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1.  Network-Based Approach 

The approach taken in this paper is comprised of three distinct steps:  (1) a comprehensive 

network of interactions in human B cells (the B Cell Interactome, or BCI) is generated using an 

integrative framework.  (2)  Individual B Cell phenotypes represented in our dataset are analyzed 

to identify interactions in the network that show a specific gain-of-correlation (GoC) or loss-of-

correlation (LoC) pattern.  (3)  Statistical enrichment for each gene based on its proximity to 

these affected interactions is computed.  Section 1.1 is a condensed description of the BCI 

formation, which is fully detailed in (Lefebvre et al., 2007) and (Lefebvre et al., in preparation). 

 

1.1  The B Cell Interactome 

The BCI comprised a mixed interaction network of protein-protein (PP), protein-DNA (PD) and 

modulated interactions between a transcription factor and its target.  These were predicted using 

a Naïve Bayes classification (NBC) algorithm using evidences from a variety of sources and 

gold-standard positive (GSP) and gold-standard negative (GSN) sets.  These sources are outlined 

here. 

 

1.1.1 Protein-Protein Interactions:  A GSP for PP interactions was generated using 27,568 

human PP interactions from HPRD (Peri et al., 2003), 4,430 from BIND (Bader et al., 2003), and 

3,522 from IntAct (Hermjakob et al., 2004), all originating from low-throughput, high quality 

experiments.  The resultant GSP had 28,554 unique PP interactions involving 7,826 genes (after 

homodimers removal).  The GSN was defined as gene pairs involving proteins in different 

cellular compartments, resulting in a set of 16,411,614 candidate non interacting gene pairs.  The 

negative pairs involving genes from the GSP were extracted, leaving 5,362,594 negative gene 

pairs. 



 

Evidences for PP interactions were integrated from the following sources:  

• four eukaryotic organisms (fly, mouse, worm, yeast) from the databases HPRD (Peri et 

al., 2003), IntAct (Hermjakob et al., 2004), BIND (Bader et al., 2003) and MIPS (Mewes 

et al., 2006) 

• human high-throughput screens (Ewing et al., 2007; Rual et al., 2005; Stelzl et al., 2005),  

• GeneWays literature data mining algorithm (Rzhetsky et al., 2004) 

• Gene Ontology (GO) biological process annotations (Ashburner et al., 2000) 

• gene co-expression data from B cell expression profiles (Basso et al., 2005) 

• Interpro protein domain annotations (Mulder et al., 2007).  

Each evidence source was represented as categorical data (continuous values were binned as 

necessary) and used to compute a likelihood ratio (LR) based on comparison with the GSP and 

GSN sets. The NBC was trained with all the genes and only the output was filtered for genes 

expressed in B cells (using B cell expression data listed above).  

 

The prior odds for a PP interaction was approximately 1 in 800 based on previous estimates of 

the total number of PP interactions in a human cell of ~300,000 among 22,000 proteins (Hart et 

al., 2006; Rual et al., 2005). From this value, any protein pair having an 800LR ≥ , after 

evidence integration, has at least a 50% probability of being involved in a PP interaction.  Based 

on this threshold, the final set had 10,405 PP interactions (2,677 genes) with a posterior 

probability 50%P ≥ of being true interactions.  All missing interactions in the GSPs (10,765 

interactions and 3,926 genes) were also re-introduced. 

 

1.1.2 Protein-DNA Interactions: To generate the GSP for PD interactions, human interactions 

were extracted from the TRANSFAC Professional (Matys et al., 2003), BIND and Myc 

(MycDB) databases (Zeller et al., 2003), selecting interactions involving genes expressed in B 

cells only. The resultant GSP PD interaction set had 1,752 interactions involving 197 

transcription factors (TFs) and 972 targets. For the GSN, a set of 100,000 random gene pairs was 

used, composed of a TF and a target, excluding pairs where the two genes are involved in a GSP 

interaction or in the same biological process in Gene Ontology.  The GSP was split in two sets: 

one set of 1,116 interactions from the TRANSFAC Professional and Myc databases was used for 



training the NBC, and the remaining 636 interactions from the BIND and Myc databases were 

used for testing the performance of the classifier.  Another random set of 24,000 interactions was 

created as a testing GSN set as described above and did not contain any interactions from the 

training GSN set.  A TF-specific prior odds was used, as it has been previously demonstrated that 

the number of targets regulated by a TF can be approximated by a power-law distribution (Basso 

et al., 2005; Yu et al., 2006).  Predictions by the ARACNe algorithm (Margolin et al., 2006), an 

information-theoretic method for identifying transcriptional interactions between genes using 

microarray data, were used to approximate the expected number of targets for a single TF and 

compute the TF-specific prior odds. 

