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Genotyping, imputation and quality control 
Study samples are described in Table 1. Study specific parameters and pre-

imputation filters are specified in Table S1. Each study applied similar criteria for data 
calling. Prior to imputation, the criteria applied for exclusion of SNPs were: (i) minor allele 
frequency (MAF) <0.01, (ii) Hardy-Weinberg equilibrium P <10-4 or 10-6 and (iii) call-rate 
<0.90 or 0.95. Criteria applied for exclusion of samples were: (i) call-rate <0.95 or <0.97, 
(ii) sex mismatch between genotypes and reported sex, and (iii) outliers as assessed by 
population structure analysis. Imputation of additional autosomal SNPs from the HapMap 
CEU (1) reference panel was performed using the software MACH (2) or IMPUTE (3).  

As standard for imputation, we excluded sex chromosome-linked SNPs from 
analyses given the difficulty of accurately imputing non-autosomal SNPs and the poor 
overlap of X-chromosome SNPs across different platforms. SNPs were also excluded if 
the cohort-specific imputation quality was particularly poor (observed-over-expected 
variance ratio (r2.hat) <0.3 if MACH was used for imputation, or proper-info <0.4 if 
IMPUTE was used) or if MAF < 0.01. In total, up to 2.5 million genotyped or imputed 
autosomal SNPs were considered for meta-analysis. We only report on individual SNPs 
imputed or genotyped in ≥6,000 participants.  
Statistical methods for primary analyses 

In each cohort we fitted a linear regression model using measured HbA1C (%) as the 
dependent variable to evaluate the additive effect of genotyped and imputed SNPs. The 
model was adjusted for age, sex and/or study site and family structure (Table S1). The 
association was tested taking genotype and imputation uncertainty into account, using a 
missing data likelihood test as implemented in SNPTEST (3) or by using allele dosages in 
the linear regression model as implemented in ProbABEL (4) or MACH2QTL (2) for 
unrelated samples or in Merlin (5) or using a linear mixed effects model implemented in 
the lmekin function of the R kinship package for family-based studies. Regression 
estimates for each SNP were combined across studies in a meta-analysis using a fixed 
effect inverse-variance approach, as implemented in METAL 
(http://www.sph.umich.edu/csg/abecasis/Metal/index.html). The individual cohort analysis 
results were corrected prior to performing the meta-analysis for residual inflation of the test 
statistic using the genomic control method if the lambda coefficient was > 1.0. 
Heterogeneity was assessed using the standard chi-square test implemented in METAL, 
Cochran’s Q statistic and the I2 statistics (6). 
Conditional analyses 

We used conditional analyses to infer whether the ten HbA1C loci (Table 2) have 
associations with HbA1C through glycemic or non-glycemic pathways by implementing a 
two-stage regression approach. First, we selected a subset of up to 23,654 non-diabetic 
participants from 15 cohorts having HbA1C and fasting glucose (FG) levels measured, or 
up to 6,394 non-diabetic participants from 6 cohorts having HbA1C and 2-hr post-challenge 
levels measured. In these participants we calculated separate regressions of HbA1C and 
FG on each of the ten genome-wide significant SNPs; these estimates reflect the 
unadjusted effect of the genetic variants on HbA1C and glucose. To identify the glucose-
dependent and glucose-independent effects on HbA1C, we adjusted the HbA1C regressions 
on the genetic variants additionally for FG or 2-hr post challenge in models adjusted for 
sex, age and other study-specific covariates. We further meta-analyzed summary statistics 
using inverse-variance meta-analysis as in the primary analysis.  

For the ANK1 locus, an additional conditional analysis was carried out to test 
whether an independent association signal was present for SNP rs6474359. This signal 
appeared to be statistically independent from the lead SNP rs4737009, as shown by low 
linkage disequilibrium (pairwise r2 with rs4737009 = 0.0001). In each study, the association 
at chromosome 8 was evaluated including SNP rs4737009 as an additional covariate to 



