commutative representa-
tions of Eq. ~6! the p-mechanical equation of motion be-
comes the Hamilton equation for functions on the phase
space R

2n.
We consider the last statement in more detail by means of

the pseudodifferential calculus, which is directly related to

FIG. 1. The Heisenberg group and its dual.
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the above group-theoretical developments and the problem
of quantization. The noncommutative unitary representations
of the Heisenberg group allow one to define integral opera-
tors corresponding to functions on phase space. Given a
function s(k ,x) on R

2n one obtains the operator s(D ,X) on
L2(Rn) by the formula

s~hD ,X !5E
H

n
F21@s#~g !rhÞ0~g !dg

5E E F21@s#~p ,q !e2pi~p•hD1q•X !dp dq ,

~9!

where F21@ # denotes the inverse Fourier transform, and the
trivial integration over s has been carried out. The action of
the operator s(D ,X) on a function f (x)PL2(Rn) follows
from the definition of hD and X @see Eq. ~4! and the related
paragraph#, and is given by

s~hD ,X ! f ~x !5E E F21@s#~p ,q !epihpq12piqx

3 f ~x1hp !dp dq

5h2nE E F21@s#S y2x

h
,q D

3epiq~x1y ! f ~y !dy dq

5h2nE E sS k ,
x1y

2
D e2pi~x2y !k/h f ~y !dydk

~10!

or

s~hD ,X ! f ~x !5E Ks~x ,y ! f ~y !dy ,

Ks~x ,y !5h2nE sS k ,
x1y

2
D e2pi~x2y !k/hdk , ~11!

where Ks is the kernel of the integral operator s(hD ,X). In
the language of the pseudodifferential calculus the function
s(k ,x) is called the symbol of the operator s(hD ,X). If
instead of rhÞ0 one uses a commutative representation

rh50 , the transformation of Eq. ~9! reduces to identity and
we recover the classical observable s(k ,x). Equations ~9!–
~11! are known as the Weyl correspondence principle.

The symbol s♯ht(k ,x) of the product of two operators
s♯ht(hD ,X)5s(hD ,X)t(hD ,X) can be obtained by appli-
cation of a noncommutative representation to the convolu-
tion on the Heisenberg group @see Eq. ~7!# or directly from
the Weyl rule. It is given in terms of the symbols of indi-
vidual operators by

s♯ht~k ,x !

5S 2

h
D 2nE E E E s~z ,u !t~h ,v !

3e4pi@~x2u !~k2h !2~x2v !~k2z !#/hdu dv dh dz . ~12!

It follows that the noncommutative representations of the
Heisenberg group transform the p-mechanical equation of
motion ~8! into the equation for operators on L2(Rn):

]

]t
A~hD ,X !5

2pi

h
@H ,A#♯h

~hD ,X !, ~13!

where @H ,A#♯h
[@H♯hA2A♯hH# , the operation of taking

the product of two symbols ♯h is defined by Eq. ~12!, and
the operators A(hD ,X) and @H ,A#♯h

(hD ,X) are recovered

from their symbols A(k ,x) and @H ,A#♯h
(k ,x) by the appli-

cation of the Weyl transform Eqs. ~9!–~11!. This is the
quantum-mechanical law of motion in the Heisenberg form.

In order to obtain the corresponding classical expression it
is useful to cast the product rule of Eq. ~12! in the form of an
asymptotic expansion in powers of h . The integration over h
and z and the change of variables (u2x)/h→u , (v

2x)/h→v converts Eq. ~12! to

s♯ht~k ,x !5h22nE E F1
2l@s#~v ,x1uh !

3F1@t#~u ,x1vh !e4pi~v2u !kdu dv ,

where F1 and F1
2l denote the Fourier transform and its in-

verse with respect to the first variable only. Expanding s and
t in the second variable around x and applying the Fourier
inversion formula to each term in the Taylor series we obtain

s♯ht~k ,x !5 (
a1b<g

~ iph !a1b~21 !a

a!b!
Dk

bDx
as~k ,x !Dk

aDx
bt~k ,x !1O~hg!

5(
j50

g
~ iph ! j

j!
@Dk ,sDx ,t2Dk ,tDx ,s# js~k ,x !t~k ,x !1O~hg!, ~14!

where the second subscripts s and t of D indicate the sym-
bol to be acted upon. The asymptotic expression for the sym-
bol of the commutator of two operators follows from Eq.
~14!. The even-order terms in the sum cancel out to produce

@s♯ht2t♯hs#~k ,x !52i(
j50

g
~21 ! j~ph !2 j11

~2 j11 !!

3@Dk ,sDx ,t2Dk ,tDx ,s#2 j11

3s~k ,x !t~k ,x !1O~h2g11!. ~15!
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The series expansion of the symbol of the commutator Eq.
~15! allows one to derive the Poisson bracket as the classical
limit of the symbol of the Heisenberg commutator of two
quantum operators:

lim
h→0

2pi

h
@s♯ht2t♯hs#~k ,x !5$s~k ,x !,t~k ,x !%.

~16!

Since the commutative representations of the Heisenberg
group leave symbols of operators unchanged, i.e.,

*HnF21@s#~g !rh50~g !dg5**F21@s#

3~p ,q !e2pi~pk1qx !dp dq

5s~k ,x !,

we deduce that under the commutative representations the
p-mechanical equation of motion ~8! reduces to the Hamilton
equation

]

]t
A~k ,x !5$H~k ,x !,A~k ,x !%. ~17!

In summary, the Heisenberg group contains the exact
quantum and classical descriptions of a system of particles
and provides the correspondence principle between the de-
scriptions. We refer the reader to Chapters 1 and 2 of Ref.
@47# for further information on the subject.

III. THE QUANTUM-CLASSICAL EQUATION OF

MOTION

We proceed to derive an equation of motion for a mixed
quantum-classical system by considering an appropriate Lie
group that will play the role of the Heisenberg group of the
standard quantization. The desired group can be constructed
based on the following observations. Two distinct sets of
variables $D ,X% and $D8,X8% should correspond to quantum
and classical parts, accordingly. An operator from the first
set may or may not commute with an operator from the
second set. Each set should have a Planck constant of its
own. Then the Planck constant of the second set can ap-
proach zero leading to the classical limit for the second sub-
system and leaving the first subsystem quantum. ‘‘Planck
constants’’ arise as characters of the center of a Lie group,
therefore, the Lie group should possess a two-dimensional
center.

