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Phenotype
IBS matrix BN matrix Reference h2

p-value (σ2
a = 0) ĥ2

IBS p-value (σ2
a = 0) ĥ2

BN Kosrae h2 Sardinia h2

CRP 1.7× 10−2 0.134 2.3× 10−2 0.116 0.245 0.296

TG 2.3× 10−4 0.178 2.4× 10−3 0.152 0.274 0.322

INS 8.3× 10−4 0.205 3.1× 10−3 0.152 N/A 0.260

DBP 4.7× 10−4 0.199 5.6× 10−4 0.167 0.289 0.186

BMI 3.9× 10−6 0.279 1.9× 10−6 0.242 0.473 0.426

GLU 4.2× 10−5 0.229 2.4× 10−5 0.197 0.188 0.362

HDL 5.5× 10−11 0.384 1.0× 10−11 0.324 0.391 0.486

SBP 2.7× 10−8 0.283 2.0× 10−8 0.233 0.243 0.253

LDL 1.4× 10−17 0.452 1.2× 10−18 0.384 0.414 0.425

HEIGHT 2.8× 10−45 0.738 2.5× 10−48 0.625 0.790 0.798

Supplementary Table 1: P-values for test of the null hypothesis σ2
a = 0 for all traits; pseudo-

heritability estimates h2
a = σ2

a/(σ
2
a + σ2

e), and heritability estimates from Kosrae population22 and

Sardinia population23. A simple IBS matrix and Balding-Nichols (BN) matrix is used as estimates

of relatedness.
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Phenotype Uncorr. vs EMMAX Uncorr. vs ES100 ES100 vs EMMAX Uncorr. λ

CRP 0.891 (0.94) 0.635 (0.78) 0.660 (0.79) 1.007

TG 0.856 (0.92) 0.569 (0.72) 0.612 (0.76) 1.023

INS 0.826 (0.90) 0.535 (0.70) 0.603 (0.75) 1.029

DBP 0.843 (0.91) 0.607 (0.75) 0.646 (0.78) 1.031

BMI 0.790 (0.88) 0.544 (0.70) 0.607 (0.75) 1.031

GLU 0.775 (0.87) 0.528 (0.69) 0.604 (0.75) 1.045

HDL 0.693 (0.82) 0.500 (0.66) 0.576 (0.73) 1.052

SBP 0.684 (0.81) 0.481 (0.65) 0.597 (0.75) 1.066

LDL 0.624 (0.77) 0.474 (0.64) 0.587 (0.74) 1.098

HEIGHT 0.453 (0.62) 0.386 (0.55) 0.497 (0.66) 1.187

Supplementary Table 2: Comparison of top 2,000 hits obtained with uncorrected analysis, EIGEN-

SOFT with 100 PCs (ES100), and EMMAX. The numbers in second to fourth column represents

the proportion of shared SNPs between each pair of analysis, when selecting top 2,000 SNPs

in each analysis. The values in parentheses are Cohen’s kappa coefficients as a measure of the

agreement between two tests. For clarity we have ordered the phenotypes with reference to their

genomic control parameters and reported these as well in the last column.
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Phenotypes Uncorrected EMMAX-IBS EMMAX-BN Concordance

CRP 1.007 0.993 0.992 0.969 (0.98)

TG 1.023 1.002 1.000 0.969 (0.98)

INS 1.029 1.005 1.005 0.951 (0.97)

DBP 1.031 1.007 1.005 0.955 (0.98)

BMI 1.031 0.995 0.992 0.942 (0.97)

GLU 1.045 1.008 1.004 0.946 (0.97)

HDL 1.052 1.004 1.000 0.919 (0.96)

SBP 1.066 1.006 1.001 0.940 (0.97)

LDL 1.098 1.002 0.999 0.915 (0.96)

HEIGHT 1.187 1.003 0.994 0.838 (0.91)

Supplementary Table 3: Comparison of genomic control inflation factors obtained with uncor-

rected analysis and EMMAX with IBS matrix and Balding-Nichols (BN) matrix. The “Concor-

dance” column represents the proportion of shared SNP between top 2000 associations between