©2010 American Diabetes Association. Published online at http://diabetes.diabetesjournals.org/cgi/content/full/db10-0502/DC1 

the basic model, and then results were meta-analyzed as in the primary analysis.  
Similarly, we used conditional analyses to assess whether the ten loci (Table 2) 

affect HbA1C through hematological mechanisms. First, we selected a subset of up to 
7,500 samples from four cohorts (KORA F3, KORA F4, SardiNIA and NHANES III) with 
available data for hemoglobin levels (Hb), mean corpuscular hemoglobin (MCH), mean 
corpuscular volume (MCV), iron levels and transferrin. In these participants we calculated 
separate regressions of HbA1C and HbA1C adjusted for each of the hematological 
parameters on each of the ten genome-wide significant SNPs. All models were also 
adjusted for sex, age and other study-specific covariates. We further meta-analyzed 
summary statistics using inverse-variance meta-analysis as in the primary analysis. 
Calculation of explained variance 

To estimate the total variance in HbA1C explained by the ten lead SNPs (rs2779116, 
rs552976, rs1800562, rs1799884, rs4737009, rs16926246, rs1387153, rs7998202, 
rs1046896, rs855791), we fitted a regression model for each GWAS cohort including the 
ten SNPs, and calculated an estimate of the variance explained by the SNPs as sample 
size weighted average in the following samples: ARIC, B58C-T1DGC, B58C-WTCCC, 
BLSA, DESIR, EPIC cases, EPIC cohort, Fenland, FHS, GenomeEUtwin, KORA F3, 
KORA F4, Lolipop, NTR and SHIP. The cohort-specific total variance explained by the ten 
SNPs was calculated as the difference between the variance explained by the full model 
and the variance of a basic model including only sex, age and the study-specific 
covariates.  
Calculation of HbA1C genotype score  

We defined a risk score for the ten leading SNPs as a weighted sum of the number 
of expected risk alleles, where the sum of the weights was set to the number of SNPs and 
the weights were proportional to the estimate of the effect size for each SNP (beta 
coefficients from the association model). The same approach was taken for the seven non-
glycemic loci. Mean HbA1C (%) levels according to the number of weighted risk alleles 
were computed in some of the largest population cohorts (FHS, ARIC, SardiNIA and 
KORA F4) with all seven or ten SNPs available (genotyped or imputed). For FHS and 
SardiNIA, a mixed effect model with a single variable with two groups (lower 10% versus 
upper 10%) was used to account for relatedness among participants, for the other studies, 
fixed-effects models were used. We carried out the same calculation using the seven non-
glycemic loci (rs2779116, rs1800562, rs4737009, rs16926246, rs7998202, rs1046896, 
rs855791). For both ten and seven loci we calculated a weighted average difference in the 
HbA1c level between the 10% tails of the genotype score distribution (N=200 in FHS, N= 
335 in SardiNIA, N=149 in KORA). 
Association with intermediate and disease endpoints  

The top SNPs were additionally tested for association with other metabolic traits 
using available meta-analysis data from MAGIC (7). Associations with FG (n=40,934-
46,184), fasting insulin (n=33,182-38,236), β-cell function by homeostasis model 
assessment (HOMA-B; n=31,434-36,464) and insulin resistance by homeostasis model 
assessment (HOMA-IR; n=31,884-37,035) were calculated as described previously (7). 
Associations with oral glucose tolerance tests (2-hr glucose, n=10,075-15,234 and 2-hr 
insulin, n=3,690-7,062) were calculated as described previously (8). Analyses of HbA1C 
conditional on FG were calculated in a subset of the samples as described above. 
Associations with hematologic traits were obtained from a meta-analysis carried out on the 
four populations (KORA F3, KORA F4, SardiNIA and NHANES III) with available data for 
Hb, MCH, MCV iron levels and transferrin. Associations of MTNR1B, GCK and 
G6PC2/ABCB11 with type 2 diabetes (T2D) were obtained from a total of 8,130 cases and 
38,987 controls (or 6,206 cases and 36,049 controls for SNP rs1800562 (HFE)) from the 
DIAGRAM+ consortium (9). 
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For associations with coronary artery disease, we obtained summary statistics for 13,925 
cases and 14,590 controls (in aggregate) from nine case-control collections. Sample 
characteristics and case/control definitions are given in Table S5, and study specific 
association results are given in Table S6. Pooled summary statistics (odds ratios, 95% 
confidence intervals and P values) were calculated under a fixed-effects model as there 
was no evidence for inter-cohort heterogeneity, using custom scripts implemented in the R 
environment (available from the authors on request). 
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APPENDIX - Biological function of candidate genes in associated regions 
 