The ‘‘quantum-classical’’ group is generated by two sets
of variables $hD ,X% and $h8D8,X8% satisfying the commu-
tator relations

@hD j ,Xk#52ihd jkI , @h8D
j8
8 ,X

k8
8 #52ih8d jkI8,

1< j ,k<n; 1< j8,k8<n8. ~18!

Other commutators are zero. The group has a two-
dimensional center Z5$sI1s8I8;s ,s8PR%. The irreducible
representations of a nilpotent Lie group are induced by the
characters of the center @48#. For the quantum-classical
group the characters are

m:~z ,z8!°exp@ i~hz1h8z8!# .

It is clear that for hh8Þ0 the induced representation coin-

cides with the irreducible representation of H
n1n8 on

L2(Rn1n8). This corresponds to purely quantum behavior of
both sets of variables ~see definition 1.1!. The trivial charac-
ter h5h850 gives the family of one-dimensional represen-

tations parametrized by R
2(n1n8) and a purely classical de-

scription. These situations were studied in detail in the
previous section. A new situation appears where hÞ0 and
h850 producing quantum behavior for the first set and clas-
sical behavior for the second set. ~The choice h50, h8Þ0
just permutes the quantum and classical parts.! Figure 2 il-
lustrates these facts. In the topology on the dual to the
quantum-classical group the quantum descriptions are dense
in the quantum-classical and classical descriptions, and the
quantum-classical descriptions are dense in the classical
ones.

Consider the quantum-classical case in more detail. The
quantum-classical representation is given by

rh~p ,q ,s ,p8,s8!5e2pi~s•hI1p•hD1q•X1p8•k81q8•x8!.
~19!

where k8,x8PR
n8 and hPR\$0%. In this representation an

element of the convolution algebra on the quantum-classical
group is identified with a quantum-classical operator acting

on L2(Rn) ^R
2n8. The operator can be computed in terms of

the Weyl transform of its symbol taken with respect to the
quantum ~unprimed! coordinates

s~hD ,X ,k8,x8! f ~x !5E Ks~x ,y ,k8,x8! f ~y !dy ~20!

Ks~x ,y ,k8,x8!5h2nE sS k ,
x1y

2
,k8,x8D e2pi~x2y !k/hdk .

~21!

The quantum-classical analog of the commutator is deter-
mined by the limit hÞ0, h8→0, which is similar to that used
to derive the Poisson bracket from the quantum commutator.
We proceed as follows. First we need to obtain the expres-
sion for the symbol of the product of two operators. We start
with the expression analogous to Eq. ~12!, but having two,
rather than one, sets of variables. Focusing on the primed
variables, we carry out the transformations identical to those
performed in deriving Eq. ~16!:

FIG. 2. Representations of the step-two nilpotent Lie group with

a two-dimensional center.
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s♯ht~k ,x ,k8,x8!

5S 2

h
D 2nE E E E du dv dh dz e4pi@~x2u !~k2h !2~x2v !~k2z !#/h S 2

h8
D 2n8E E E E du8 dv8 dh8 dz8

3e4pi@~x82u8!~k82h8!2~x82v8!~k82z8!#/h8s~z ,u ,z8,u8!t~h ,v ,h8,v8!

5S 2

h
D 2nE E E E du dv dh dz e4pi@~x2u !~k2h !2~x2v !~k2z !#/h S 1

h8
D 2n8E E du8 dv8e4pi~v82u8!k8

3F3
21@s#~z ,u ,v8,x81u8h8!F3@t#~h ,v ,u8,x81v8h8!

5S 2

h
D 2nE E E E du dv dh dz e4pi@~x2u !~k2h !2~x2v !~k2z !#/h(

j50

g
~ iph8! j

j!

3@Dk8,sDx8,t2Dk8,tDx8,s# j@s~z ,u ,k8,x8!t~h ,v ,k8,x8!#1O~h8
g!. ~22!

At this point we drop explicit dependence of the symbols on the primed variables, since the unprimed variables alone account
for the noncommuting nature of the symbols. Applying the limit limh8→0h/h8 behind the zero-order terms, which are kept
intact to preserve the purely quantum part, we obtain the expression for the symbol of the quantum-classical commutator:

@s♯ht2t♯hs#~k ,x !5S 2

h
D 2nE E E E du dv dh dze4pi@~x2u !~k2h !2~x2v !~k2z !#/hH s~z ,u !t~h ,v !2t~z ,u !s~h ,v !

1 lim
h8→0

h

h8
(
j50

`
~21 ! j~ph8!2 j11

~2 j11 !!
@Dk8,sDx8,t2Dk8,tDx8,s#~2 j11 !@s~z ,u !t~h ,v !2t~z ,u !s~h ,v !#J

~23!

or

@s ,t#♯h~k ,x !5S 2

h
D 2nE E E E du dv dh dze4pi@~x2u !~k2h !2~x2v !~k2z !#/hFs~z ,u !t~h ,v !2t~z ,u !s~h ,v !

1
1

2

h

2pi
S ]s~z ,u !

]k8

]t~h ,v !

]x8
2

]s~z ,u !

]x8

]t~h ,v !

]k8
D2

1

2

h

2pi
S ]t~z ,u !

]k8

]s~h ,v !

]x8
2

]t~z ,u !

]x8

]s~h ,v !

]k8
D G .

~24!

Equation ~24! for the symbol of the commutator, together
with the rule for calculating operators from their symbols
given by Eqs. ~20! and ~21!, leads to the following equation
of motion for a mixed quantum-classical system

]

]t
A~hD ,X ,k8,x8!5

2pi

h
@H ,A#♯h

~hD ,X ,k8,x8!.

~25!

This formula determines the evolution of an operator A ,
which depends on quantum and classical position and mo-
mentum variables and acts on L2(Rn) ^R

2n. The kernel of
the operator with respect to the L2(Rn) subspace is given by
Eq. ~21!.

The limiting procedure that leads from the quantum-
quantum commutator @Eq. ~22!# to the quantum-classical one
@Eq. ~24!# constitutes an essential part of the current formal-
ism. The procedure can be summarized as follows. First,
compute the quantum-quantum commutator. Second, discard

terms of second and higher order in h8. Third, substitute h

for h8 in the first-order terms.
Example 3. Consider the quantum-classical bracket for the

following functions:

s~k ,x ,k8,x8!5x2k8
2, t~k ,x ,k8,x8!5k2x8

2. ~26!