EMMAX-IBS and EMMAX-BN method. The values in the parentheses are kappa statistic
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Supplementary Figure 1: Scatter plots of the first 5 principal components for individuals of known

ancestry. The different linguistic/geographic subgroups are color-coded.
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Supplementary Figure 2: QQ-plots on the log10 scale of the association p-values obtained for

nine traits according to three different models for 9 NFBC66 metabolic trais and 7 WTCCC dis-

ease phenotypes. In black, results from the unadjusted analysis; in blue results from the analysis

conducted using 100 PC, and in red results from EMMAX.
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EMMAX vs EMMA p−values
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EMMAX with different kinship estimates
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(b) EMMAX-IBS vs EMMAX-BN

Supplementary Figure 3: Comparison of p-values obtained running EMMAX using IBS ma-

trix with the corresponding value obtained using (a) the original EMMA and (b) EMMAX with

Balding-Nichols (BN) matrix for the SNPs whose p-value under EMMAX was smaller than

7.2× 10−8.
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(a) uncorrected (b) GC corrected (c) EMMAX

(d) ES100 (e) ES100 + GC

Supplementary Figure 4: QQ plots of 100 randomly generated phenotypes under the variance

component model using a (a) uncorrected analysis, (b) genomic control adjustment, (c) EMMAX,

(d) EIGENSOFT with 100 PCs, and (e) genomic control adjustment after applying EIGENSOFT

with 100 PCs.
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Supplementary Figure 5: Concordance of per-marker inflation factor (A) between two different

control sets (58C and NBS) in WTCCC data set, and (B) between NFBC66 samples and WTCCC

control samples using the 50,298 overlapping markers.
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Supplementary Figure 6: Comparisons (A) between the IBS coefficients and IBD estimates com-

puted by PLINK (B) between the Balding-Nichols (BN) coefficients and IBD estimates from

PLINK, (C) between IBS and BN coefficients when IBD estimates are zero (D) IBS and BN

coefficients when IBD estimates are positive.

9

Nature Genetics: doi:10.1038/ng.548



Supplementary Note

Estimation of relatedness from high-density markers

Unlike a traditional variance component model which uses IBD (identity by descent) coefficients

estimated from the pedigree1, our proposed method empirically estimate the genetic relatedness

between the individuals from high-density markers. In model organism studies, Yu et al.2 estimated

kinship coefficients from multi-locus genotypes using method-of-moment estimators3,4, and Zhao

et al. and Kang et al.5,6 demonstrated that using a haplotype-based IBS matrix or a simple IBS

matrix more robustly corrects for the population structure resulting in a lower inflation factor than

using the estimated IBD matrix from structured model organism samples. Zhao et al.5 observe

in Arabidopsis that while IBD is preferable to describe recent relatedness, IBS may be more apt

to describe very distant relationships between individuals, that indeed blend into population level

differences. Along these lines, Kang et. al6 showed that IBS can precisely reflects the polygenic

background under the assumption that each SNP is equally likely to contribute to the quantitative

trait at a very small level. Several other methods7–9 have been proposed to estimate IBD kinship

coefficients or sample structure from multi-locus genotypes including the maximum-likelihood

method implemented in PLINK software10,11 and the PREST software12

The effectiveness of the empirically estimated pairwise relatedness in correcting for sample

structure has not been comprehensively examined in a large-scale human association mapping

studies, where the sample structure is much less heterogeneous than those among the strains of

model organisms. For this reason, we compared three different empirical estimates of pairwise

genetic relatedness from the NFBC66 samples. First is a simple IBS coefficient, and the second is

a maximum-likelihood estimates (MLE) of IBD kinship coefficient11 implemented in the PLINK10

software. The third is the Balding-Nichols (BN) kinship coefficient9.

The pairwise plots across these three methods suggest that the relatedness estimates computed

by these methods are highly correlated with each other (Supplementary Figure 6). The MLE-

based IBD estimates11 shows a correlation of r = 0.62 with IBS coefficient, and r = 0.48 with

10
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BN coefficient. The MLE-based methods estimates 37% of the pairwise kinship coefficients to

be positive, and those individual pairs show strong correlation of r = 0.68 between BN and IBS

coefficients. Among the 63% of individual pairs where the MLE-based kinship coefficient are zero,

a strong correlation of r = 0.54 is observed between the IBS and BN coefficients, suggesting that

the unrelated individual pairs may still have different degrees of distant relatedness.

