BBC Russian
Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


We have identified an erythroid-specific enhancer element far upstream of the human "beta-like globin" genes, at 10.2-11.0 kilobases 5' of the embryonic epsilon-globin gene, and thus at 53-54 kilobases 5' of the adult beta-globin gene. It is capable of enhancing the expression of a cis-linked test gene by up to 300-fold. This enhancer element is apparently developmental-stage-independent, as it is functional at the embryonic and the adult developmental stages in erythroid cells that are expressing the respective beta-like globin genes. The enhancer and globin promoter sequences work in synergy and are capable of conferring on a cis-linked gene the high transcriptional efficiency (enhancer function), erythroid specificity (enhancer and promoter functions), and developmental-stage specificity (promoter function) that are characteristic of the in vivo transcription of the beta-like globin genes in erythroid cells.

Free full text 


Logo of pnasLink to Publisher's site
Proc Natl Acad Sci U S A. 1989 Apr; 86(8): 2554–2558.
PMCID: PMC286955
PMID: 2704733

An erythroid-specific, developmental-stage-independent enhancer far upstream of the human "beta-like globin" genes.

Abstract

We have identified an erythroid-specific enhancer element far upstream of the human "beta-like globin" genes, at 10.2-11.0 kilobases 5' of the embryonic epsilon-globin gene, and thus at 53-54 kilobases 5' of the adult beta-globin gene. It is capable of enhancing the expression of a cis-linked test gene by up to 300-fold. This enhancer element is apparently developmental-stage-independent, as it is functional at the embryonic and the adult developmental stages in erythroid cells that are expressing the respective beta-like globin genes. The enhancer and globin promoter sequences work in synergy and are capable of conferring on a cis-linked gene the high transcriptional efficiency (enhancer function), erythroid specificity (enhancer and promoter functions), and developmental-stage specificity (promoter function) that are characteristic of the in vivo transcription of the beta-like globin genes in erythroid cells.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.2M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Chada K, Magram J, Costantini F. An embryonic pattern of expression of a human fetal globin gene in transgenic mice. Nature. 1986 Feb 20;319(6055):685–689. [Abstract] [Google Scholar]
  • Dzierzak EA, Papayannopoulou T, Mulligan RC. Lineage-specific expression of a human beta-globin gene in murine bone marrow transplant recipients reconstituted with retrovirus-transduced stem cells. Nature. 1988 Jan 7;331(6151):35–41. [Abstract] [Google Scholar]
  • Kollias G, Wrighton N, Hurst J, Grosveld F. Regulated expression of human A gamma-, beta-, and hybrid gamma beta-globin genes in transgenic mice: manipulation of the developmental expression patterns. Cell. 1986 Jul 4;46(1):89–94. [Abstract] [Google Scholar]
  • Magram J, Chada K, Costantini F. Developmental regulation of a cloned adult beta-globin gene in transgenic mice. Nature. 1985 May 23;315(6017):338–340. [Abstract] [Google Scholar]
  • Townes TM, Lingrel JB, Chen HY, Brinster RL, Palmiter RD. Erythroid-specific expression of human beta-globin genes in transgenic mice. EMBO J. 1985 Jul;4(7):1715–1723. [Europe PMC free article] [Abstract] [Google Scholar]
  • Tuan D, London IM. Mapping of DNase I-hypersensitive sites in the upstream DNA of human embryonic epsilon-globin gene in K562 leukemia cells. Proc Natl Acad Sci U S A. 1984 May;81(9):2718–2722. [Europe PMC free article] [Abstract] [Google Scholar]
  • Tuan D, Solomon W, Li Q, London IM. The "beta-like-globin" gene domain in human erythroid cells. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6384–6388. [Europe PMC free article] [Abstract] [Google Scholar]
  • Forrester WC, Takegawa S, Papayannopoulou T, Stamatoyannopoulos G, Groudine M. Evidence for a locus activation region: the formation of developmentally stable hypersensitive sites in globin-expressing hybrids. Nucleic Acids Res. 1987 Dec 23;15(24):10159–10177. [Europe PMC free article] [Abstract] [Google Scholar]
  • Banerji J, Rusconi S, Schaffner W. Expression of a beta-globin gene is enhanced by remote SV40 DNA sequences. Cell. 1981 Dec;27(2 Pt 1):299–308. [Abstract] [Google Scholar]
  • Wang XF, Calame K. The endogenous immunoglobulin heavy chain enhancer can activate tandem VH promoters separated by a large distance. Cell. 1985 Dec;43(3 Pt 2):659–665. [Abstract] [Google Scholar]
  • Pinkert CA, Ornitz DM, Brinster RL, Palmiter RD. An albumin enhancer located 10 kb upstream functions along with its promoter to direct efficient, liver-specific expression in transgenic mice. Genes Dev. 1987 May;1(3):268–276. [Abstract] [Google Scholar]
  • Gorman CM, Moffat LF, Howard BH. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol. 1982 Sep;2(9):1044–1051. [Europe PMC free article] [Abstract] [Google Scholar]
  • Li Q, Powers PA, Smithies O. Nucleotide sequence of 16-kilobase pairs of DNA 5' to the human epsilon-globin gene. J Biol Chem. 1985 Dec 5;260(28):14901–14910. [Abstract] [Google Scholar]