With this choice of s and t the integral in Eq. ~22! factor-
izes, and the symbol of the quantum-quantum commutator
becomes

@x2k8
2,k2x8

2#♯h ,h8
5~x2♯hk2!~k8

2♯h8
x8

2!2~k2♯hx2!

3~x8
2♯h8

k8
2! ~27!

524i\x8k8S x2k2
2

\2

2
D

14i\xkS x8
2k8

2
2

\8
2

2
D , ~28!
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where \5h/2p is used for notational convenience. The de-
tails of evaluation of individual compositions in Eq. ~27! are
given in the Appendix. The limiting procedure applied to Eq.
~28! leads to

24i\x8k8S x2k2
2

\2

2
D14i\xkx8

2k8
2. ~29!

This result can be obtained directly from Eq. ~24!, which for
the current choice of s and t factorizes as

@x2k8
2,k2x8

2#♯h ,h8→0
524i\x8k8

x2♯hk2
1k2♯hx2

2

1x8
2k8

2@x2,k2#♯h
. ~30!

The quantum-classical correspondence of Sec. II and the
quantum-classical bracket of Eq. ~24! are based on the Weyl
correspondence principle. It is well known, however, that the
Weyl correspondence is not unique in mapping phase space
functions to Hilbert space operators. In fact, there exist arbi-
trarily many such mappings, differing in the order assigned
to products of position and momentum operators. For ex-
ample, the Weyl rule maps kx to the symmetrized product

1
2(hD•X1X•hD). Another variant of the correspondence
principle, which is widely used in the mathematics commu-
nity because of its simpler form, is due to Kohn and Niren-
berg ~KN!. It keeps momentum operators on the right, map-
ping kx to X•hD . It is straightforward to obtain a mixed
quantum-classical equation of motion using the Kohn-
Nirenberg calculus. One starts with rh5e2piq•Xe2pip•hD in-

stead of rh5e2pi(p•hD1q•X) ~see @47#! and follows the same
steps. The result is

]

]t
A~hD ,X ,k8,x8!5

2pi

h
@H ,A#♯h

KN~hD ,X ,k8,x8! ~31!

with the correspondence rule

s~hD ,X ,k8,x8!KNf ~x !5E Ks
KN~x ,y ,k8,x8! f ~y !dy ,

Ks
KN~x ,y ,k8,x8!5h2nE s~k ,x ,k8,x8!e2pi~x2y !k/hdk ,

~32!

and the following formula for the quantum-classical bracket
of two symbols

@s ,t#♯h

KN~k ,x ,k8,x8!5S 2

h
D nE E du dve4pi~x2u !~v2k !/hH s~v ,x !t~k ,u !2t~v ,x !s~k ,u !

1
h

2pi
F]s~v ,x !

]k8

]t~k ,u !

]x8
2

]t~v ,x !

]k8

]s~k ,u !

]x8
G J . ~33!

These expressions are somewhat simpler than Eqs. ~20!, ~21! and ~24!, ~25!, which were obtained by the Weyl correspondence.
The Weyl rule results are preferable, though, since they preserve the simplectic invariance of the phase space variables @47#
and lead via the Wigner transform from the density matrix to the quantum quasiprobability function that is closest to the
classical probability density @49#.

It is instructive to consider Example 3 within the KN correspondence. The quantum-quantum commutator is evaluated ~see
Appendix! as

@x2k8
2,k2x8

2#♯h ,h8

KN
5~x2♯h

KNk2!~k8
2♯

h8

KN
x8

2!2~k2♯h
KNx2!~x8

2♯
h8

KN
k8

2!52x2k2S 4i\8x8k81
\8

2

2
D1S 4i\xk1

\2

2
D x8

2k8
2.

~34!

Multiplication of each term containing \8 by \/\8 and the
limit \8→0 produce

2x2k2~4i\x8k8!1S 4i\xk1
\2

2
D x8

2k8
2
5

24i\x8k8~x2♯h
KNk2!1x8

2k8
2@x2,k2#♯h

KN , ~35!

which also directly follows from Eq. ~33!. The Weyl and KN
expressions for the quantum-classical commutator in the ex-
ample @Eqs. ~29! and ~35!# disagree in the second-order term
in \.

The quantum-classical equations of motion @Eq. ~25! and
~31!# exhibit many desired features. If A and H depend
solely on quantum or classical variables, they reduce to the
purely quantum and classical equations, Eqs. ~13! and ~17!,

respectively. Since the quantum-classical brackets of the
right-hand side of Eqs. ~25! and ~31! were obtained by se-
lecting a representation for the Lie bracket of a Lie group,
they possess the general properties of Lie brackets. In par-
ticular, both quantum-classical brackets are antisymmetric,
since their symbols are antisymmetric: the integrands of Eqs.
~24! and ~33! change sign under the permutation s↔t . The
Jacobi identity is a more subtle issue. If the limiting proce-
dure introduced in the previous paragraphs is applied to de-
rive the quantum-classical Jacobi identity from the quantum-
quantum one, no problems are encountered. Indeed, by
successive application of Eq. ~22! the symbol of the product
of three operators

s~hD ,X ,k8,x8!t~hD ,X ,k8,x8!f~hD ,X ,k8,x8!

takes the form
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s♯ht♯hf~k ,x !

5S 2

h
D 2nE E E E du1dv1dh1dz1e4pi@~x2u1!~k2h1!2~x2v1!~k2z1!#/h S 2

h8
D 2nE E E E du dv dh dz@s~z ,u !t~h ,v !

2t~z ,u !s~h ,v !#ˆ@e4pi@~z12u !~u12h !2~z12v !~u12z !#/hf~h1 ,v1!2e4pi@~h12u !~v12h !2~h12v !~v12z !#/hf~z1 ,u1!#

1iph8$@Dk8
s~z ,u !t~h ,v !1s~z ,u !Dk8t~h ,v !2Dk8

t~z ,u !s~h ,v !2t~z ,u !Dk8
s~h ,v !#

3e4pi@~z12u !~u12h !2~z12v !~u12z !#/hDxD8
f~h1 ,v1!2e4pi@~h12u !~u12h !2~h12v !~v12z !#/hDk8

f~z1 ,u1!

3@Dx8
s~z ,u !t~h ,v !1s~z ,u !Dx8

t~h ,v !2Dx8
t~z ,u !s~h ,v !2t~z ,u !Dx8

s~h ,v !#%1O~h8
2!‰. ~36!

