Supplementary Material 1: Computer Programs
(Novak & Tyson, Design Principles of Biochemical Oscillators)

Purpose: to provide ‘ode’ files for simulating all models in the text, using WinPP or
XPP-Aut. These programs are freely available at
http://www.math.pitt.edu/~bard/bardware/
http://www.math.pitt.edu/~bard/xpp/xpp.html

Fig.1C-D

# protein inhibits its own synthesis with explicit time delay
# protein is degraded by a protease according to Michaelis-Menten kinetics

dy/dt = k1*S*Kd*p/(Kd"p + delay(y,tau)"p) - K2*ET*y/(Km +y)

aux dly = delay(y,tau)
aux Fy=k1*S*Kd"p/(Kd"p + delay(y,tau)"p)

p k1=1, S=1, Kd=1, p=2, tau=10
p k2=1, ET=1, Km=1

@ XP=t, YP=y, TOTAL=100, METH=stiff, XLO=0, XHI=100, YLO=0, YHI=3.5,
delay=20
done

Fig.2B

# model for a simple negative feedback loop
# protein (y) inhibits the synthesis of its MRNA (x)

dx/dt = k1*S*Kd*p/(Kd™p + y"p) - kdx*x
dy/dt = ksy*x - K2*ET*y/(Km + )

p k1=0.1, S=1, Kd=1, kdx=0.1, p=2
p ksy=1, k2=1, ET=1, Km=1

@ XP=y, YP=x, TOTAL=100, METH=stiff, XLO=0, XHI=4, YLO=0, YHI=1.05
done



Fig.2D-F

# Negative feedback loop with nuclear transport

# mRNA is synthesized in the nucleus (xn) and transported into the cytoplasm (xc)
# where it gets translated into protein (yc) which is tranlocated into the nucleus (yn)
#

# eps = Vnuc/Vceyt

# half-life of mMRNA in nucleus = 0.693/kdxn

# half-life of prot in cytoplasm = 0.693/kdyc

dxn/dt = kdxn*(sig/(1 + yn”p) - xn) - kexport*xn
dxc/dt = eps*kexport*xn - kdxc*xc

dyc/dt = kdyc*(xc - yc) - eps*kimport*yc
dyn/dt = kimport*yc - kdyn*yn/(Km + yn)

p Sig=1000, p=2, kdxn=10, kexport=0.2,kdxc=0.2, eps=1
p kdyn=8, kdyc=0.1, Km=0.1, kimport=0.1

@ XP=t, YP=xn, TOTAL=100, METH=stiff, XLO=0, XHI=100, YLO=0, YHI=1000,
bounds=10000

done

Fig.3B-F

# protein inhibits its own degradation

dx/dt = k1*S*Kd" p/(Kd"p + y*p) - kdx*x
dy/dt = ksy*x - kdy*y - K2*ET*y/(Km +y + KI*y"2)

p S=1, k1=0.05, Kd=1, p=4, kdx=0.05
p ksy=1, kdy=0.05, k2=1, ET=1, Km=0.1, KI=2

@ XP=y, YP=x, TOTAL=250, METH=stiff, XLO=0, XHI=4, YLO=0, YHI=1.05
done



Fig.5A (left)

# Three component negative feedback oscillator (+ + -)
#X->Y->Z-X

dx/dt = ksx*S/(1 + z™p) - kdx*x
dy/dt = k1*x - k2*y/(Km + )
dz/dt = k3*(y - 2)

p ksx=0.1, S=2, kdx=0.1, p=4
p k1=0.2, k2=0.1, Km=0.01, k3=0.05

@ XP=t, YP=x, TOTAL=250, METH=stiff, XLO=0, XHI=250, YLO=0, YHI=1
done

Fig.5B (left)
# Activator amplification & negative feedback

dx/dt = ksx' + ksx*w - (kdx' + kdx*y)*x
dy/dt = ksy*x™p/(1 + x"p) - kdy*y

w = Xx"g/(1 + xX~q)

p ksx'=0.02, ksx=1, kdx'=0.2, kdx=1, =2
p ksy=0.01, kdy=0.01, p=2

@ XP=y, YP=x, TOTAL=250, METH=stiff, XLO=0, XHI=0.5, YLO=0, YHI=5
done

Fig.5B (right)