We applied either the simple IBS or the BN matrix as the surrogate of sample structure when

applying EMMAX, and results with IBS matrix is reported unless specified or compared between

the two methods. The MLE-based method does not guarantee that the estimated kinship matrix

is positive semidefinite (all eigenvalues are non-negative), making it difficult to use in a variance

component model. The EMMAX p-values across the two methods provide a very high concor-

dance to each other (Supplementary Table 3 and Supplementary Figure 3B).

Methods for estimating marker specific inflation factors

Assuming that model (4) is true with V = Var(η) and marker k has no effect on the phenotype,

we define the inflation factor for marker k as the ratio between the expectation of the F statistics

calculated from OLS for a model that includes k, to the expectation of the F statistics for the same

model calculated from GLS. In fact, we do not compute this ratio explicitly, but simply provide an

approximation. If one considers that as n −→ ∞, the expectation of the GLS F statistics under

arbitrary V , as long as V is non singular, converges to 1; hence we simply need an approximation

for the numerator of the ratio.

Specifically, let us assume, to simplify notation, that Y and Xk are centered to have zero

sample mean so that β̂0 = 0 holds. In such a case, V = Var(η) has to be centered to VC =

PV P where P = I − 11′/n. In addition, for convenience purposes, we standardize Xk to satisfy

XT
k Xk = n − 1, where n is the number of individuals. Then the F-test statistic based on OLS13

becomes
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FOLS =
((X ′

kXk)
−1X ′

kY )2(X ′
kXk)(n− 2)

Y ′(I −Xk(X ′
kXk)−1X ′

k)Y
(8)

=
(X ′

kY )2(n− 2)

nY ′Y − (X ′
kY )2

. (9)

If V = σ2I , then FOLS follows a F-distribution with (1, n−2) degree of freedom. Then if n is

large, FOLS asymptotically converges to chi-square distribution with 1 degree of freedom. While

the distribution of FOLS is difficult to calculate when V has off-diagonal elements, the expected

values of numerator and denominator in FOLS are relatively easy to compute. The expectation

of denominator becomes nTr(VC) − X ′
kVCXk, and the expectation of numerator becomes (n −

2)X ′
kVCXk.

We can then take as operational definition of the marker specific inflation factor ζk at marker

k,

ζk =
(n− 2)X ′

kVCXk

(n− 1)Tr(VC)− (X ′
kVCXk)

(10)

≈ X ′
kVCXk

Tr(VC)
(11)

Note that when V = σ2I , then ζk = 1 holds regardless of the values of Xk. Let ŜC = PŜNP .

When we take for V the specific form assumed in (7), we can further simplify the expression

above:

ζk =
(n− 2)X ′

k(σ
2
aŜC + σ2

eP )Xk

(n− 1)Tr(σ2
aŜC + σ2

eP )− (X ′
k(σ

2
aŜC + σ2

eP )Xk)

=
σ2

a(n− 1)X ′
kŜCXk + σ2

e(n− 1)(n− 2)

σ2
a

[
(n− 1)2 −X ′

kŜCXk

]
+ σ2

e(n− 1)(n− 2)

≈ σ2
aX

′
kŜCXk/(n− 1) + σ2

e

σ2
a + σ2

e

= h2
aX

′
kŜCXk/(n− 1) + (1− h2

a) (12)

where h2
a = σ2

a/(σ
2
a + σ2

e) is the pseudo-heritability.

We are now in the position to discuss the meaning and implication of the marker specific

inflation factors we defined. The introduced marker-specific inflation factors essentially estimate

12
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the effects of the mis-specification of variance component by using OLS in the place of GLS.

From expression (12) it is clear that the amount of inflation at any given marker depends on the

level of correlation between the marker genotypes and the GLS variance-covariance matrix. This

validates the common intuition that cryptic population structure may affect tests differently at

different markers and it illustrates the reasons of such variability. Expression (12) also clarifies

how the same level of sample structure will affect differently the association tests for different

phenotypes. The inflation will be stronger the higher is the ratio of σ2
a to σ2

e , while for a trait that

does not follow the polygenic model σ2
a = 0, no amount of population structure will have any

impact on the association tests. Finally, it is useful to recall that the inflation factors ζk, while

marker specific, are calculated independently of the observed association between marker and

phenotype, being based on expectations of test statistics under the null model.