The limit limh8→0h/h8 , applied after the zero-order term, discards second- and higher-order terms. Subsequent integrations
lead to an expression that can be rewritten in a compact symbolic form as

s♯t♯f5stf2fts1i~sk8
tfx8

1stk8
fx8

2tk8
sfx8

2tsk8
fx8

2fk8
sx8

t2fk8
stx8

1fk8
tx8

s1fk8
tsx8

!, ~37!

where the subscripts k8 and x8 indicate differentiation with
respect to these variables, and the ordering of the symbols is
to be kept track of. Given Eq. ~37! it is straightforward to
check that the Jacobi identity holds for the symbols of op-
erators: @@s ,t#♯h ,f#♯h(k ,x ,k8,x8) and, therefore, for the
operators themselves.

Evaluation of the double quantum-quantum commutators
followed by removal of the h8

2 terms leads to the same
result. However, when an attempt is made to check the Ja-
cobi identity based only on the quantum-classical bracket,
the outcome is negative: repeated application of Eq. ~24! or
Eq. ~33! leaves some of the second-order terms as observed,
for instance, in Ref. @7#. Close examination of the quantum-
classical Jacobi identity shows that the second-order terms
that do not cancel out are associated in expansion ~36! with
h8

2 @see also Eq. ~22!#, i.e., with the Planck constant for the
classical set of variables. If one takes the view that transition
from quantum to classical leaves only the first-order contri-
butions from the classical part, then the second-order terms
in the Jacobi identity must disappear. Examination of the
quantum-classical bracket alone does not show the origin of
the extra terms. The subtlety with the Jacobi identity is due
to the nontrivial topological structure of the unitary dual to
the quantum-classical Lie group.

The quantum-classical Lie bracket itself does not define
the dynamics of a mixed quantum-classical system. The ‘‘na-
ive’’ proposition of Eq. ~25! for the time derivative of a
quantum-classical operator A meets the problem that the sec-
ond time derivative given by a double bracket must contain
the h8

2 terms, so as to reduce to the double Poisson bracket
in the purely classical limit. Formulation of a consistent dy-
namical equation for the evolution of a quantum-classical
system remains incomplete. It is stressed, however, that
quantum-classical dynamics can be analyzed by p mechanics
even without an explicit form for the equation of motion. An
example of such an analysis is presented in the next section.

IV. QUANTUM-CLASSICAL COUPLING FOR HARMONIC

OSCILLATORS

Quantization of a classical system is particularly suitable
for a description of harmonic oscillators. The relevant results

are briefly summarized below and are applied to coupled
quantum and classical oscillators. The reader is referred to
Refs. @50–56# for further information on the quantization
procedure used below.

Let L2(Cn,dmn) be a space of functions on C
n that are

square integrable with respect to the Gaussian measure

dmn~z !5p2ne2z• z̄ dv~z !,

where dv(z)5dx dy is the Euclidean volume measure on
C

n
5R

2n. The Segal-Bargmann @57,58#, or, equivalently,
Fock @59# space F2(Cn) is the subspace of L2(Cn,dmn) con-
sisting of all entire functions, i.e., functions f (z) that satisfy

] f

] z̄ j

50, 1< j<n .

Denote by PQ the orthogonal Bargmann projection @57# of
L2(Cn,dmn) onto the Fock space F2(Cn). Then

k~q ,p !→Tk~q1ip !5PQk~q1ip !I ~38!

defines the Berezin-Toeplitz ~anti-Wick! quantization, which
maps a function k(q ,p)5k(q1ip) on R

2n
5C

n to the
Toeplitz operator Tk . There exists an identification between
the Berezin and Weyl quantizations @50,53,56#. The identifi-
cation has an especially transparent form for the observables
depending only on p and q .

The Berezin-Toeplitz quantization is related to the
Heisenberg group more intuitively than the representation of
Eq. ~4!. On a geometrical level, consider the group of Eu-
clidean shifts a:z°z1a of Cn. To obtain unitary operators
on L2(Cn,dm) the shifts are multiplied by the weight func-
tion

a: f ~z !° f ~z1a !e2z ā 2a ā /2. ~39!

This mapping determines @60# a unitary representation of the
(2n11)-dimensional Heisenberg group acting on
L2(Cn,dm). The mapping preserves the Fock space
F2(Cn), and, hence, all operators of the form of Eq. ~39!
commute with PQ . The operators are generated by infinitesi-
mal displacements
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i (
k51

n Fa j8S ]

]z j8
2z j82iz j9D 1a j9S ]

]z j9
2z j91iz j8D G ,

where a5(a1, . . . ,an), z5(z1 , . . . ,zn)PC
n, and a j

5(a j8 ,a j9), z5(z j8 ,z j9)PR
2. The generators form a linear

space with the basis

A j
f
85

1

i S ]

]z j8
2z j82iz j9D , A j

f
95

1

i S ]

]z j9
2z j91iz j8D .

~40!

The basis vectors commute with the Bargmann projector
PQ . The operators

X j
f
85

1

i S ]

]z j8
2z j81iz j9D , X j

f
95

1

i S ]

]z j9
2z j92iz j8D

~41!

commute with the basis vectors, and we anticipate that PQ

produces a self-adjoint representation of convolutions with

respect to X j
f
8 , X j

f
9 , and unit operators.

Proposition 4 [43]. The Bargmann projector PQ defines a
representation of convolutions induced by the Weyl-
Heisenberg Lie algebra hn operating on C

n by Eqs. ~41!. The
kernel b(t ,z), tPR, zPC

n of the representation is given by
the formula

b̂~ t ,z !52n11/2e21e2~ t2
1z z̄ /2!.

We move on to apply the Bargmann projection technique
to the quantum-classical coupling of harmonic oscillators.

Example 5 [52]. In the Segal-Bargmann representation

the creation and annihilation operators are a j
†
5z jI and a j

2

5]/]z j , respectively. Consider an n degree of freedom har-
monic oscillator with the classical Hamilton function

H~q ,p !5
1

2 (
j51

n

~q j
2
1p j

2!.

The corresponding quantum Hamiltonian is obtained by the
Bargmann projection

TH~q ,p !5
1

2
PQ (

j51

n

~q j
2
1p j

2!I5
1

2 S nI1(
j51

n

z j

]

]z j
D .

~42!