G6PC2 (glucose-6-phosphatase, catalytic, 2) /ABCB11 (ATP-binding cassette, sub-
family B, member 11) 
GCK (glucokinase) 
 
Common genetic variants in G6PC2 (10; 11), GCK (12), GCKR (glucokinase regulator) 
(13) and MTNR1B (melatonin receptor 1B) (14-16) have recently been identified as loci 
regulating FG in genome-wide association studies of diabetes-free adults. GCK and 
G6PC2 are expressed in the pancreas and code for proteins that are key regulators of the 
provision of FG. Glucokinases/hexokinases phosphorylate glucose to produce glucose-6-
phosphate, the first step in most glucose metabolism pathways. Alternative splicing of 
GCK results in three tissue-specific forms of glucokinase, one found in pancreatic islet β 
cells and two found in liver. The protein localizes to the outer membrane of mitochondria. 
In contrast to other hexokinases, this enzyme is not inhibited by its product glucose-6-
phosphate but remains active while glucose is abundant. Rare inactivating mutations in 
GCK cause maturity-onset diabetes of the young, type 2, a disorder characterized by mild, 
stable fasting hyperglycemia (17). In contrast, activating mutations in GCK cause 
persistent hyperinsulinemic hypoglycemia of infancy, in which the threshold for glucose-
stimulated insulin release is reduced. Thus, both disorders highlight the role of glucokinase 
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in regulating insulin secretion as the glucose sensor of β cells (18). G6PC2 encodes an 
enzyme belonging to the glucose-6-phosphatase catalytic subunit family that is involved in 
the hydrolysis of glucose-6-phosphate, the terminal step in gluconeogenic and 
glycogenolytic pathways; in this manner it is directly linked to the availability of glucose for 
release into the bloodstream. The protein product encoded by this gene is found in 
pancreatic islets and does not exhibit phosphohydrolase activity, but it is a major target of 
cell-mediated autoimmunity in diabetes. G6PC2 and GCK are likely candidates for altering 
an individual’s physiologic glucostat set point in the absence of progressive hyperglycemia 
and symptomatic disease. Lead HbA1C SNPs for the G6PC2/ABCB11 (rs552976) and 
GCK loci (rs1799884) are in high linkage disequilibrium with the most significant SNPs 
previously identified for FG (r2=0.69 between rs552976 and rs560887 and r2=1 between 
rs1799884 and rs4607517). 
 
Within the same recombination hot spot (Hapmap II data) of GCK: CAMK2B 
(calcium/calmodulin-dependent protein kinase II beta) 
The product of this gene belongs to the serine/threonine protein kinase family and to the 
Ca2+/calmodulin-dependent protein kinase subfamily. It is possible that distinct isoforms of 
this chain have different cellular localizations and interact differently with calmodulin. Eight 
transcript variants encoding eight distinct isoforms have been identified for this gene, some 
of them are expressed in β cells.  
 
MTNR1B (MELATONIN RECEPTOR 1B) 
MTNR1A and MTNR1B encode two of the known human melatonin receptors (19). 
MTNR1B is a G-protein coupled cell surface receptor that is highly expressed in the brain 
and retina. It is also transcribed in human pancreatic islets and rodent insulinoma cell lines 
(20). Insulin secretion demonstrates a circadian rhythm which is disrupted in T2D (21). 
Human pancreatic melatonin receptor expression is elevated in T2D based on elevated 
mRNA levels as well as more intense immunostaining (22). In previous work we and 
others have established that the common variants near MTNR1B modulate of FG and 
increase T2D risk, suggesting a link between circadian rhythm regulation and glucose 
homeostasis (14; 16). Lyssenko and colleagues demonstrated that the risk variant of SNP 
rs10830963 is associated with impaired early insulin secretion (15). Ronn et al. found that 
the SNP identified in Europeans was associated with an increased risk of T2D and 
increased FG in a Han Chinese population (23). Increased expression of MTNR1B in 
pancreatic β-cells and melatonin-mediated impaired insulin secretion in risk allele carriers 

(14-16; 23-25) suggest mechanisms for MTNR1B variants to alter glucose levels in healthy 
individuals (14-16). No other known gene is located in the same recombination hotspot as 
MTNR1B. 
 
