BBC Russian
Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Objectives

The gastrointestinal microbiota is considered important in inflammatory bowel disease (IBD) pathogenesis. Discoveries from established disease cohorts report reduced bacterial diversity, changes in bacterial composition, and a protective role for Faecalibacterium prausnitzii in Crohn's disease (CD). The majority of studies to date are however potentially confounded by the effect of treatment and a reliance on established rather than de-novo disease.

Methods

Microbial changes at diagnosis were examined by biopsying the colonic mucosa of 37 children: 25 with newly presenting, untreated IBD with active colitis (13 CD and 12 ulcerative colitis (UC)), and 12 pediatric controls with a macroscopically and microscopically normal colon. We utilized a dual-methodology approach with pyrosequencing (threshold >10,000 reads) and confirmatory real-time PCR (RT-PCR).

Results

Threshold pyrosequencing output was obtained on 34 subjects (11 CD, 11 UC, 12 controls). No significant changes were noted at phylum level among the Bacteroidetes, Firmicutes, or Proteobacteria. A significant reduction in bacterial α-diversity was noted in CD vs. controls by three methods (Shannon, Simpson, and phylogenetic diversity) but not in UC vs. controls. An increase in Faecalibacterium was observed in CD compared with controls by pyrosequencing (mean 16.7% vs. 9.1% of reads, P=0.02) and replicated by specific F. prausnitzii RT-PCR (36.0% vs. 19.0% of total bacteria, P=0.02). No disease-specific clustering was evident on principal components analysis.

Conclusions

Our results offer a comprehensive examination of the IBD mucosal microbiota at diagnosis, unaffected by therapeutic confounders or changes over time. Our results challenge the current model of a protective role for F. prausnitzii in CD, suggesting a more dynamic role for this organism than previously described.

References 


Articles referenced by this article (48)


Show 10 more references (10 of 48)

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/992672
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/992672

Article citations


Go to all (171) article citations

Similar Articles 


To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.


Funding 


Funders who supported this work.

Chief Scientist Office (1)