The right side of Eq. ~42! is the celebrated Euler operator. It
generates the well-known dynamical group @@61#, Chap. 1,
Eq. ~6.35!#

e itTH~p ,q ! f ~z !5e int/2f ~e itz !, f ~z !PF2 , ~43!

which induces rotation of the C
n space. The evolution of the

classical oscillator is also given by a rotation, that of the
phase space R

2n:

z~ t !5G tz05e itz0 , z~ t !5p~ t !1iq~ t !, z05p01iq0 .
~44!

The projection PQ leads to the Segal-Bargmann representa-
tion, providing a very straightforward correspondence be-
tween quantum and classical mechanics of oscillators, in

contrast to the rather complicated case of the Heisenberg
representation @@61#, Prop. 7.1 of Chap. 1#. The powers of
z are the eigenfunctions fn(z)5zn of the Hamiltonian ~42!,
and the integers n are the eigenvalues. Either pure or mixed,
any initial state of the oscillator remains unchanged during
the Eq. ~43! evolutions and no transitions between states are
observed.

Now consider classical and quantum oscillators coupled
by a quadratic term

H~p ,q;p8,q8!5
1
2 @p8

2
1p2

1x8
2
1x2

1a~x82x !2# .
~45!

Applying the canonical transformation ~see @62#, Sec. 23 D!

q85
q11q2

&
, q5

q12q2

&
, p85

p11p2

&
, p5

p12p2

&
,

~46!

or, equivalently, introducing complex variables z5q1ip ,
z85q81ip8, z15q11ip1 , z25q21ip2 ,

z85
z11z2

&
, z5

z12z2

&
,

z15
z81z

&
, z25

z82z

&
, ~47!

we get rid of the coupling term

H~p1 ,q1 ;p2 ,q2!5
1
2 ~p1

2
1p2

2
1v1

2q1
2
1v2

2q2
2!, ~48!

where v151, v25A112a . The two uncoupled oscillators
evolve independently:

z1~ t !5e2iv1tz1~ t0!, z2~ t !5e2iv2tz2~ t0!.

The dynamics in the original coordinates, however, is not
trivial. The primed and unprimed ~classical and quantum!
variables mix:

z8~ t !5
~e2iv1t

1e2iv2t!z8~ t0!1~e2iv1t
2e2iv2t!z~ t0!

2
,

~49!

z~ t !5
~e2iv1t

2e2iv2t!z8~ t0!1~e2iv1t
1e2iv2t!z~ t0!

2
.

~50!

Suppose that the classical subsystem is initially localized at a

point z08 of the phase space and the quantum subsystem is in

its nth pure state: f(z8,z;t0)5d(z082z8) ^ zn. Then, the dy-

namics of the combined system is given by

f~z8,z;t !5dS z082
~e2iv1t

1e2iv2t!z81~e2iv1t
2e2iv2t!z

2
D

~51!

^ S ~e2iv1t
2e2iv2t!z81~e2iv1t

1e2iv2t!z

2
D n

.

~52!
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During the evolution, the classical subsystem @Eq. ~51!# is
always sharply supported, i.e., represented by the delta func-
tion, while the quantum subsystem @Eq. ~52!# evolves into a
mixed state. The binomial ~52! contains all powers of z less
than or equal to n ~zk, k<n!. Therefore, there exists a non-
zero probability for the quantum subsystem to make a tran-
sition from the initial pure state zn into a lower-energy state
zk, k,n . It is remarkable that in this particular case the
interaction with the classical subsystem can only decrease
the initial energy of the quantum one. If the quantum sub-
system is originally in the ground state (n50), expression
~52! identically equals one, and energy exchange is not ob-
served. The overall dynamics is ~quasi!periodic with the re-
currence time determined by the frequencies v1 and v2 .

V. MULTICONFIGURATION MEAN-FIELD

APPROXIMATION

The quantum-classical equation of motion @Eq. ~25!# can
be applied in several ways depending on the description cho-
sen for the quantum and classical subsystems. The great util-
ity of quantum-classical models based on a trajectory de-
scription for the classical subsystem has found realization in
numerous molecular-dynamics techniques @63,64#, which are
inexpensive computationally and predict dynamical charac-
teristics of many degree of freedom systems by averaging
over just a few sample trajectories. In the simplest case the
classical subsystem can be represented by a point in the

phase space $k i8 ,x i8% evolving according to the Hamilton

equations with the quantum-classical bracket of Eq. ~24! re-
garded as a modification of the Poisson bracket. If at the
same time the Heisenberg equation of motion with the
quantum-classical bracket in place of the commutator is used
to describe the evolution of quantum operators, the mean-
field approximation follows. Namely, the quantum-
mechanical average of Eq. ~25! with respect to the wave
function C is given by

]

]t
^CuA~k8,x8!uC&5

2pi

h
^Cu@H ,A#♯h

~k8,x8!uC&.

~53!

If A is a purely quantum mechanical observable independent
of classical variables, the derivatives ]A/]k8 and ]A/]x8 in
the quantum-classical bracket of Eq. ~24! vanish, and we
obtain

]

]t
^CuAuC&5

2pi

h
^Cu@H~k8,x8!,A#uC& ~54!

with the Hamiltonian H parametrically dependent on the
classical phase space variables k8 and x8. Substituting these
variables in place of A(k8,x8) in the quantum-classical
bracket of Eq. ~53!, we compute the integrals in the defini-
tion of the bracket @Eq. ~24!# and recover the classical equa-
tions of motion with the classical Hamiltonian being equal to
the quantum mechanical average of the total Hamiltonian

]k8

]t
52

]^CuH~k8,x8!uC&

]x8
,

~55!

]x8

]t
5

]^CuH~k8,x8!uC&

]k8
.

Equations ~54! and ~55! constitute the traditional mean-field
approximation: classical variables are coupled to the expec-
tation values of quantum observables @30–33#.

The quantum-classical equation of motion @Eq. ~25!# can
also be regarded as a Liouville–von Neumann equation for a
mixed density matrix–phase space distribution function
r(hD ,X ,k8,x8). In a quantum basis the evolution of r is
given by a set of coupled equations for classical phase space
distribution functions r i j(k8,x8) corresponding to each pair
of the quantum basis states i , j :

]r i j

]t
5

2pi

h (
k

FH ik
*rk j2r ik

*Hk j1
1

2

h

2pi
S ]H ik

*

]k8

]rk j

]x8
2

]H ik
*

]x8

]rk j

]k8
D 2

1

2

h

2pi
S ]r ik

*

]k8

]Hk j

]x8
2

]r ik
*

]x8

]Hk j

]k8
D G . ~56!