  • Baralle FE, Shoulders CC, Proudfoot NJ. The primary structure of the human epsilon-globin gene. Cell. 1980 Oct;21(3):621–626. [Abstract] [Google Scholar]
  • Krakauer T, Oppenheim JJ. Interleukin 1 production by a human acute monocytic leukemia cell line. Cell Immunol. 1983 Sep;80(2):223–229. [Abstract] [Google Scholar]
  • Wigler M, Sweet R, Sim GK, Wold B, Pellicer A, Lacy E, Maniatis T, Silverstein S, Axel R. Transformation of mammalian cells with genes from procaryotes and eucaryotes. Cell. 1979 Apr;16(4):777–785. [Abstract] [Google Scholar]
  • Sussman DJ, Milman G. Short-term, high-efficiency expression of transfected DNA. Mol Cell Biol. 1984 Aug;4(8):1641–1643. [Europe PMC free article] [Abstract] [Google Scholar]
  • Potter H, Weir L, Leder P. Enhancer-dependent expression of human kappa immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporation. Proc Natl Acad Sci U S A. 1984 Nov;81(22):7161–7165. [Europe PMC free article] [Abstract] [Google Scholar]
  • Benz EJ, Jr, Murnane MJ, Tonkonow BL, Berman BW, Mazur EM, Cavallesco C, Jenko T, Snyder EL, Forget BG, Hoffman R. Embryonic-fetal erythroid characteristics of a human leukemic cell line. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3509–3513. [Europe PMC free article] [Abstract] [Google Scholar]
  • Gillies SD, Folsom V, Tonegawa S. Cell type-specific enhancer element associated with a mouse MHC gene, E beta. Nature. 1984 Aug 16;310(5978):594–597. [Abstract] [Google Scholar]
  • Grosveld F, van Assendelft GB, Greaves DR, Kollias G. Position-independent, high-level expression of the human beta-globin gene in transgenic mice. Cell. 1987 Dec 24;51(6):975–985. [Abstract] [Google Scholar]
  • Rutherford T, Nienhuis AW. Human globin gene promoter sequences are sufficient for specific expression of a hybrid gene transfected into tissue culture cells. Mol Cell Biol. 1987 Jan;7(1):398–402. [Europe PMC free article] [Abstract] [Google Scholar]
  • Selden RF, Howie KB, Rowe ME, Goodman HM, Moore DD. Human growth hormone as a reporter gene in regulation studies employing transient gene expression. Mol Cell Biol. 1986 Sep;6(9):3173–3179. [Europe PMC free article] [Abstract] [Google Scholar]
  • Melton DA, Krieg PA, Rebagliati MR, Maniatis T, Zinn K, Green MR. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 1984 Sep 25;12(18):7035–7056. [Europe PMC free article] [Abstract] [Google Scholar]
  • Marks PA, Rifkind RA. Erythroleukemic differentiation. Annu Rev Biochem. 1978;47:419–448. [Abstract] [Google Scholar]
  • Trudel M, Costantini F. A 3' enhancer contributes to the stage-specific expression of the human beta-globin gene. Genes Dev. 1987 Nov;1(9):954–961. [Abstract] [Google Scholar]
  • Kollias G, Hurst J, deBoer E, Grosveld F. The human beta-globin gene contains a downstream developmental specific enhancer. Nucleic Acids Res. 1987 Jul 24;15(14):5739–5747. [Europe PMC free article] [Abstract] [Google Scholar]
  • Boussios T, Condon MR, Bertles JF. Ontogeny of hamster hemoglobins in yolk-sac erythroid cells in vivo and in culture. Proc Natl Acad Sci U S A. 1985 May;82(9):2794–2798. [Europe PMC free article] [Abstract] [Google Scholar]
  • Nickol JM, Felsenfeld G. Bidirectional control of the chicken beta- and epsilon-globin genes by a shared enhancer. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2548–2552. [Europe PMC free article] [Abstract] [Google Scholar]
  • Emerson BM, Lewis CD, Felsenfeld G. Interaction of specific nuclear factors with the nuclease-hypersensitive region of the chicken adult beta-globin gene: nature of the binding domain. Cell. 1985 May;41(1):21–30. [Abstract] [Google Scholar]
  • Van der Ploeg LH, Konings A, Oort M, Roos D, Bernini L, Flavell RA. gamma-beta-Thalassaemia studies showing that deletion of the gamma- and delta-genes influences beta-globin gene expression in man. Nature. 1980 Feb 14;283(5748):637–642. [Abstract] [Google Scholar]
  • Vanin EF, Henthorn PS, Kioussis D, Grosveld F, Smithies O. Unexpected relationships between four large deletions in the human beta-globin gene cluster. Cell. 1983 Dec;35(3 Pt 2):701–709. [Abstract] [Google Scholar]
  • Curtin PT, Kan YW. The inactive beta globin gene on a gamma delta beta thalassemia chromosome has a normal structure and functions normally in vitro. Blood. 1988 Mar;71(3):766–770. [Abstract] [Google Scholar]
  • Kioussis D, Vanin E, deLange T, Flavell RA, Grosveld FG. Beta-globin gene inactivation by DNA translocation in gamma beta-thalassaemia. Nature. 1983 Dec 15;306(5944):662–666. [Abstract] [Google Scholar]
  • Bodine DM, Ley TJ. An enhancer element lies 3' to the human A gamma globin gene. EMBO J. 1987 Oct;6(10):2997–3004. [Europe PMC free article] [Abstract] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/41423776
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/41423776

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1073/pnas.86.8.2554

Supporting
Mentioning
Contrasting
6
178
0

Article citations


Go to all (167) article citations

Funding 


Funders who supported this work.

NHLBI NIH HHS (1)

NIDDK NIH HHS (1)