 

Information on PD interactions from different sources including  

• mouse interactions from the databases TRANSFAC Professional and BIND 

• human PD interactions inferred by the algorithms ARACNe and MINDy (Wang et al., 

2006) 

• transcription factor binding sites identified in the promoter of target genes (Smith et al., 

2006)  

• target gene conditional co-expression based on the B cell expression profiles and GSP 

interactions.  

The data from each evidence source was binned and tested against the GSP and GSN to compute 

a LR, reflecting the ability of individual evidence sources to predict transcriptional interactions. 

The NBC produced a final set of 40,798 PD interactions (303 TFs and 5,448 putative targets) 

with a posterior probability 50%P ≥  of being true interactions. As with PP interactions, all 

missing interactions from TRANSFAC Professional, BIND, and B cell Myc targets from the 

MycDB verified by a Chromatin Immunoprecipitation experiment were re-introduced (927 PD 

interactions). 

 

1.1.3 Post-translational modification:  The MINDy algorithm predicts post-translational 

modulation events, where a TF and target appear to only have an interaction in the presence or 

absence of a third modulator gene (M).  These 3-way interactions were split into two distinct 

pairwise interactions: a PD interaction between the TF and its target and a TF-modulator 

interaction that could be either a P-TF or a TF-TF interaction, depending on if the modulator was 



a TF as well. These interactions were classified with the number of target(s) a modulator affects 

for a single TF, and only modulators affecting 15 or more targets per TF were included (based on 

evidence from known modulator enrichment for MYC).  This resultant set included 1,925 PP 

interactions (of which 13 are supported by a direct PP interaction as previously defined) 

involving 246 TFs and 430 modulators. 

 

1.2 Dysregulation Analysis 

Analysis was performed using a large compendium of microarray expression profiles in B cells 

(BCGEP), including primary tissue as well as cell line samples (NIH Gene Expression Omnibus, 

record GSE2350) (Basso et al., 2005).  Samples were hybridized to Affymetrix HGU95Av2 

chips, and normalized using the MAS5.0 algorithm available in the bioconductor package of 

System R.  This set houses data from over 15 distinct phenotypes, including Germinal Center 

(GC), Naïve (N), Memory (M), Chronic Lymphocytic Leukemia (CLL) both mutated (CLL-mut) 

and unmutated (CLL-unmut), Diffuse Large B Cell Lymphoma (DLBCL), Primary Effusion 

Lymphoma (PEL), Follicular Lymphoma (FL), Mantle Cell Lymphoma (MCL), Burkitt 

Lymphoma (BL) and various tumor cell line samples.  For the primary tumor analysis, all cell 

line samples were removed a priori to restrict the data to primary tissue.  This resulted in an 

overall set of over 200 samples, and the whole set was used as background for each specific 

phenotype.  Hierarchical clustering, using Pearson correlation and average linkage, was also 

performed to verify phenotype groups of interest were relatively homogeneous, making them 

suitable for this analysis.  For the CD40 enrichment analysis, 67 Burkitt Lymphoma Ramos cell 

lines were used, with 28 unstimulated samples and 15 stimulated with the anti-IgM antibody 

used as a background population.  24 samples which were CD40-stimulated - 12 co-cultured 

with CD40-ligand expressing fibroblasts (at 8 and 24 hours exposures), 6 stimulated using a 

CD40 antibody, and 6 exposed to CD40L and anti-IgM treatment – were used as the test 

phenotype to characterize the CD40 perturbation.   

 

The BCI, comprising 64,649 interactions, was split into all possible probes pairs represented on 

these chips, resulting in a non-unique interaction index of 160,730 interactions.  For each 

phenotype, all non-unique BCI interactions were classified as either a gain-of-correlation (GoC), 

loss-of-correlation (LoC) or no change (NC).  The mutual information (MI) between each gene 



pair represented in the BCI was calculated for all samples, and for all samples other than the 

specific phenotype of interest.  The MI is computed using Gaussian kernel estimation (Margolin, 

et al., 2006).  We define a BCI interaction between genes x and y to be affected in the phenotype 

P, if and only if the MI difference below is statistically significant. 