The above set of coupled Liouville equations is based on the

Weyl correspondence.

In the purely quantum and classical limits the corollaries
@Eqs. ~54!, ~55!, and Eq. ~56!# of the quantum-classical equa-
tion of motion @Eq. ~25!# are equivalent. In the mixed case
they are not due to nonlocal correlations within the classical
subsystem induced by interactions with the quantum one.
Such correlations, inherent in the Liouville–von Neumann
equation, do not appear in the mean-field approach. In par-
ticular, if Eqs. ~56! are integrated with the initial conditions

r11(k8,x8)5d(k82k08)d(x82x08), r i j50, ;$i j%Þ$11%, at

later times r i jÞ0 because of the nonzero couplings H i j .
Classical phase space distribution functions associated with
different quantum states differ and mix. Mutual mixing en-
hances spreading of classical distributions. An initially local-

ized phase space distribution r11 corresponding to the

ground quantum state populates excited-state distributions.

Since, in general, ground- and excited-state distributions un-

dergo diverging evolutions, r11 delocalizes due to mixing
with excited states. This, of course, cannot happen in the
mean-field approach, where the classical subsystem is de-
scribed by a single trajectory and the nonlocal correlations
are averaged out. In the absence of coupling between quan-
tum states, phase space distributions do not mix, and Eq. ~56!
splits into a set of uncoupled equations for classical distribu-
tion functions for individual quantum states. The evolution
of each distribution function can be equivalently described
by the classical trajectory mean-field approach @Eqs. ~54! and
~55!# with the corresponding basis state wave function in
place of C. Adiabatic molecular-dynamics methods @63# take
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advantage of this situation by evolving classical particles on
adiabatic quantum states and neglecting nonadiabatic cou-
pling.

The Liouville–von Neumann equation for the evolution
of the mixed quantum-classical distribution reduces to the
coupled equations of the mean-field approximation when the
distribution is restricted to have the following functional
form

r5uC&^Cud~k082k8!d~x082x8!, ~57!

where k8 and x8 are the n-dimensional classical momentum
and position vectors. Under this constraint the quantum part
of the mixed distribution remains a pure state at all times,
and the classical part is always represented by a delta func-
tion. Substituting expression ~57! for r in place of A in Eq.
~25! and integrating out the phase space variables we obtain
the von Neumann equation with the quantum Hamiltonian
depending on classical coordinates H(k8,x8). For a pure
state the von Neumann equation is equivalent to the Schrö-
dinger equation and to Eq. ~54!. In order to recover the
mean-field equations for the classical positions and momenta
@Eqs. ~55!# we substitute Eq. ~57! into Eq. ~25!, multiply
both sides by either k8 or x8, and integrate over quantum and
classical variables.

The mean-field approximation does not account for the
nonlocal correlations that appear in the fully quantum de-
scription and are reproduced by the Liouville–von Neumann
equation. Such correlations are important, for instance, when
quantum motion involves tunneling between two distinct
subspaces. Unfortunately, the quantum-classical Liouville–
von Neumann equation does not provide a computational
advantage over the fully quantum von Neumann equation,
since both deal with delocalized distributions. At the same
time, propagation of an individual classical trajectory via the
Hamilton equations of motion is far less demanding than
integration of the Liouville equation. In order to account for
the quantally induced nonlocal correlations among the phase
space variables, while retaining a trajectory description for
the classical subsystem, we interpolate between the mean
field and Liouville–von Neumann approaches by developing
a multiconfiguration version of the mean-field method. Start-
ing with the quantum-classical distribution of the following
functional form,

r5(
i

(
j

̺ i juC i&^C jud~k i j8 2k8!d~x i j8 2x8!, ~58!

where the sums run over configurations, we assume ortho-
normality of the wave functions ^C iuC j&5d i j , substitute
Eq. ~58! into Eq. ~25!, integrate over the classical variables
(*dk8 *dx8), and obtain the von Neumann equation for the
quantum density matrix

]̺ i j

]t
5

2pi

h (
k

@H ik
*~k ik8 ,x ik8 !̺ ik2̺k j

* Hk j~kk j8 ,xk j8 !# .

~59!

Note that in contrast to r i j(k8,x8) of Eq. ~56!, ̺ i j do not
explicitly depend on classical variables and are complex
numbers rather than phase space distribution functions. To
get the equations of motion for the classical momenta and

positions k i j , x i j we substitute Eq. ~58! into Eq. ~25!, mul-
tiply both sides by the corresponding variable, and integrate
over all degrees of freedom. The ‘‘diagonal’’ positions and
momenta evolve according to

]k ii8

]t
52

1

2 (
k

S ]H ik
*~k ik8 ,x ik8 !

]x ik8
1

]Hki~kki8 ,xki8 !

]xki8
D ,

]x ii8

]t
5

1

2 (
k

S ]H ik
*~k ik8 ,x ik8 !

]k ik8
1

]Hki~kki8 ,xki8 !

]kki8
D . ~60!

The corresponding expressions for the ‘‘nondiagonal’’ vari-
ables are more complicated

]x i j8

]t
5(

k
H ik

*~k ik ,x ik!xk j8 2x ik8 Hk j~k ik ,x ik!

1
1

2 S ]H ik
*~k ik ,x ik!

]k ik8
1

]Hk j~kk j8 ,xk j8 !

]kk j8
D , ~61!

and similarly for momenta. In order to keep the Hamiltonian

matrix Hermitian H i j5H j i
* and to avoid situations where

H i j(k i j8 ,x i j8 ) and H j i
*(k j i8 ,x j i8 ) are computed at different loca-

tions of classical particles, we stipulate that the position and

momentum ‘‘matrices’’ are symmetric: k i j8 5k j i8 , x i j8 5x j i8 .

With this constraint the ‘‘nondiagonal’’ evolutions simplify,
the first two terms in formula ~61! disappear, and the dynam-
ics of the ‘‘nondiagonal’’ phase space variables coincide
with the average dynamics of the ‘‘diagonal’’ variables

]x i j8

]t
5

1

2
H ]x i j8

]t
1

]x j i8

]t
J

5
1

2 (
k

H H ik
*xk j8 2x ik8 Hk j1

1

2 S ]H ik
*

]k ik8
1

]Hk j

]kk j8
D

1H jk
* xki8 2x jk8 Hki1

1

2 S ]H jk
*

]k jk8
1

]Hki

]kki8
D J

5
1

4 S ]H ik
*

]k ik8
1

]Hk j

]kk j8
1

]H jk
*

]k jk8
1

]Hki

]kki8
D 5

1

2
S ]x ii8

]t
1

]x j j8

]t
D ,

~62!

and similarly for momenta. Apart from assigning the ‘‘non-
diagonal’’ coordinates and momenta unique values with a

simple physical meaning: x i j8 5(x ii8 1x j j8 )/2, k i j8 5(k ii8

1k j j8 )/2, Eq. ~62! reduces the number of independent classi-

cal trajectories in the n-dimensional multiconfiguration
mean-field approximation from n2 to n .