SPTA1 (spectrin, alpha, erythrocytic 1 (elliptocytosis 2)) 
Spectrin is an actin crosslinking and molecular scaffold protein that links the plasma 
membrane to the actin cytoskeleton, and functions in the determination of cell shape, 
arrangement of transmembrane proteins, and organization of organelles. It is a tetramer 

made up of α-β dimers linked in a head-to-head arrangement. This gene is one member of 

a family of α-spectrin genes. The encoded protein is primarily composed of 22 spectrin 
repeats that are involved in dimer formation. It forms weaker tetramer interactions than 

non-erythrocytic α- spectrin, which may increase the plasma membrane elasticity and 
deformability of red blood cells. Rare mutations in SPTA1 are responsible for elliptocytosis 
type 2 [MIM 130600], pyropoikilocytosis [MIM 266140], and spherocytic hemolytic anemia 
[MIM 270970] (26). 
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ANK1 (ankyrin 1, erythrocytic) 
ANK1 encodes erythrocytic ankyrin 1, an integral membrane protein linked to the 
underlying spectrin-actin cytoskeleton, and plays a role in cell motility and maintenance of 
specialized membrane domains. Multiple isoforms of ankyrin with different affinities for 
various target proteins are expressed in a tissue-specific, developmentally regulated 
manner. Most ankyrins are typically composed of three structural domains: an amino-
terminal domain containing multiple ankyrin repeats; a central region with a highly 
conserved spectrin binding domain; and a carboxy-terminal regulatory domain which is the 
least conserved and subject to variation. Ankyrin 1, the prototype of this family, was first 
discovered in the erythrocytes, but since has also been found in brain and muscle. 
Mutations in ANK1 are found in approximately half of all patients with hereditary 
spherocytosis (26-28). Complex patterns of alternative splicing in the regulatory domain, 
giving rise to different isoforms of ankyrin 1 have been described. Truncated muscle-
specific isoforms of ankyrin 1 resulting from usage of an alternate promoter have also 
been identified. 
 
5’ region of ANK1: NKX6-3 (NK6 homeobox 3) 
The NKX family of homeodomain proteins controls numerous developmental processes. 
Members of the NKX6 subfamily, including NKX6-3, are involved in development of the 
central nervous system (CNS), gastrointestinal tract and pancreas (29).  
 
HK1 (HEXOKINASE 1) 
Mammalian hexokinase comprises four isozymes that vary in properties and tissue 
distribution (HK1, HK2, HK3, and GCK) (30). Hexokinase catalyzes the first step in 
glucose metabolism, converting glucose to glucose-6-phosphate via phosphorylation. 
Hexokinase is normally found in the cytoplasm of the cell and HK1 is the predominant 
isoform found in erythrocytes (30). It is also expressed in other tissues such as muscle and 
brain (31). Rare mutations in HK1 have been described to cause non-spherocytic 
hemolytic anemia (31-33). Pare et al. reported that two intronic SNPs (rs2305198 and 
rs7072268) are associated with HbA1C (31).  
3’ region of HK1: TACR2 tachykinin receptor 2. This gene belongs to a family of genes 
that encode receptors for tachykinins, characterized by interactions with G proteins and 7 
hydrophobic transmembrane regions. This gene encodes the receptor for the tachykinin 
neuropeptide substance K, also referred to as neurokinin A.  
 
ATP11A (ATPase TYPE 11A) 
Altered membrane integrity may cause a potassium leak in erythrocytes, leading to higher 
sodium/potassium ATPase activity, increased glycolytic activity, and lower intracellular 
glucose concentrations.  In this regard, the association of ATPase TYPE 11A (ATP11A) 
with HbA1C is particularly intriguing. ATP11A is a P-type ATPase that is involved in the 
transport of ions across membranes through phosphorylation and de-phosphorylation. 
Kikuno et al. isolated a partial cDNA encoding ATP11A and RT-PCR analysis detected 
widespread but moderate expression with lowest levels in spleen, pancreas, and testis 
(34). Resistance to farnesyltransferase inhibitors in Bcr/Abl positive lymphoblastic 
leukemia cells has been associated with overexpression of ATP11A (35). Altered 
membrane permeability and monovalent ion leak is also a cause of erythrcyte over- or 
under-hydration and several hereditary stomatocytoses (for instance, MIM %185000, MIM 
%194380). 
 