 
�I = IAll[x;y]- IAll-P[x;y] 

 
IAll[x;y] is the MI between x and y estimated from all the BCGEP samples, while IAll-P[x;y] is 

estimated from all the BCGEP samples except those in P. 

 
The threshold that defines whether �I is statistically significant was calculated by sampling a 

subset of interactions across 100 equally sized MI bins covering the full MI range in the network.  

For each bin of 100 interactions, sample sets of various sizes (representing the size of each 

phenotype group) were randomly removed from the BCGEP and the �I was calculated.  A total 

of 10,000 values were computed for each bin and fit with a Gaussian distribution.  A bonferroni-

corrected p-value of 0.05 was used to threshold a test for a given sample set size and original MI 

value. 

 

Note that the �I value will be negative in the LoC cases (as the MI increases after removal), and 

positive in the GoC cases (vice-versa).  All interactions that passed the threshold were labeled as 

-1 or 1 respectively. 

 

1.3 Enrichment 

Enrichment for each gene was calculated using a set of hypergeometric tests.  For each 

phenotype, all affected interactions were split into LoC or GoC categories.  A p-value for each 

case was computed, based on the total interactions (N), the number of LoC or GoC interactions 

the gene is directly connected to (D), its’ natural connectivity in the BCI (H), and the size of the 

overall LoC/GoC signature for that particular phenotype (S).  The sizes of these signatures are 

shown in Table 1.  As shown below, the p-value is equivalent to a Fisher Exact Test, and is 

computed for LoC and GoC cases separately. 
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An additional set of p-values was computed based on modulating effects from each gene as well.  

As described in section 1.1, we incorporate predictions from the MINDy algorithm about three-

way interactions between a transcription factor, its target, and a third modulator gene.  Thus, we 

also include an enrichment based on the number of interactions a gene is predicted to modulate 

that fall into the LoC or GoC category.   

In total, these 4 p-values are combined in a negative log sum operation.  The reason for 

this decision is a simplifying assumption that LoC and GoC cases can be treated independently, 

as can direct effects and modulatory effects.  Although this type of enrichment may bias the 

analysis against hubs, we find that we still identify those hubs when they are, in fact, related to 

the phenotype being analyzed.  MYC, for instance, is one of the most widely connected hubs in 

our network and still emerges at the top in our analysis of Burkitt Lymphoma. 

 

2. Benchmarking 

 

2.1  Differential Expression 

Benchmarking was performed against differential expression analysis in three phenotypes where 

the causal gene was known, and in CD40-stimulated versus unstimulated sets.  In the primary 

tumor analysis, each phenotype of interest (BL, FL, and MCL) was compared with its normal 

counterpart in the dataset (GC, GC, and non-GC).  In the CD40 set, the 24 samples stimulated 

with CD40 were compared against the 43 additional Ramos samples.  Microarray data was log2-

transformed and a t-test was performed using Welch correction, adjusting for varying degrees of 

freedom from different sample sizes.  The rank was established by taking the first occurrence of 

a probe representing the gene of interest (MYC in BL, BCL2 in FL, and CCND1 in MCL).  

Analysis was conducted in MATLAB.   

 

2.2 Gene Set Enrichment Analysis 



Gene Set Enrichment Analysis (Subramanian et al., 2005) was also conducted to establish 

enrichment of CD40-related genes using our method and differential expression.  The CD40 

reference set was obtained from the MSigDB available through the GSEA website 

(http://www.broad.mit.edu/gsea/msigdb/index.jsp).  The unique union of two curated sets, one 

from Biocarta (http://www.biocarta.com/pathfiles/h_CD40PATHWAY.asp) and the other from 

SIGNALINGAlliance 

(http://www.broad.mit.edu/gsea/msigdb/genesetCard.jsp?geneset=SIG_CD40PATHWAYMAP) 

was used for reference, and the CD40 gene itself was manually added as it is known to be self-

regulated.  This list was also manually reviewed with collaborators to ensure accuracy.  GSEA 

was conducted using the unweighted classic scoring analysis, so as to be comparable with 

differential expression, which has a different rank statistic.  The minimum set overlap threshold 

was set to 10. 

 

All genes with a non-zero score from our method were ranked and analyzed using GSEA.  The 

same set size of 379 was used as a cutoff for differential expression, representing a group 

approximately equivalent to a Bonferroni-corrected p-value of 0.05. 

 

2.3 Visualization 

 

Images of disease modules used in this study were produced using the Cytoscape software 

package (http://www.cytoscape.org) (Shannon et al., 2003) 
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