The multiple configuration technique is widely used in
quantum chemistry as an improvement on the self-consistent
field solution to the time-independent Schrödinger equation
@65#. The time-dependent fully quantum multiconfiguration
self-consistent field approach is discussed in Ref. @66#. Equa-
tions of motion similar to our version of the quantum-
classical multiconfiguration approximation were first pro-
posed in Ref. @14#. Our approach has a different derivation
and is less computationally demanding, since it needs a fac-
tor of n fewer trajectories. Other versions of the quantum-
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classical multiconfiguration mean-field approximation can be
found in Refs. @67, 68#. We point out that the number of
configurations in the multiconfiguration mean-field method
does not have to equal and is usually less than the number of
quantum basis states. The indices i , j ,k in Eq. ~59! denote
configurations, which do not, in general, correspond to basis
states. In the case when the overall space is separated into
several weakly connected regions, the number of configura-
tions is determined by the number of such regions. For ex-
ample, the double well system @69# requires two configura-
tions and two classical trajectories, each originating in its
own well @70#.

VI. DISCUSSION AND CONCLUSIONS

The technique presented in the earlier sections provides a
unifying framework for the quantum-classical equations of
motion proposed by other authors @2,12,15#. The equations
of Refs. @12, 15# are very similar and correspond to Eq. ~25!
of this paper. Thus, Ref. @12# proposes

ṙ5
i

\
@r ,H#1

1

2
$r ,H%2

1

2
$H ,r%. ~63!

@See Eqs. ~3.4! and ~3.6! of Ref. @12#.# The equation of mo-
tion presented in Ref. @15#, Eq. ~11!, is slightly different:

ṙ5i@r ,H#1
\

2
$r ,H%2

\

2
$H ,r%. ~64!

Our results based on the Weyl correspondence principle @cf.
Eqs. ~24! and ~25!# give preference to Eq. ~63!.

The quantum-classical bracket of Ref. @2#, Eq. ~2!,

@A ,B#~q2c !5@A ,B#1i$A ,B% ~65!

is not antisymmetric. It is very similar to Eq. ~33! of the
current work, which is derived by the Kohn-Nirenberg cal-
culus and is antisymmetric as expected from the derivation.
The example given in the paragraph following Eq. ~2! in Ref.
@2# considers a separable case with f ,g being classical func-
tions and U ,V being quantum operators:

@ f U ,gV#~q2c !5 f g@U ,V#1iUV$ f ,g%. ~66!

If U and V do not commute, the result is clearly not anti-
symmetric. For this example, Eq. ~33! of this work gives the
expression

f g@U ,V#1i~UV]p f ]xg2VU]pg]x f !, ~67!

which does change sign under the permutation f↔g ,
U↔V . Thus, Eq. ~33! can be regarded as the corrected ver-
sion of the bracket of Ref. @2#.

The brackets of Refs. @12, 15# and the bracket of Ref. @2#
relate to each other via the choice of the correspondence
principle, i.e., via the ordering of products of position and
momentum operators used in constructing quantum operators
from classical phase space functions. References @12,15# em-
ploy symmetrized products, while Ref. @2# uses expressions,
which keeps momentum operators on the right. The relation-
ship between the quantum-classical correspondence rules
and pseudodifferential calculus explored, for instance, in

Ref. @71# leads to a family of quantization rules parametrized

by a continuous parameter 0<l<1. The general form of

pseudodifferential operators underlying this family of

quantum-classical correspondences is given in Refs. @42, 72#.

l equal to 1/2 and 1 produces the Weyl and Kohn-Nirenberg

correspondence rules, respectively. Arbitrarily many

quantum-classical brackets can be generated for different
choices of l.

Our approach explains why the author of Ref. @8# came to
the conclusion of the algebraic impossibility of quantum-
classical coupling. The assumptions imposed in Ref. @8# on a
possible quantum-classical theory restrict consideration to
step-two nilpotent Lie groups with a one-dimensional center.
Under this exceedingly stringent constraint any interaction
between quantum and classical degrees of freedom is impos-
sible, indeed. However, once the constraint is relaxed, and
we see no reason to restrict our attention to groups with a
one-dimensional center only, quantum-classical interactions
naturally reappear. The step-two nilpotent Lie group with a
two-dimensional center considered here in detail produces
satisfactory results. Other groups in principle suitable to de-
scribe quantum-classical mixing do exist. For instance, one
may consider a step-three nilpotent Lie group and the corre-
sponding algebra, which, as a vector space, is decomposable
into the three subspaces V0 , V1 , and V2 having the follow-
ing properties. The elements of V0 commute with all ele-
ments and form the center. Commutators of vectors from
V1 belong to V0 . Commutators of vectors from V2 belong to
V1 . By taking a representation of this group that maps the
center V0 to zero, we would obtain another model for a
mixed quantum-classical system, where vectors from V1

would correspond to classical degrees of freedom, since their
commutators vanish, while vectors from V2 would describe
quantum variables. It is likely, though, that this scheme will
exhibit properties atypical for quantum and classical me-
chanics, since step-three nilpotent Lie groups differ from
step-two groups and from the Heisenberg group in particular.
There exist, however, some advantages in dealing with gen-
eral nilpotent Lie groups. For example, the relativistic quan-
tization of Ref. @73# is based on a representation of the sim-
plest step-three nilpotent Lie group ~meta-Heisenberg group
@74#! spanned by the Schrödinger representation of the
Heisenberg group and the operators of multiplication by
functions. Application of the quantization rules to the appro-
priate Lie algebras leads to quantum-classical constructions
for string theory, conformal field theory, and Yang-Mills
theories @75#.