FN3K (FRUCTOSAMINE 3-KINASE) 
Fructosamine 3-kinase is an intracellular enzyme that catalyzes the phosphorylation of 
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fructosamines formed by glycation. The fructosamine 3-phosphates that are formed are 
unstable and they undergo spontaneous decomposition (36). FN3K is therefore involved in 
de-glycation. Inhibition of FN3K in erythrocytes leads to an increase in HbA1C (37). 
Delpierre et al. demonstrated that purified FN3K catalyzed ATP-dependent 
phosphorylation of a synthetic fructosamine (38). Fructosamine 3-kinase is active in 
erythrocytes and in the lens, which are characterized by slow protein turnover, and may be 
more susceptible to protein glycation (37). An RNA analysis from 11 different human 
tissues demonstrates that FN3K is widely expressed in a variety of cell types (39). There is 
wide inter-individual variability in FN3K activity but little correlation between FN3K activity 
and the levels of HbA1C (36). HbA1C variability has been associated with one SNP in the 
promoter region and one SNP in the exon 6 of the FN3K gene (P <0.0001) (36).  
 
HFE (HEMOCHROMATOSIS) 
HFE encodes a membrane protein that appears involved in iron sensing through the 
interaction with the transferrin receptor (40). Defects in this gene can cause hereditary 
hemochromatosis (MIM 235200), a recessive iron storage disorder due to inappropriately 

low hepcidin levels. The A allele at rs1800562 codes for the pathological C→Y mutation at 
position 262, for the most common cause of hereditary hemochromatosis. The prevalence 
of the HFE mutation is higher in patients with T2D than those without diabetes, and iron 
overload associated with hemochromatosis is a risk factor for T2D (41; 42); however, our 
data show that the hemochromatosis risk A allele is associated with lower levels of HbA1C 
as described in the main manuscript.  
 
TMPRSS6 (TRANSMEMBRANE PROTEASE, SERINE 6) 
TMPRSS6 (also referred to as matriptase-2) is a type II transmembrane serine protease 
enzyme that hydrolyzes a variety of synthetic substrates as well as endogenous proteins, 
such as fibronectin, fibrinogen, and type I collagen (43). TMPRSS6 is involved in 
regulation of iron homeostasis through the control of hepcidin expression (44). The T allele 
at SNP rs855791 encodes a missense mutation [Val736Ala] that has been detected, 
together with other mutations, in families with iron-refractory iron deficiency anemia 
(IRIDA, MIM 206200).  This mutation leads to the overproduction of hepcidin and, in turn, 
to defective iron absorption and utilization (45). Similar to HFE above, mutations in 
TMPRSS6 ‘uncouple’ iron stores sensing from the regulation of iron absorption; however 
in IRIDA, TMPRSS6 mutations result in inappropriately elevated hepcidin and an opposite 
phenotype from hemochromatosis. Northern blot analysis of multiple human tissues 
revealed expression of the TMPRSS6 in the fetal and adult liver (43). In our data, the 
IRIDA risk T allele is associated with lower MCH and higher HbA1C levels, as one would 
predict in a state of iron deficiency and disproportionately lower hemoglobin 
concentrations, thereby raising the measured percentage of glycated hemoglobin. Thus, 
our association results suggest the presence of two complementary and directionally 
consistent pathways that through deficiency or excess make iron metabolism a key 
determinant of measured levels of hemoglobin glycation in erythrocytes. 
 
5’ region of TMPRSS6: KCTD17 (potassium channel tetramerisation domain containing 
17), also known as REN. KCTD17 has unknown function. Overexpression of Ren in mice 
induced neuronal differentiation, growth arrest, and p27(KIP1) expression in central and 
peripheral neural progenitor cell lines. Inhibition of Ren impaired retinoic acid induction of 
neurogenin-1 coded by NEUROG1 and NeuroD coded by NEUROD1 expression. 
NEUROD1 harbors known rare mutations of maturity onset diabetes of the young (46) and 
regulates expression of the insulin gene, whereas p27 is encoded by CDKN1B, a T2D-
associated locus (9).  
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3’ region of TMPRSS6: IL2RB (interleukin 2 receptor B). The interleukin 2 receptor is 
involved in T cell-mediated immune responses. Both the intermediate and high affinity 
forms of the receptor are involved in receptor-mediated endocytosis and transduction of 
mitogenic signals from interleukin 2.  
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