# Inhibitor amplification with negative feedback

# x promotes y synthesis and y promotes x degradation
# y degradation is enhanced by z

#y binds to z to form an inactive complex C

#

# Kdiss*C = Yfree*Zfree = (Ytotal-C)*(Ztotal-C)

dx/dt = ksx - (kdx' + kdx*y”p)*x
dy/dt = ksy' + ksy*x - (kdy' + kdy*z)*Y

BB = ZT+Y+Kdiss
CC = 2*ZT*Y/(BB+sqrt(BB"2-4*ZT*Y))



z=Z/T-CC

p ksx=0.01, kdx'=0.01, kdx=1, p=2
p ksy'=0.1, ksy=0.2, kdy'=0.1, kdy=250, Kdiss=0.01
p ZT=0.05

@ XP=y, YP=x, TOTAL=250, METH=stiff, XLO=0, XHI=0.5, YLO=0, YHI=1
done

Fig.6B-C

# Rossler (1977) BMB
#
# Spiral Chaos

dx/dt = k1 + k2*x - (k3*y+kd*z)*x/(K+X)
dy/dt = k5*x - k6*y
dz/dt = k7*x - k8*z/(L+z)

p k1=22, k2=2.2, k3=4.4, k4=4.4, k5=1.2
p k6=1, k7=14, k8=140, K=0.01, L=0.05

init x=7, y=6, z=0.1
done



Supplementary Material 2: Negative Feedback with Explicit Time Delay
(Novak & Tyson, Design Principles of Biochemical Oscillators)

Purpose: to derive the constraint between zand S for oscillatory solutions to Eq. (2) of
the text. The constraint equation is used to plot the curves in Fig. 1e and f.

First, we write Eq. (2) in dimensionless form:

dy(}) = g - Y where y(f) YO g oKy (S2.1)
dt  14[y-2)] x+y Ky Ky
The parameters in this equation are defined by o = kS , K= Ky , T= KoEy T.
k,E, K, K,

The steady state solution of Eq. (S2.1) is the unique real positive root, y,, of
yP* —(o-1)y-ox=0. (S2.2)

Assume y(f) =y, + ce , where ¢ = constant. Substituting this assumed solution into Eq.
(S2.1), we find that

iw=p—gpe* (52.3)

p-1
L > and ¢ = IPY, >
(K+Y,) d+yy)

between ¢ and p: L p{l+(a—l)£} =R, where R is a label for p[...].
P oK

where p = . Using (S2.2) we find a convenient relation

Equating the real and imaginary parts of Eq. (S2.3), we find that
pl+o’ =¢" and o7 =arctan(-w/p). (S2.4)
The conditions (S2.4) imply that

o=pJR°-1 and 7=0" arctan(—\/R2 —1). (S2.5)

We are now prepared to compute the curves in Fig. 1e and f, by the following
pseudocode:



Scan over p=1, 2, 3, ..
Scan over values of «

Scan over values of o
Solve (S52.2) for yo
Compute R=p*[1+(c-1)*yo/(ock)]
IT (R>1), then
Compute p=«/(k+yo)"2
Compute o=p*sqrt(R*R-1)
Compute t=arctan(-o/p)/o
Compute Period=2*n/o
Save (o,t, ®,Period)
Else continue
Continue
For each (p,x),plot (t versus o)
Continue
Continue
End



Supplementary Material 3: Motif G

(Novak & Tyson, Design Principles of Biochemical Oscillators)

Purpose: to prove that the incoherently amplified NFL in motif (G), with a 2-
component negative feedback loop and a 3-component positive feedback loop, cannot

generate oscillations by a Hopf bifurcation.