In summary, we presented a systematic approach to cou-
pling quantum and classical degrees of freedom based on a
generalization of the unified description of quantum and
classical mechanics given in terms of convolutions on the
Heisenberg group. Considering the simplest extension of the
Heisenberg group that allows for two distinct sets of vari-
ables, we derived a quantum-classical equation of motion.
The quantum-classical bracket entering the equation is a Lie
bracket and, therefore, possesses the two most important
properties common to the quantum commutator and the Pois-
son bracket: it is antisymmetric and satisfies the Jacobi iden-
tity. The quantum-classical Jacobi identity meets with subtle-
ties that we associate with the dynamical interpretation of the
bracket. Further work is needed in order to clarify this issue,
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and the simplistic equation 2i\dA/dt5@H ,A#q2c might
have to be abandoned. We constructed the quantum-classical
dynamics of coupled harmonic oscillators without explicitly
appealing to such an equation. Starting from a general group-
theoretical formulation we derived the mean-field and the
multiconfiguration mean-field approximations, which are
trajectory-based approaches of great utility in studying real-
istic multidimensional physical and chemical systems. The
proposed technique allowed us to classify the quantum-
classical equations of motion and to resolve some problems
from earlier works.
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APPENDIX

We present details of computation of the ♯ compositions
encountered in Example 3 of Sec. III. The transformations
below use the standard properties of the delta function.
Within the Weyl correspondence @Eq. ~12!# a typical compo-
sition in Example 3 is calculated as follows:

k2♯hx2
5S 2

h
D 2E E E E z2

v
2e4pi@~x2u !~k2h !2~x2v !~k2z !#/hdu dv dh dz

5S 2

h
D 2E e4pix~k2h !/hdhE e24piu~k2h !/hduE E z2

v
2e24pi~x2v !~k2z !/hdv dz

5S 2

h
D 2E e4pix~k2h !/hdhdF2~h2k !

h
GE E z2

v
2e24pi~x2v !~k2z !/hdv dz

5
2

h
E z2e24pix~k2z !/hFE v

2e4piv~k2z !/hdv Gdz5
2

h
E z2e24pix~k2z !/hS h

4pi
D 2

d9F2~k2z !

h
Gdz

5S h

4pi
D 2E z2e24pix~k2z !/hd9~k2z !dz5S h

4pi
D 2 d2

dz2 @z2e24pix~k2z !/h#z5k

5S h

4pi
D 2F S 4pi

h
D 2

x2k2
1

4pi

h
4xk12G . ~A1!

The composition with the opposite order of x2 and k2 is
computed similarly:

x2♯hk2
5S h

4pi
D 2F S 4pi

h
D 2

x2k2
2

4pi

h
4xk12G . ~A2!

Appropriate combinations of the above results produce Eqs.
~28! and ~29! of Sec. III. For instance, the commutator in Eq.
~30!,

@x2,k2#♯h
5x2♯hk2

2k2♯hx2
52

h

2pi
4xk54i\xk

~A3!

contributes to the second term in Eq. ~29!. The Kohn-
Nirenberg correspondence given by Eq. ~33! requires even
simpler calculations:

k2♯h
KNx2

5
2

h
E E u2

v
2e4pi~x2u !~v2k !/hdu dv

5
2

h
E v

2FE u2e24piu~v2 !/hdu Ge4pix~v2k !/hdv

5
2

h
E v

2S h

4pi
D 2

d9F2~v2k !

h
Ge4pix~v2k !/hdv

5S h

4pi
D 2 d2

dv
2 @v

2e4pix~v2k !/h#
v5k

5S h

4pi
D 2F S 4pi

h
D 2

x2k2
1

4pi

h
4xk12 G . ~A4!

In the KN calculus the composition of x2♯k2 is just the
product x2k2, and, for instance, the commutator appearing in
right-hand side of Eq. ~35! equals

@x2,k2#♯h

KN
5x2k2

2S h

4pi
D 2F S 4pi

h
D 2

x2k2
1

4pi

h
4xk12G

52
h

4pi
4xk22S h

4pi
D 2

54i\xk1
\2

2
. ~A5!
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~Birkhäuser-Verlag, New York, 1994!, pp. 101–108.

@55# L. A. Coburn and J. Xia, Commun. Math. Phys. 168, 23

~1995!.

@56# V. Guillemin, Integral Equations Operator Theory 7, 145

~1984!.

@57# V. Bargmann, Commun. Pure Appl. Math. 3, 215 ~1961!.

@58# I. E. Segal, Lectures at the Summer Seminar on Applied Math-

ematics ~American Mathematical Society, Providence, RI,

1963!.

@59# V. Fock, Z. Phys. 75, 622 ~1932!.

@60# R. Howe, J. Funct. Anal. 38, 188 ~1980!.

@61# M. E. Taylor, Noncommutative Harmonic Analysis, Math. Sur-

vey and Monographs Vol. 22 ~American Mathematical Soci-

ety, Providence, RI, 1986!.

@62# V. I. Arnold, Mathematical Methods of Classic Mechanics

~Springer-Verlag, Berlin, 1991!.

@63# M. P. Allen and D. J. Tildesley, Computer Simulations in Liq-

uids ~Oxford University Press, Oxford, Great Britain, 1990!.

@64# Computer Simulations in Chemical Physics, edited by M. P.

Allen and D. J. Tildesley ~Kluwer Academic Publishers, Dor-

drecht, Netherlands, 1993!.

@65# A. Szabo and N. S. Ostlund, Modern Quantum Chemistry, 1st

revised ed. ~McGraw-Hill, New York, 1989!.

@66# N. Makri and W. H. Miller, J. Chem. Phys. 87, 3248 ~1987!.

@67# R. Kosloff and A. D. Hammerich, Faraday Discuss. Chem.

Soc. 91, 239 ~1991!.

@68# G. Stock, J. Chem. Phys. 103, 2888 ~1995!.

@69# D. Antoniou and S. D. Schwartz, J. Chem. Phys. 104, 3526

~1996!.

@70# O. V. Prezhdo ~unpublished!.

@71# F. A. Berezin, The Method of Second Quantization ~Nauka,

Moscow, Russia, 1988!, in Russian.

@72# M. A. Shubin, Pseudodifferential Operators and Spectral

Theory ~Nauka, Moscow, Russia, 1978!, in Russian.

@73# V. V. Kisil, LANL Report No. quant-ph/9502022 ~unpub-

lished!.

@74# G. B. Folland, in Fourier Analysis: Analytic and Geometric

Aspects, Lecture Notes in Pure and Applied Mathematics No.

157, edited by W. O. Bray, P. S. Milojević, and Časlav V.
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