More generally, if multiple confounding variables need to be accounted for in addition to the

intercept under the null model, Equation (9) can be rewritten in a general form of F statistic to

get the expectation of numerator and denominator. Such a procedure is asymptotically equivalent

to centering an arbitrary variance component V to VC = (I − G(G′G)−1G)V (I − G(G′G)−1G),

given a non-singular matrix of confounding variables G that includes the intercept. In this case,

the SNP vector Xk also needs to be regressed out with respected to G, and (n− 2) in Equation (9)

needs to be replaced with (n− q − 1), where q is the number of columns in G.

This method can also be extended for estimating the effect of mis-specified variance compo-

nent or errors in the variance component estimation. Before running GLS, let V̂ = σ̂a
2ŜN + σ̂e

2I

be the estimated variance-covariance matrix when V is the true one. Assuming that Y and Xk are

centered, the F test statistics for GLS is

FGLS =
((X ′

kV̂
−1
C Xk)

−1X ′
kV̂

−1
C Y )2(X ′

kV̂
−1
C Xk)(n− 2)

Y ′(V̂ −1
C − V̂ −1

C Xk(X ′
kV̂

−1
C Xk)−1X ′

kV̂
−1
C )Y

(13)

=
(X ′

kV̂
−1
C Y )2(n− 2)

(X ′
kV̂

−1
C Xk)Y ′V̂ −1

C Y − (X ′
kV̂

−1
C Y )2

(14)

where V̂C represents the centered matrix of V̂ . The ratio between expected numerator and denom-
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inator provides the inflation factor with mis-specified variance component.

ζk =
X ′

kV̂
−1
C VC V̂ −1

C Xk(n− 2)

(XkV̂
−1
C Xk)Tr(V̂ −1

C V̂C)−X ′
kV̂

−1
C VC V̂ −1

C Xk

(15)

≈ (n− 1)X ′
kV̂

−1
C VC V̂ −1

C Xk

(XkV̂
−1
C Xk)Tr(V̂ −1

C VC)
(16)

Accounting for large effect sizes at some SNPs

The accuracy of EMMAX relies on the assumption that the effect of each SNP on the phenotype

is negligible for the purpose of estimating σ2
a and σ2

e in model (7). This is a reasonable assumption

for most of current human GWAS, because a majority of genome-wide significant signals reported

so far explain only a small fraction of phenotypic variance14. For example, in a genome-wide study

with 5,000 individuals, a genome-wide significance p-value of 7.2 × 10−8 corresponds to 0.58%

of phenotypic variance explained. 10−10 corresponds to 0.84%, and 10−15 to 1.3%. A cumulative

effect of several significant SNPs are still relatively small compared to the total genetic effects for

most complex traits14–17.

However, a number of phenotypes do not comply with the “negligible effect” assumption.

There are many Mendelian traits where a single locus explains the total phenotypic variance almost

completely. Among complex traits, several autoimmune diseases including Rheumatoid arthritis

and Type I diabetes are largely explained by HLA alleles with relative risks 4 or greater18,19, with

extremely significant with p-values smaller than 10−50 or 10−100, explaining 50% or even larger

variance of these traits20. In such cases, where a number of SNPs explains a considerable portion of

the phenotypic variance, the negligible effect assumption is ungrounded, and the strategy described

so far impractical, because the variance parameter estimation can be substantially biased due to the

large effect SNPs.

In fact, it is possible to use EMMAX even in this context, provided that one conditions on

the effects of the strongly associated SNPs. Specifically, one can condition on the effects of the

implicated SNPs by modeling them as fixed effects when estimating σ2
a and σ2

e in model (7). It is

14
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crucial, then, to decide on the effect of which SNPs one should condition upon. If we know a priori

the identity of associated loci with strong effect, such as the MHC region in the above example, the

choice will be obvious. Otherwise, we may condition on the effects of SNPs with highly significant

p-values. It is important to use a very stringent significance threshold to avoid loss of power. In

our analysis, we conditioned on the SNPs explaining more than 1% of phenotypic variance. In RA

and T1D, 58 and 135 significant SNPs in MHC and PTPN2 region are conditioned on. Note that

this conditioning procedure is really recommended only if (1) there are a few genomic loci largely

explaining the phenotypic variance, and (2) significant over-dispersion or under-dispersion of test

statistics is observed after applying EMMAX. It should be noted that it is also possible to account

for the large effect SNPs in a more sophisticated way using regularization-based methods such as

ridge regression or LASSO21, instead of a simple threshold-based conditioning.
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