For motif (G) proposed in the text (also below, left), we exhibit the sign pattern of the
Jacobian matrix (below, right), where the a’s, b’s and c¢’s are all >0,

-a, —-a, 0
X\O J=| b, -b, Fb,
Gﬂ@ VA tc, 0 -,

Y

The stability of the steady state depends on the eigenvalues, A, of the Jacobian matrix,
which are the roots of the characteristic equation:

-a, -4  -a, 0
O=det| b, -b, -2 Fb,
*C, 0 —C, -4
0=(1+a,)(A+b)(A+c,)+ab (1+c,)-ab.c, (S3.1)

0=2°+4*(a, +b,+c,)+A(ab, +bc, +ac, +ab )+abc, +abc, —abc,

In order for a Hopf bifurcation to occur, this algebraic equation must have a pair of pure
imaginary roots, A4 =+iw . The necessary and sufficient condition for pure imaginary
roots to Eq. (S3.1) is

abc, +abc, —abc, =(a +b, +c,)(ab, +bc, +ac +ah,) <5
0=2ahbc,+a,(ab, +a,c, +ab)+b, (ab, +bc,+ab)+c,(be, +ac,)+abc, (532

Clearly, Eq. (S3.2) cannot be satisfied for any choice of ay, etc. Hence, it is impossible
for this motif to generate oscillations by a Hopf bifurcation. On the other hand, A =0 is a
possible solution of Eq. (S3.1), if a,b,c, +a b,c, =ab,c, . Hence, this motif can generate

Xy ~z yMx vz
multiple steady states by saddle-node bifurcations. So we conclude that motif (G) can
exhibit bistability but not oscillations.

By a similar argument, we can come to the same conclusion for motif (G”) below






Supplementary Material 4. Motif H
(Novak & Tyson, Design Principles of Biochemical Oscillators)
Purpose: to prove that motif (H) (below, left), for which both the 2-component and 3-

component feedback loops are positive, can exhibit bistability but cannot generate stable
oscillations by a Hopf bifurcation.

-a, a, =a,

Y
~ J=| b, b 0
ooz 0 +c, -,

X

The sign pattern of the Jacobian matrix for motif (H) is given above (right), where the
a’s,b’s and c’s are all > 0.The stability of the steady state depends on the eigenvalues,
A, of the Jacobian matrix, which are the roots of the characteristic equation:

-a, — 4 a, Fa,
O=det| b, -b, -1 0
0 ¥c, ¢, -4
0=(A+a)(A+b)(A+c,)-ab,(1+c,)-abc, (S4.1)

0=A4"+4%(a +b,+c,)+A(ab, +bc, +ac,—ahb)+abc —abc, —abc,

In order for a Hopf bifurcation to occur, this algebraic equation must have a pair of pure
imaginary roots, A =+iw . The necessary and sufficient condition for pure imaginary
roots to Eq. (S4.1) is

abc,—abc,-abc =(a +b +c)(ab, +bc,+ac -ab,)

yMx ¥z
bc, =2abc, +a; (b, +c,)+b; (a +c,)+c; (a,+h,) (S42)

72Xy Xy ~z

a,b.(a,+b))-a

0=2ab.c, +c,(a;+b})+c(a, +b,)+ahbc, +(ab,—ab )@ +b)

If (axby — ayby) > 0, then Eq. (S4.2) cannot be satisfied for any choice of ay, etc. Hence, if
motif (H) is to generate limit cycle oscillations by a Hopf bifurcation, then (axby — ayby)
must be < 0. But, in that case, the characteristic equation (S4.1) must have a real positive
root, A; > 0, as well as a pair of pure imaginary eigenvalues. The bifurcating limit cycles
must be unstable. We conclude that it is impossible for motif (H) to generate stable
oscillations by a Hopf bifurcation.



On the other hand, A = 0 is a possible solution of Eq. (S4.1), if a,b,c, =a

Hence, motif (H) can generate multiple steady states by saddle-node bifurcations.

b.c, +abc,.

727Xy

By a similar argument, we can come to the same conclusion for motif (H”) below:

X\o J=|-b, -b, Fb
@[@ z ¥c, 0 —c
Y
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